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ABSTRACT: The dam break-induced propagation over a movable bed has given strong interest in numerical 
modeling. The shock wave, generally found in the wavefront, is a challenge in numerical modeling since this 
condition often leads to numerical instability. Additionally, the scouring beneath the wave requires coupling 
of hydraulic and sediment transport models. The objective of this research is to develop a one-dimensional 
model based on a finite element method to simulate an experimental case of a dam break-induced flow and the 
bed scouring beneath it. The two-step Taylor Galerkin scheme is used to solve the governing equations. In 
addition, Hansen numerical filter is used to handle shock wave and to increase the numerical stability of the 
developed model.  The results show good agreement to the experimental data. Additionally, the applied 
numerical filter is able to reduce oscillation and improve the stability of the model. 
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1. INTRODUCTION 
 

Dam failure is normally caused by several 
factors, they could be by geotechnical failure, the 
strength of construction, excess pore water pressure, 
quality of material used for construction, error in 
construction planning, natural disasters (earthquake, 
erosion), and other. The dam failure will directly 
effects scouring downstream of the dam. Scouring 
occurs when the erosion capacity due to dam break 
flows exceeds the capacity that can be 
accommodated. Meanwhile, this will indirectly 
disrupt clean water supply, electricity supply, 
damage homes and infrastructures, and cause 
environmental damage. The devastating effect of a 
dam break to its downstream area due to the failure 
of Wai Ela natural dam has been shown in [1]. In 
recent years, dams are required to provide a 
mitigation plan in the case of failure. Therefore, 
numerical models are of significant importance in 
estimating the effect of a dam break flow.  

A dam break simulation is commonly approach 
using the shallow water equation. The equation can 
be numerically solved using the finite difference 
method (FDM), finite volume method (FVM), or 
finite element method (FEM). FDM is one of the 
most common methods for modeling as described 
in [2]. However, they are less flexible and have a 
tendency to give numerical instability. A numerical 
study of a hypothetical one-dimensional dam break 
using several FDM schemes was conducted as in [3]. 
The results showed that the shock wave is 

significantly causing numerical oscillation, 
especially for lower order schemes. Thus, a 
numerical filter such as Total Variation 
Diminishing (TVD) is highly required. 

FVM provides faster computation. A model 
based on the one-dimensional shallow water 
equation, solved using an FVM scheme was 
developed, as in [4]. The model required an 
artificial dissipation using a weighting factor to 
handle abrupt changes of the flow. Adityawan 
et.al.[5] used an FVM scheme with a slope limiter 
to simulate an experimental case of a dam break 
flow. The slope limiter acts as an artificial 
dissipation to handle shock wave. The model was 
improved and it showed the importance of bed 
stress under the front wave in relation to scouring, 
as in [6]. They coupled the shallow water equation 
with k-ω a model for a better bed stress assessment.  

In a real event of a dam break, the model domain 
may be highly irregular. In this case, FEM provides 
a more flexible way to calculate points within a 
computational domain. The effective use of FEM in 
global modeling was shown in [7]. A model for 
flooding in the coastal area based on the Shallow 
Water Equation, solved using FEM was developed 
in [8]. The model is able to handle the wet/dry 
condition. However, there are no artificial 
dissipation or numerical filter for shock capturing. 
A Galerkin FEM with a characteristic method to 
absorb shock wave was employed in [9]. 
Nevertheless, the application of a numerical filter or 
artificial dissipation is favorable due to its 
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simplicity.  
Spinewise and Capart [10] investigated the 

velocity profile and sediment grain concentration 
by laboratory experiment by further developing the 
setup, as in [11]. They used a longer flume and 
improved the process of withdrawing the gate. The 
gate is opened faster than in the previous, resulting 
in a more upright initial water level condition. In 
addition, they developed a shallow water theory that 
is appropriate with the level of detailed that was 
achieved in the experiment. The numerical 
approach [12] and the analytical approach [13] were 
selected, as in [10], in order to capture the 
significant influence of frictional momentum losses 
on the development of the wave front.  

In this research, Taylor Galerkin finite element 
scheme, firstly developed by Donea [14], is used as 
a numerical scheme. The scheme presented here 
was the variant scheme developed [15] originally 
for the aerodynamic application. Then, it was 
extended to shallow water problems in [16,17]. The 
model has been tested and compared to an FDM 
scheme to simulate a dam break flow on a fixed bed 
[18].  It showed that the FEM performs better than 
the FDM. In this paper, the scheme is developed for 
the simulation of movable bed dam-break flows. 
The solutions of Taylor Galerkin model are 
compared to the experimental data in [11] for the 
different test case. A numerical filter from Hansen 
[19] is used to handle shock and improve the model 
stability.  The filter has been successfully used in a 
finite difference model as in [20]. 

 
2. GOVERNING EQUATION  
 

The one-dimensional movable bed dam break 
flows can be expressed by using the continuity 
equation and momentum equation [10] in the vector 
form following below. 
 
 𝜕𝜕𝑧𝑧�
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0  ....................................................... (1) 

 𝜕𝜕𝑧𝑧0𝑐𝑐0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0  (2) 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜎𝜎 𝜕𝜕𝑧𝑧
𝜕𝜕𝜕𝜕

= −𝜏𝜏 (3) 

with 
 
𝑞𝑞 = ℎ𝑢𝑢,   𝑗𝑗 = ℎ𝑐𝑐𝑢𝑢 , 𝜋𝜋 = ℎ𝜌𝜌𝑢𝑢2 + ℎ𝜎𝜎 (4) 

𝑧𝑧0 = 𝑧𝑧 + ℎ𝑐𝑐
𝑐𝑐0

 ,  𝜇𝜇 = ℎ𝜌𝜌𝑢𝑢 (5) 

 The equations above are general and do not 
assume certain forms for the velocity and the 
profiles of concentration. Here, q is the total 
volumetric discharge, j is granular transport rate, 

and 𝜋𝜋 is the momentum flux. They are in per unit 
width. Parameter of 𝑧𝑧0 is the bed elevation after all 
solid grains are settled corresponding to vethe rtical 
column and 𝜇𝜇 is the momentum density per unit bed 
area.  

Capart & Fraccarollo (2011) in [10] assumed the 
equations for vertical profiles of velocity u and 
concentration c, can be expressed as below. 

 

𝑢𝑢(𝑧𝑧) = �
𝑢𝑢�

𝑢𝑢�(𝑧𝑧 − 𝑧𝑧)/𝛿𝛿
0

       
𝑧𝑧 + 𝛿𝛿 ≤ 𝑧𝑧 ≤ 𝑧𝑧 + ℎ
𝑧𝑧 ≤ 𝑧𝑧 ≤ 𝑧𝑧 + 𝛿𝛿

𝑧𝑧 ≤ 𝑧𝑧
 (6) 

𝑐𝑐(𝑧𝑧) �
0

𝑐𝑐 + (�̃�𝑐 − 𝑐𝑐)(𝑧𝑧 − 𝑧𝑧)/𝛿𝛿
𝑐𝑐0

       
𝑧𝑧 + 𝛿𝛿 < 𝑧𝑧 ≤ 𝑧𝑧 + ℎ
𝑧𝑧 < 𝑧𝑧 ≤ 𝑧𝑧 + 𝛿𝛿

𝑧𝑧 ≤ 𝑧𝑧
  

 (7) 

where 𝑢𝑢�  is the flow velocity at the free surface, h is 
the total flow depth, 𝑧𝑧 is the bed elevation, 𝛿𝛿 is the 
thickness of the bed load,  �̃�𝑐  is the granular 
concentration at the top of the bed load layer, 𝑐𝑐 is 
the granular concentration at the base of the bed 
load layer, and c0 is the granular concentration in the 
static bed. For the balance variables of �̃�𝑧 , 𝑧𝑧0𝑐𝑐0 , and 
𝜇𝜇 are given as 

 
�̃�𝑧 = 𝑧𝑧 + ℎ (8) 

𝑧𝑧0𝑐𝑐0 = 𝑧𝑧𝑐𝑐0 + 𝛿𝛿 �1
2
𝑐𝑐 + 1

2
�̃�𝑐� (9) 

𝜇𝜇 = 𝜌𝜌𝑤𝑤 �ℎ −
1
2
𝛿𝛿� 𝑢𝑢� + (𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑤𝑤)𝛿𝛿𝑢𝑢� �1

6
𝑐𝑐 + 1

3
�̃�𝑐� (10) 

The parameters of 𝜌𝜌𝑤𝑤 and 𝜌𝜌𝑠𝑠  are the mass densities 
of the pure water and sediment grains. The flux 
variables of 𝑞𝑞, 𝑗𝑗, 𝜋𝜋  can be given as 
 
𝑞𝑞 = �ℎ − 1

2
𝛿𝛿� 𝑢𝑢�  (11) 

𝑗𝑗 = 𝛿𝛿𝑢𝑢� �1
6
𝑐𝑐 + 1

3
�̃�𝑐� (12) 

 𝜋𝜋 = 𝜌𝜌𝑤𝑤𝑢𝑢�2 �ℎ −
2
3
𝛿𝛿� 

        +(𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑤𝑤)𝛿𝛿𝑢𝑢�2 � 1
12
𝑐𝑐 + 1

4
�̃�𝑐� 

        + 1
2
𝜌𝜌𝑤𝑤𝑔𝑔ℎ2 + (𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑤𝑤)𝑔𝑔𝛿𝛿2 �1

6
𝑐𝑐 + 1

3
�̃�𝑐� (13) 

The basal normal stress, 𝜎𝜎 and the basal shear stress, 
𝜏𝜏 are given as 
 
𝜎𝜎 = 𝜌𝜌𝑤𝑤𝑔𝑔ℎ + (𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑤𝑤)𝑔𝑔𝛿𝛿 �1

2
𝑐𝑐 + 1

2
�̃�𝑐� (14) 
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𝜏𝜏 = 1
2
�𝑐𝑐 + �̃�𝑐�(𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑤𝑤)𝑅𝑅𝑔𝑔𝛿𝛿 (15) 

where  𝑅𝑅 = tan𝜑𝜑  is the tangent of the internal 
angle of friction. 
 
3. NUMERICAL SCHEME 

 
A general form of a one-dimensional movable 

dam break flows can be written in conservative 
form as following below 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = 𝑆𝑆       (16) 
 
Where 
 

𝑈𝑈 = �
�̃�𝑧

𝑧𝑧0𝑐𝑐0
𝜇𝜇
�,   𝐹𝐹 = �

𝑞𝑞
𝑗𝑗
𝜋𝜋
�,  𝑆𝑆 = �

0
0

−𝜏𝜏 − 𝜎𝜎 𝜕𝜕𝑧𝑧
𝜕𝜕𝜕𝜕

�    (17) 

 
The numerical scheme used to discretize the 
equations above is two steps Taylor Galerkin FEM 
scheme. This scheme is analog to two-step Lax-
Wendroff scheme based on FDM. 
 
3.1 Time Discretization 
 

The numerical algorithm used here is by using 
second order of Taylor Series to develop 𝑈𝑈 in time 
of  𝑡𝑡 = 𝑡𝑡𝑛𝑛 as follow. 
 

𝑈𝑈𝑛𝑛+1 = 𝑈𝑈𝑛𝑛 + ∆𝑡𝑡 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛

+ ∆𝜕𝜕2

2
�𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

�
𝑛𝑛

 (18) 
 
Rearranging Equation (16), so the derivative of time 
as the derivative of space following below 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝑆𝑆 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

       (19) 
 
For the second order, 
 
 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

=  𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑆𝑆 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = ∂𝑆𝑆

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 
            

                             = 𝐺𝐺 �𝑆𝑆 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐴𝐴 �𝑆𝑆 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�� 

 
       (20) 
 
By substituting (19) and (20) to (18) then  
 
 𝑈𝑈𝑛𝑛+1 = 𝑈𝑈𝑛𝑛 + ∆𝑡𝑡 �𝑆𝑆 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑛𝑛

 

         + ∆𝜕𝜕2

2
�𝐺𝐺 �𝑆𝑆 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� − 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐴𝐴 �𝑆𝑆 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
���

𝑛𝑛

 (21) 

 
 
 
 

3.2 Space Discretization 
 
In space discretization, several functions are used 
here for an approximation as below: 
 
𝑈𝑈 = 𝑈𝑈𝑖𝑖𝑁𝑁𝑖𝑖,    𝐹𝐹 = 𝐹𝐹𝑖𝑖𝑁𝑁𝑖𝑖 ,    𝑆𝑆 = 𝑆𝑆𝑖𝑖𝑁𝑁𝑖𝑖         (22) 
 
Where 𝑁𝑁𝑖𝑖 is the piecewise linear shape function for 
nodal i, and 
 
𝐺𝐺 = 𝐺𝐺𝑒𝑒𝑃𝑃𝑒𝑒 ,  𝐴𝐴 = 𝐴𝐴𝑒𝑒𝑃𝑃𝑒𝑒 ,      (23) 
 
Where 𝑃𝑃𝑒𝑒 weight residual is the piecewise constant 
shape function for elemen e . By using weight 
residual process to equation (21) by shthe ape 
function 𝑵𝑵𝒊𝒊 , the equation will be 
 

∫ (𝑈𝑈𝑛𝑛+1 − 𝑈𝑈𝑛𝑛)𝑁𝑁𝑖𝑖𝑑𝑑𝑑𝑑𝛺𝛺 = ∆𝑡𝑡 ∫ �𝑆𝑆 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛
𝑁𝑁𝑖𝑖𝑑𝑑𝑑𝑑𝛺𝛺     

+ ∆𝜕𝜕2

2 ∫ �𝐺𝐺 �𝑆𝑆 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐴𝐴 �𝑆𝑆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
���

𝑛𝑛

𝛺𝛺 𝑁𝑁𝑖𝑖𝑑𝑑𝑑𝑑  

 (24) 
 
where 𝑑𝑑 is the space domain, and a consistent mass 
matrix is given as 
 
𝑀𝑀 = ∫ 𝑁𝑁𝑖𝑖𝑁𝑁𝜕𝜕𝑑𝑑𝑑𝑑𝛺𝛺  (25) 
 
By using Gauss theorem to get the weak form, then 
multiply both sides of equation (24) by 𝑁𝑁𝜕𝜕 and using 
equation (25), the equation is transformed into the 
below 
 
(𝑀𝑀𝑀𝑀𝑈𝑈) = ∆𝑡𝑡 ∫ ��𝑆𝑆 − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑛𝑛
𝑁𝑁𝑖𝑖�𝑁𝑁𝜕𝜕𝑑𝑑𝑑𝑑𝛺𝛺    

                   + ∆𝜕𝜕2

2 ∫ �𝐺𝐺 �𝑆𝑆 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐴𝐴 �𝑆𝑆 −𝛺𝛺

                    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
���

𝑛𝑛

𝑁𝑁𝑖𝑖𝑑𝑑𝑑𝑑 (26) 

 
The algorithm above can be applied for a set of 
equation systems. The problems appear when the 
system involves the evaluation and the 
multiplication of matrix A and G. This process 
consumes computer resources. Therefore, equation 
(26) is arranged using two steps algorithm as given 
in [16]. 

The numerical algorithm used here is by using 
second order of Taylor Series to develop 𝑈𝑈 in time 
of  𝑡𝑡 = 𝑡𝑡𝑛𝑛 as follow. 
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(𝑀𝑀∆𝑈𝑈) = ∆𝑡𝑡 �∫ ��𝑆𝑆𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖 + �𝑆𝑆𝑛𝑛+
1
2 − 𝑆𝑆̅𝑛𝑛��𝑁𝑁𝜕𝜕 +Ω

�𝐹𝐹𝑘𝑘
𝑛𝑛+12 − 𝐹𝐹𝑘𝑘���

𝑛𝑛 + 𝐹𝐹𝑖𝑖𝑘𝑘
𝑛𝑛𝑁𝑁𝑖𝑖�

𝜕𝜕𝑁𝑁𝑗𝑗
𝜕𝜕𝜕𝜕𝑘𝑘

𝑑𝑑Ω� + ∫ −𝐹𝐹𝑖𝑖𝑛𝑛𝑁𝑁𝑖𝑖𝑛𝑛 −𝛤𝛤

�𝐹𝐹𝑛𝑛+1/2 − 𝐹𝐹�𝑛𝑛�𝑁𝑁𝜕𝜕𝑑𝑑𝑑𝑑�  (27) 

3.3 Numerical Filter 
 

Taylor Galerkin model as a finite element 
method is capable to employ flexible grid. However, 
it has been shown in [16,17,18] that Taylor Galerkin 
is prone to oscillation and instability especially in 
handling the shock. The developed model employs 
a numerical filter to handle shock wave as proposed 
in [19]. The filter is used for each time step at each 
computational point. The values of water depth and 
velocity are updated at each iteration using the 
following equation. 
 
𝐹𝐹(i)=C×F(i)+0.5(1-C)(F(i-1)+F(i+1))      (28) 
 
The filter can be further derived for second order 
equation as follow. 

𝐹𝐹(𝑖𝑖) = 𝐶𝐶 × 𝐹𝐹(𝑖𝑖) +
2
3

(1

− 𝐶𝐶)
[𝐹𝐹(𝑖𝑖 + 1) + 𝐹𝐹(𝑖𝑖 − 1)]

2
+

1
3

(1

− 𝐶𝐶)
[𝐹𝐹(𝑖𝑖 + 2) + 𝐹𝐹(𝑖𝑖 − 2)]

2
 

 
     (29) 

C value is given as 0.99, with F corresponds to the 
filtered parameters. 
 
4. TEST CASES DESCRIPTION 
 

The developed model is applied to simulate an 
experimental case of a dam break flow with 
movable bed [11]. The experiment was conducted 
in a laboratory with PVC (Particle Tracking 
Velocimetry) grains.  

The dam break was simulated in a flume of 6 m 
length, 25 cm width, and 70 cm height. A gate is 
located at the middle of the flume. The flume is 
filled with water at one side of the gate. The bed is 
formed by a layer of initially motionless sediment. 
The gate is opened suddenly, releasing the water.  
The flow velocity and the transported sediment 
were then measured. Coarse, lightweight PVC 
grains are used in the experiments. The particles are 
white in color, cylindrical in shape with an 
approximately equal height and base diameter, and 
an equivalent spherical diameter D = 3.9 mm, 

measured from the bulk volume of 1000 particles. 
The grains have a density 𝜌𝜌𝑠𝑠 = 1580 𝑘𝑘𝑔𝑔 𝑚𝑚−3 and 
friction angle 𝜑𝜑 = 380 , as estimated from critical 
repose angle of dry grthe anular heap. They are 
poured in place at loose packing to produce a bed of 
granular concentration 𝑐𝑐0 ≈ 0.58. The detail of the 
laboratory experiment can be found in [11]. 

The initial conditions for both layers of water 
and water-saturated grains are at rest on both sides 
of the gate. The vertical gate is positioned at x = 0. 
The initial conditions at t = 0 are given by 
 

𝑧𝑧(𝑥𝑥, 0) = �
𝑧𝑧𝐿𝐿 , 𝑥𝑥 < 0,
𝑧𝑧𝑅𝑅 , 𝑥𝑥 > 0,   (30) 

 

�̃�𝑧(𝑥𝑥, 0) = ��̃�𝑧𝐿𝐿 , 𝑥𝑥 < 0,
�̃�𝑧𝑅𝑅 , 𝑥𝑥 > 0,   (31) 

 
𝑢𝑢�(𝑥𝑥, 0) = 0 (32) 
 
The bed and the free surface are initially horizontal 
on both sides of the gate, but levels 𝑧𝑧𝐿𝐿 , 𝑧𝑧𝑅𝑅 , �̃�𝑧𝐿𝐿 , �̃�𝑧𝑅𝑅 
on the left and right sides will be in two cases is 
given in Table 1 below. 
  

Table 1 Test cases data for simulation 
 

Case Material 𝑧𝑧𝐿𝐿 
(m) 

�̃�𝑧𝐿𝐿 
(m) 

𝑧𝑧𝑅𝑅 
(m) 

�̃�𝑧𝑅𝑅 
(m) 

1 PVC 0 0.35 0.0 0.01 
2 PVC 0.05 0.35 0.0 0.01 

 
The illustration of test cases for the initial condition 
on Table 1 can be shown in Fig. 1 and Fig. 2 below. 
 

 
Fig. 1. The initial condition of case 1 at t = 0 

 

 
Fig. 2. The initial condition of case 2 at t = 0 

 
The length of the domain in the numerical 

simulation is extended to 10 meters. This is to 
ensure that the model is not affected by the 
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boundary conditions. The number of elements and 
nodes are 500 elements and 501 nodes with a 
spacing of 0.02 meter.  
 
5. RESULTS AND DISCUSSION 
 

 
Fig. 3. Comparison of the free surface, top of the 

transport layer, and bed profile 
between Taylor Galerkin simulation and experimental 

data  
(case 1: 𝑧𝑧𝐿𝐿 = 0 , �̃�𝑧𝐿𝐿 = 0.35 , 𝑧𝑧𝑅𝑅 = 0 , �̃�𝑧𝑅𝑅 = 0.01) 

 
Figures 3 and  4 show the comparison of the 

simulation results from the developed model 
(without the numerical filter) to the experimental 
data for case 1 and case 2, respectively. Here, the 
bed profile can be identified as 𝑧𝑧 , the top of the bed 
layer as 𝑧𝑧 + 𝛿𝛿, and the free surface as �̃�𝑧 = 𝑧𝑧 + ℎ. 

Figure 3 shows the free surface, top layer, and 
bed layer profiles at t = 1.25 second for case 3. The 
calculated free surface at the gate and at the wave 
front shows high oscillation due to the abrupt 
changes of the flow hydraulic conditions. The free 
surface suddenly drop  around the gate (�̃�𝑧 = 0.125) 
followed by a milder slope to the wave front. 
Numerical instability begins to appear on x = 2.1 
meter until x = 2.3 meter with �̃�𝑧 = 0.07 then down 
suddenly to close to bed profile with  �̃�𝑧 = 0.01 , 
respectively.  

The calculated top layer profile in figure 1 is 
shown to have a good comparison to the 
experimental data. Nevertheless, oscillation occurs 
around the dam position with 𝑧𝑧 + 𝛿𝛿 = −0.02. The 
bed profile gives an increasing trend from the gate 
to x = 0.7 meter, then relatively constant to x = 2.2 
meter with 𝑧𝑧 + 𝛿𝛿 = 0.02 . Oscillation appears at x 
= 2.2 meter to x = 2.3 meter due to the same reason.  

The calculated bed profile in Figure 3 also 
shows a good comparison to the experimental data. 
Similar trends to the top layer and the free surface 
profiles are observed. A downward trend around the 
gate with oscillation with 𝑧𝑧 = −0.05. An upward 
trend to x = 0.7 meter, then relative constant to x = 
2.2 meter with 𝑧𝑧 = −0.025 . Oscillation also starts 
to appear at x = 2.2 until x = 2.3 meter and up 
suddenly to  𝑧𝑧 = 0. 
 

 
Fig. 4. Comparison of the free surface, top of the 

transport layer, and bed profile 
between Taylor Galerkin simulation an d experimental 

data  
(case 2: 𝑧𝑧𝐿𝐿 = 0.05 , �̃�𝑧𝐿𝐿 = 0.35 , 𝑧𝑧𝑅𝑅 = 0.01 , �̃�𝑧𝑅𝑅 = 0.01) 
 

Figure 4 shows the free surface profile, top 
layer, and bed layer profiles at t = 1.25 second for 
case 2. In general, the trends are the same as in case 
1. However, oscillation due to numerical stability, 
in this case, is stronger, especially around the gate. 

The calculated free surface shows a steeper 
gradient than the measured value around the dam 
position at the center of coordinates with �̃�𝑧 = 0.11. 
A strong oscillation is also observed in this location. 
The calculated profiles after this location shows a 
good comparison to the measure value until the 
wave front at x = 2.0 meter. Here, numerical 
instability appears on until x = 2.2 meter with �̃�𝑧 =
0.06 then drop suddenly to �̃�𝑧 = 0.01.  

The calculated top layer profile also shows 
similar trends to the measured data. A sudden 
elevation drop is observed around the dam position 
with 𝑧𝑧 + 𝛿𝛿 = −0.01  and then start slightly 
increasing to x = 0.7 meter, then relative constant to 
x = 2.2 meter with 𝑧𝑧 + 𝛿𝛿 = 0.02  . Nevertheless, 
oscillation occurs at the similar locations to the free 
surface profile, around the gate and at the wave 
front. 

The calculated bed profile shows a good 
comparison to the experimental data. Similar trends 
to the top layer profile are observed. The elevation 
drop suddenly around the dam position with 𝑧𝑧 =
−0.04 and then start slightly ascending to x = 0.7 
meter, then relative constant to x = 2.2 meter with 
𝑧𝑧 = −0.02 . At x = 2.2 meter starts the numerical 
instability until x = 2.3 meter and up suddenly to  
𝑧𝑧 = 0. 

Figures 5 and 6 show the simulation result of 
the developed model (with numerical filter) and the 
experimental data for case 1 and case 2, respectively. 
The bed profile can be identified as 𝑧𝑧 , the top of the 
bed layer as 𝑧𝑧 + 𝛿𝛿, and the free surface as �̃�𝑧 = 𝑧𝑧 +
ℎ, as in Figures 3 and 4. 
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Fig. 5. Comparison of the free surface, the top of the 

transport layer, and bed profile 
between Taylor Galerkin (Hansen filter) simulation and 

experimental data  
(case 1: 𝑧𝑧𝐿𝐿 = 0 , �̃�𝑧𝐿𝐿 = 0.35 , 𝑧𝑧𝑅𝑅 = 0 , �̃�𝑧𝑅𝑅 = 0.01) 
 

Figure 5 shows the free surface profile, top 
layer, and bed layer profiles at t = 1.25 second for 
case 1. Overall, oscillation is reduced significantly 
due to the application of the numerical filter. 
However, the oscillation at the wavefront sill 
appears. The calculated free surface drops around 
the gate due to its sudden opening with �̃�𝑧 = 0.135. 
At this location, the numerical filter significantly 
improves the stability of the model. The surface 
profile shows a downward trend from the gate to x 
= 2.1 meter. At the wave front, oscillation appears 
on x = 2.0 meter until x = 2.2 meter with �̃�𝑧 = 0.08. 
The surface profiled drop suddenly approaching the 
bed level with �̃�𝑧 = 0.01. The estimated wave front 
location is behind the experiment data.  

The calculated top layer profile also shows a 
sudden drop around the gate with 𝑧𝑧 + 𝛿𝛿 = −0.01. 
The top layer slowly increases to x = 0.7 meter, then 
relative constant to x = 2.1 meter with 𝑧𝑧 + 𝛿𝛿 =
0.02  . Oscillation still appears around the wave 
front at x = 2.1 meter until x = 2.2 meter and down 
suddenly to  𝑧𝑧 + 𝛿𝛿 = 0.  

The calculated bed layer profile gives a similar 
trend to the calculated top layer profile. The profile 
changes abruptly around the gate with 𝑧𝑧 = −0.04  
and then start slightly ascending to x = 0.7 meter, 
then relative constant to x = 2.1 meter with 𝑧𝑧 =
−0.025  . Again, oscillation appears around the 
wave front at x = 2.1 meter until x = 2.2 meter  

 

 
Fig. 6. Comparison of the free surface, top of the 

transport layer, and bed profile 
between Taylor Galerkin (Hansen filter) simulation and 

experimental data  
(case 1: 𝑧𝑧𝐿𝐿 = 0.05 , �̃�𝑧𝐿𝐿 = 0.35 , 𝑧𝑧𝑅𝑅 = 0 , �̃�𝑧𝑅𝑅 = 0.01) 

 
Figure 6 shows the free surface profile, top 

layer, and bed layer profiles at t = 1.25 second for 
case 2. The free surface profile shows a significant 
reduction of the oscillation to that in Figure 6. The 
surface profile around the gate shows a sudden drop 
to �̃�𝑧 = 0.12 without any oscillation around x = 0 
and then sloping down to the distance of 2.0 meter. 
However, mild oscillation is still observed around 
the wave front from x = 1.8 meter until x = 2.1 meter 
with �̃�𝑧 = 0.07  then suddenly drop to �̃�𝑧 = 0.01 , 
respectively.  In addition, the wave front location is 
considerably behind to that obtains from 
experiment and model without fila ter. 

The calculated top layer profile shows a 
similar trend to the that from the model without a 
filter as well as the experimental data. A sudden 
drop is found around the gate with 𝑧𝑧 + 𝛿𝛿 = 0.0 and 
then start slightly ascending to x = 0.7 meter, then 
relative constant to x = 1.9 meter with 𝑧𝑧 + 𝛿𝛿 =
0.02  . Oscillation is also found around the wave 
front from x = 1.9 meter until x= 2.1 meter.  

The calculated bed profile shows good 
agreement to the experimental data. The bed level 
drops around the gate with 𝑧𝑧 = −0.03  and then 
start slightly ascending to x = 0.7 meter, then 
relative constant to x = 2.2 meter with 𝑧𝑧 = −0.02 . 
However, as in the free surface and top layer 
profiles, mild oscillation is observed from x = 1.9 
meter until x = 2.1 meter. 

The results are further analyzed to evaluate the 
performance of the numerical filter. Pearson 
Correlation and Root Mean Square Error (RMSE) 
are calculated for the free surface profile, top layer 
profile and bed layer profile, from the model and the 
experiment data, for all cases. The results are given 
in Table 2 below 

 
Table 2 Filter Evaluation (Pearson Correlation, 

RMSE) of Free Surface, Top Layer, and Bed Layer 
 

Model 
Free Surface 

Case 1 Case 2 
Pearson RMSE Pearson RMSE 

Free Surface 
With 
Filter 0.96 5.16 0.94 6.43 
Without 
Filter 0.94 8.07 0.93 6.62 

Top layer 
With 
Filter 0.47 34.56 0.30 27.68 
Without 
Filter 0.56 27.02 0.30 20.06 

Bed layer 
With 
Filter 0.27 21.32 0.79 15.79 
Without 
Filter 0.26 21.32 0.75 14.74 
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The numerical filter gives a better prediction 

of the free surface profile. In both cases, results 
from the model with filter give a higher correlation 
and a lower RMSE to the experiment data than 
those from without filter. However, the estimated 
value of top and bed layers from the model without 
filter has a better agreement to the experimental data. 
Application of numerical filter to these layers 
reduces the Pearson correlation and increases the 
value RMSE, especially for the top layer.  

 
Table 3 Filter Evaluation (WaveFront Location) 

 

Case 
With 

Filter (m) 
Without 

Filter (m) 
Experiment 

(m) 
1 2.22 2.32 2.42 
2 2.02 2.20 2.45 

 
A comparison of the wavefront location from 

the experiment, model with filter, and without a 
filter, is given in Table 3. In general, the estimated 
location of the wavefront is behind the experiment 
data. It was found that the model without filter 
performs better in predicting the location of the 
wavefront. The movable bed around the wavefront 
is highly affected by the free surface. Therefore, a 
more accurate wavefront location will provide a 
better estimation of the top layer and bed layer 
profiles. However, it should be noted that 
oscillation and numerical instability around the 
wavefront are very high. Application of the 
numerical filter significantly reduces oscillation and 
therefore, the overall prediction of the free surface 
is better.  
 
6. CONCLUSIONS 
 

A Taylor Galerkin model for movable bed dam 
break flows has been developed. The model was 
successfully used to simulate an experimental case. 
The free surface profile, the top layer profile, and 
the bed layer profile show a good comparison 
between those obtained from the model to those 
obtained from the experiment.  

The developed model employs a numerical filter 
to handle the shock. The numerical filter 
significantly reduces the oscillation due to the 
numerical instability. The applied filter successfully 
increases the model accuracy in predicting the free 
surface profiler. However, its application leads to a 
less accurate wavefront and movable bed estimation. 

Application of filter requires further study. The 
developed model can be further upgraded by 
improving the filter with those based on other 
methods such as the slope limiter function, with 
consideration of movable bed. Other application 
possibilities of the developed model could be more 

realistic conditions, regarding various flow 
directions. These include bed load transport near the 
threshold of motion, the transition to debris flows, 
and fine sediments instead of coarse grains transport 
problems.  
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