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ABSTRACT: The Niger Inner Delta (NID) is a wetland that was selected as an International Important 
Wetland under the Ramsar Convention (on February 1st, 2004) and can still be considered a hotspot of 
biodiversity in the Sahel. The Niger River is the main water source for the NID and is also used for urban life 
and irrigation. Therefore, the sustainable use of water to ensure environmental flow in the NID is under 
discussion. In this paper, the performance of different models established with empirical approaches 
(Artificial Neural Network and Regressions) or Conceptual Variable Source Area (Water Balance Method 
WBM) approaches were evaluated. The results of evaluation and validation based on determination 
coefficient (R2), Root Mean Squared Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) show that all the 
models gave good results, however, the Levenberg Marquardt Artificial Neural Network (with 20 hidden 
neurons) was the best fit for the validation and testing periods.  
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1. INTRODUCTION 
 
   For many decades, water shortage has been a 
dire problem for millions of people living along 
the southern fringe of the Sahara Desert [1]. A 
recent international study, published in July 2018, 
identified the Inner Niger Delta area as the 
birthplace of African Rice domestication 3000 
years ago [2]. 
   The River Niger has its source in the Fouta 
Djallon Mountains to the south of Guinea (West 
Africa), it flows northeast through the Upper Niger 
basin and enters the Niger Inner Delta (NID) in 
Mali with a large floodplain (ranging from 30,000 
to 40,000 km2) [2] (see Fig 1). The annual flooding 
of large alluvial plains is a vital resource for many 
ecosystems, including those serving agriculture, 
livestock, groundwater recharge, and biodiversity 
(see Fig 2). The rapid expansion of upstream 
irrigation, by the diversion dams on the Niger river 
and its subsidiary (Bani), has made a significant 
impact on the Water-Level (WL) in the NID 
downstream [3] as well as the flood area. A 
smaller flood area means fewer resources and 
possible friction and even uprisings between 
different communities and users, described as “The 
Tragedy of the Commons” by the American 
Biologist Garrett Hardin in 1968 [4].  
   The main objective of this study is to develop 
statistical/stochastic and conceptual/physical 
models for Niger Inner Delta water level 
forecasting and make a comparison between these 
different models. The evaluation and forecasting of 
water-level fluctuation (WLF) are increasingly 
important for the NID owing to its close relation to 

human activity, agriculture production, and socio-
economic and environmentally sustainable 
development. 
 
2. STUDY AREA AND DATA SOURCES 
 
   Beyond the town of Ségou, the Niger River 
forms a vast inland delta with an area of 41,800 
km² (Fig 1 & 2); it joins with its main tributary, the 
Bani, at Mopti and then forms several lakes. The 
watershed area of this Inner Delta covers 130,000 
km² [3]. The NID is extremely flat and contains 
many lakes and streams of varying morphology. 
The altitude of the river bed only decreases by 
approximately 10 m over the 350 km between the 
entry and exit of the delta [5]. This study uses data 
from different sources (Table 1). The flow of the 
River Niger at Mopti and the water level at Akka 
are taken from the Malian Government Hydraulic 
Service; the meteorological data are from the Mali-
Meteo & Atmospheric Science Data Center 
(NASA).  
 
Table 1 Data type and data sources 

 
N Station Source Date Data type 
1 Mopti DNH 

19
60

-2
01

5 Water Flow 
2 Mopti DNH Water-Level 
3 Mopti DNM Rainfall 
4 Akka ASDC/NASA Air Temp. 

 
Note: DNH: Malian National Hydraulic Board, DNM: Malian 
National Meteorology Board, NASA: Atmospheric Science 
Data Center of NASA 
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Fig 1. The Niger Inner Delta in Mali                                   Fig 2. NID during the dry season (Source: Google)  
 
 
3. METHODS 

 
   The most common methods for river flow and 
WL forecasting are physical, conceptual and/or 
statistical rainfall-runoff methods [5-7]. In recent 
years, Artificial Intelligence (AI) has received a 
great deal of attention as a modern approach for 
data series analysis and for hydrology modeling, 
including Artificial Neural Networks (ANN) and 
the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) [7-13]. For our study, six different 
models were implemented, based on empirical and 
stochastic approaches.   
 
3.1 Artificial Neural Network (ANN) 

 
   An artificial neural network (ANN) is a non-
linear, black box statistical/stochastic approach 
[11]; the main objective is to find the optimum 
architecture of an ANN that can model the 
relationship between input and output variables. In 
this study, the Matlab Neural Network tool® were 
used to train the different models. For each of the 
following ANN algorithms, the monthly rainfall, 
evapotranspiration and the river discharge at Mopti 
station were designated as predictors and the water 
level at Akka station was designated as the 
predicted. 
   The most commonly used ANN structure is the 
feed-forward multilayer perceptron (MLP). It is a 
network formed by simple neurons. The 
perceptron computes a single output from multiple 
real-value inputs by forming combinations of 
linear relationships, according to input weights and 
even nonlinear transfer functions [6]. 
Mathematically, the MLP can be express as: 

 
𝒚𝒚(𝒌𝒌) = 𝒇𝒇� ∑ 𝒘𝒘(𝒌𝒌)

𝒊𝒊
𝒏𝒏
𝒊𝒊=𝟏𝟏 𝒉𝒉(𝒌𝒌)

𝒊𝒊 + 𝒃𝒃(𝒌𝒌−𝟏𝟏)�    (1) 
 
Where 𝒚𝒚 is the computed value of the maximum 
monthly water-level ( 𝑯𝑯𝐦𝐦𝐦𝐦𝐦𝐦 ); 𝒘𝒘𝒊𝒊  is the ith 
connection weight; and 𝒉𝒉𝒊𝒊  represents the input 
values in each layer.  
𝑭𝑭𝑭𝑭𝑭𝑭 𝒕𝒕𝒉𝒉𝒕𝒕 𝒍𝒍𝒍𝒍𝒚𝒚𝒕𝒕𝑭𝑭 𝒌𝒌𝟏𝟏:𝑬𝑬𝑬𝑬𝟎𝟎_𝑭𝑭𝒃𝒃𝒐𝒐,𝑹𝑹𝒍𝒍𝒊𝒊𝒏𝒏𝑶𝑶𝒃𝒃𝒐𝒐,𝑸𝑸𝐦𝐦𝐦𝐦𝐦𝐦 _𝑭𝑭𝒃𝒃𝒐𝒐); 
 𝒃𝒃 is the neuron bias, 𝒌𝒌 is the number of layers and 
𝒇𝒇  is the activation function. Let us consider the 
target value of watthe er level to be 𝒚𝒚𝒕𝒕𝒍𝒍𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕. 
The Multilayer neural network could have 𝑳𝑳 
hidden layers and would be calculated as follows: 
 

The Forward Pass: 
→ Layer pre-activation for 𝑘𝑘 > 0 (ℎ0(𝑥𝑥) = 𝑥𝑥) 

 
𝒍𝒍𝒌𝒌(𝒙𝒙) = 𝒃𝒃(𝒌𝒌) + 𝒘𝒘(𝒌𝒌)𝒉𝒉(𝒌𝒌−𝟏𝟏)(𝒙𝒙)  (2) 

 
→ Hidden layer activation (𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 1 𝑡𝑡𝑓𝑓 𝐿𝐿) 

 
𝒚𝒚(𝒌𝒌)(𝒙𝒙) = 𝒇𝒇(𝒍𝒍(𝒌𝒌)(𝒙𝒙))   (3) 

 
→ Output layer activation (𝑘𝑘 = 𝐿𝐿 + 1) 

 
𝒚𝒚(𝑳𝑳+𝟏𝟏)(𝒙𝒙) = 𝒕𝒕(𝒍𝒍(𝑳𝑳+𝟏𝟏)(𝒙𝒙))   (4) 

 
Where 𝑔𝑔  is the output layer activation 
function.  

→ Calculating the error using squared error 
function gives: 
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𝑬𝑬 = ∑ 𝟏𝟏
𝟐𝟐

(𝒚𝒚𝒕𝒕𝒍𝒍𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕  − 𝒚𝒚(𝑳𝑳+𝟏𝟏)  )𝟐𝟐  (5) 
 

The back-forward Pass: 
   The goal with back-propagation is to update each 
of the weights (𝒘𝒘𝒌𝒌 ) in the network so that they 
cause the actual output to be closer to the target 
output, thereby minimizing the error for each 
output neuron and the network as a whole. For 
details about the procedure refer to [14]. 

 
Fig 3. Multilayer Neural Network Architecture 

(Source: Almad Aljebaly refer to [10]) 
 

   Previous studies indicated that the Levenberg-
Marquardt algorithm produces reasonable results 
for most ANN applications [6,15]. For the present 
study, the three algorithms available in Matlab® 
(Levenberg-Marquardt (LM), Bayesian 
Regularization (BR) and Scaled Conjugate 
Gradient (SCG) algorithms) were considered and 
the number of hidden layers was fixed. 

 

3.1.1. Levenberg-Marquardt Algorithm (LM) 
   Levenberg-Marquardt (LM) is the most popular 
alternative to the Gauss-Newton method for 
finding the minimum of the function 𝐹𝐹(𝑥𝑥) that is a 
sum of: 
 

𝐹𝐹(𝑥𝑥) = 1
2
∑ [𝑓𝑓𝑖𝑖(𝑥𝑥)]2𝑚𝑚
𝑖𝑖=1    (6) 

 
   Let the Jacobian of 𝑓𝑓𝑖𝑖(𝑥𝑥) be denoted 𝐽𝐽𝑖𝑖(𝑥𝑥), then 
the LM method searches in the direction given by 
the solution 𝑝𝑝 of the equation: 
 

�𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + λ𝑘𝑘𝐼𝐼�𝑝𝑝𝑘𝑘 = −𝐽𝐽𝑘𝑘𝑇𝑇𝑓𝑓𝑘𝑘  (7) 
 
where λ𝑘𝑘  are non-negative scalars and 𝐼𝐼  is the 
identity matrix [14]. 
 

3.1.2. Bayesian Regularization Algorithm (BR) 
   This algorithm uses David MacKay’s Bayesian 
techniques to optimize regularization and requires 
the computation of the Hessian matrix [16]. 
Typically, training aims to reduce the sum of 

squared errors 𝐸𝐸𝐷𝐷  and the regularization adds an 
additional term 𝐸𝐸𝑊𝑊  [17]. The objective term 
becomes 
 
𝐹𝐹 = 𝛽𝛽𝐸𝐸𝐷𝐷 + 𝛼𝛼𝐸𝐸𝑤𝑤     (8) 

 
where 𝛽𝛽 and 𝛼𝛼  are the objective function 
parameters. 

 

3.1.3. Scaled Conjugate Gradient Algorithm 
(SCG) 
   The Scaled Conjugate Gradient (SCG) method, 
is based on the gradient descent algorithm (as are 
most of the feed-forward neural networks) and is 
well known in optimization theory [18]. The SCG 
avoids the line search per learning iteration by 
using an LM approach in order to scale the step 
size. 
 
3.2. Gaussian Process Regression (GPR) model 

with MatLAB regression learner  

 
   Gaussian process regression (GPR) models are 
kermel-based, probabilistic models [19,25]. A 
linear regression model is of the form: 

 
𝑦𝑦 = 𝑥𝑥𝑇𝑇 𝛽𝛽 + 𝜀𝜀     (9) 

 
where ε~𝑁𝑁(0,𝜎𝜎2) . A GPR model explains the 
response by introducing the latent variable. The 
GPR model was fit using a squared, exponential 
kernel (covariance) function, which is defined as:  

 

𝑘𝑘�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�𝜃𝜃� = 𝜎𝜎𝑓𝑓2𝑒𝑒𝑥𝑥𝑝𝑝 �−
1
2

�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�
𝑇𝑇

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)

𝜎𝜎𝑙𝑙
2 � (10) 

 
   It is expected that points with similar predictor 
values 𝑥𝑥𝑖𝑖 , naturally have close response (target) 
values 𝑦𝑦𝑖𝑖 . In other words, it determines how the 
response at one point 𝑥𝑥𝑖𝑖 is affected by responses at 
other points 𝑥𝑥𝑗𝑗 , 𝑖𝑖 ≠  𝑗𝑗, 𝑖𝑖 =  1, 2, . . . ,𝑛𝑛, where 𝜎𝜎𝑙𝑙  is 
the characteristic length scale and 𝜎𝜎𝑓𝑓 is the signal 
standard deviation. 

 
3.3. Water Balance Model using Variable 

Source Area (WBM/VSA) 
 
   The water depth in the NID may be obtained 
using the Water Balance Model (WBM) with 
Variable Source Area (VSA), see Eq. (11). The 
concept of Variable Source Area was introduced 
for the first time by Hewlett and Hibbert in 1967 
[20]. Dunne (1975) [21] is also known for his 
contribution to the fundamental concept of the 
VSA. The VSA develops when the soil profile 
becomes saturated from below after the water table 
rises towards the land surface.  
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𝐻𝐻𝑖𝑖+1 = 𝑀𝑀𝑀𝑀𝑥𝑥(𝐻𝐻𝑖𝑖 + (𝑄𝑄𝑖𝑖+1 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜) 𝐷𝐷

𝐴𝐴1
+

�𝑅𝑅𝑖𝑖+1 − 𝐸𝐸𝑇𝑇0𝑖𝑖+1𝐷𝐷�
(𝐴𝐴1+𝐴𝐴2)

𝐴𝐴1
, 𝛾𝛾 )   (11) 

 
The outflow is 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛽𝛽𝑀𝑀𝑀𝑀𝑥𝑥(𝐻𝐻𝑖𝑖 , 0)𝛼𝛼  (12) 
 
The wet soil area is given as 𝐴𝐴2 = 𝛿𝛿�𝐴𝐴1  (13) 
 
   Time, maximum monthly inflow from the 
upstream Mopti station (𝑄𝑄𝑖𝑖), monthly rainfall (𝑅𝑅) 
the daily potential evapotranspiration (𝐸𝐸𝑇𝑇0 ), the 
number of days in each month (𝐷𝐷), and pond water 
surface (𝐴𝐴1) data were fed into the spreadsheet. To 
estimate the maximum water level (𝐻𝐻𝑖𝑖) at various 
time-steps, Eq. (11) is used, based on parameters 𝛼𝛼, 
𝛽𝛽 , 𝛾𝛾  and 𝛿𝛿 . The Generalized Reduced Gradient 
(GRG) nonlinear solving method was used to 
identify the parameters in Excel Solver ®.  
 
3.4. Multiple Linear Regression (MLR) 
 
   As opposed to simple linear regression models, 
which describe the linear function relationship 
between a single explanatory variable 𝑋𝑋  (inflow, 
Rainfall, 𝐸𝐸𝑇𝑇0 ) and the response variable  𝑌𝑌  (NID 
Water-Level), multiple linear regression models 
comprise the use of a collection of explanatory 

variables for describing the behaviour of 𝑌𝑌 [22-23]. 
 
   In formal terms: 
 
𝑦𝑦 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑘𝑘

𝑗𝑗=1 𝑥𝑥𝑖𝑖𝑗𝑗      (14) 
 
   Parameter estimation in multiple linear 
regression is based on the least squares method 
and can be computed using the Excel ® Data 
Analysis Regression Toolbox. The equation to 
estimate the maximum monthly water level of the 
NID will be: 
 
𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛽𝛽0 + 𝛽𝛽1𝐸𝐸𝑇𝑇0 + 𝛽𝛽2𝑅𝑅𝑀𝑀𝑖𝑖𝑛𝑛 + 𝛽𝛽3𝑄𝑄𝑚𝑚𝑚𝑚𝑥𝑥  (15) 
 
4. RESULTS 
 
   The monthly data from 1960 to 2010 (612 
datasets) were used for the model training and 
validations and the monthly data from 2011 to 
2015 (60 datasets) were used for testing. In order 
to validate and evaluate the models, the 
Correlation Coefficient (r), squared R (R2), Root 
Mean Squared Error (RMSE) and Nash-Sutcliffe 
Efficiency (NSE) were used (Table 2). The plots of 
the maximum monthly WL (𝐻𝐻𝑚𝑚𝑚𝑚𝑥𝑥 ) variation for 
different models are shown in Fig 4. 

 
Fig 4a-d. Validation scatter plots of observed versus modeled water level. (a) Levenberg-Marquardt (ANN ML), (b) 
Bayesian Regularization (ANN BR), (c) Scaled Conjugated Gradient (ANN SCG), (d) Gaussian Process Regression 
(GPR) 

0
200
400
600
800

1000

19
60

19
63

19
67

19
71

19
74

19
78

19
82

19
85

19
89

19
93

19
96

20
00

20
04

20
07

H
m

ax
(c

m
)

Period

(c)ANN  SCG

Hmax_Obs(m) Hmax_SCG

0
200
400
600
800

1000

19
60

19
63

19
67

19
71

19
74

19
78

19
82

19
85

19
89

19
93

19
96

20
00

20
04

20
07

H
m

ax
(c

m
)

Period

(a)ANN LM

Hmax_Obs Hmax_LM

0
200
400
600
800

1000

19
60

19
63

19
67

19
71

19
74

19
78

19
82

19
85

19
89

19
93

19
96

20
00

20
04

20
07

H
m

ax
(c

m
)

Period

(b)ANN  BR

Hmax_Obs(m) Hmax_BR

0
200
400
600
800

1000

19
60

19
63

19
67

19
71

19
74

19
78

19
82

19
85

19
89

19
93

19
96

20
00

20
04

20
07

H
m

ax
(c

m
)

Period

(d)GPR 

Hmax_Obs(m) Hmax_GPR



International Journal of GEOMATE, May 2019, Vol.16, Issue 57, pp.217- 224 

221 
 

 
 

 
Fig 5e,f. Validation scatter plots of observed versus modeled water level. (e) Water Balance Model (WBM), 
(f) Multilinear Regression model (MLR). 
 
 
Table 1 Model validation and evaluation statistics  
 

 Model 
Validation (1960-2010) Evaluation (2011-2015) Methods/Parameters 

r R2 RMSE
(cm) NSE r R2 RMSE 

(cm)  

a  ANN LM 0.97 0.94 41.47 0.95 0.97 0.95 38.36 
Mathworks 
(Levenberg-
Marquardt) 

b  ANN BR 0.97 0.89 59.00 0.94 0.97 0.95 38.20 Mathworks (Bayesian 
Regularization) 

c  ANN 
SCG 0.96 0.92 52.05 0.91 0.96 0.92 46.99 Mathworks ( Scaled 

Conjugate Gradient) 

d MLR-
GPR  0.97 0.93 46.88 0.91 0.97 0.95 37.51 

Mathworks 
(Regression Learner 

GPR) 

e WBM- 0.95 0.91 60.00 0.84 0.96 0.93 50.80 
Excel (SOLVER GRG)  
α=1.29,β=228.73,δ=59.

19,γ=0.32 

f  MLR-
GRG 0.93 0.87 65.02 0.853 0.96 0.92 46.68 

Excel (Data Analysis) 
β0=1070.2, β1=-

156.65,β2=-1.14 ,  
β3=0.12 

 
 
5. DISCUSSION 
 
   The models' performance from R2, RMSE and 
NS are given in Table 2 and Fig 5. It can be seen 
from the validation results that the ANN (LM, BR 
and SCG) perform much better for each of the 
algorithms, followed by Gaussian Process 
Regression; the Water Balance Model and the 
Multilinear Regression Model have the worst 
performance. 
 
 

 
 
 
   For all the models, the NSE values of validation 
are close to 1, which is in the range of acceptable 
levels (between 0 and 1, where 1 is the optimal 
value) according to Moriasi et al. [24], however, 
the ANN Levenberg-Marquardt algorithm gives 
the best result for each performance index.    
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Fig 6: (a) Levenberg-Marquardt (ANN ML), (b) Bayesian Regularization (ANN BR) (c) Scaled Conjugated 
Gradient (ANN SCG), (d) Gaussian Process Regression (GPR), (e) Water Balance Model (WBM), (f) 
Multilinear Regression model (MLR). 
 

 
 
 
Fig 7: Comparison between the measured incoming flow Qin(obs) and calculated outgoing flow Qout(sim) 
 
 

Although the ANN Levenberg-Marqardt gives 
the best fitting results, it does not allow us to 
estimate all of the internal processes that occurred 
in the watershed, like the physically-based Water 
Balance Model using Variable Source Area does. 
From WBM, the wet area surrounding the water 
body of the delta (𝑨𝑨𝟐𝟐 = 𝟓𝟓,𝟗𝟗𝟎𝟎𝟎𝟎~𝟗𝟗,𝟑𝟑𝟑𝟑𝟏𝟏 𝒌𝒌𝒌𝒌𝟐𝟐 ) and 
the monthly outflow (𝑸𝑸𝑭𝑭𝒐𝒐𝒕𝒕 ) were estimated as 
shown in Eq (12) and Fig 6.  

The inflow fluctuated much more than the 
outflow due to the presence of several lakes in the 
delta. 
   Owing to the lack of climate data throughout the 
large area of the NID (with only one station 
serving 40,000 km2), the WBM could not compute 
accurately, therefore the ANN is the best 
alternative to overcome this issue.  
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6. CONCLUSIONS 
 
   The accuracy of different models for forecasting 
the maximum monthly water level of the Niger 
River Inner Delta was investigated using different 
statistical/stochastic methods with input data of the 
water inflow discharge from the Mopti station, the 
rainfall and the 𝑬𝑬𝑬𝑬𝟎𝟎 . From the results, the 
Artificial Neural Network Levenberg-Marquardt 
was the best model for predicting the water level 
of the Inner Niger Delta. However, the ANN 
Bayesian Regularization, the ANN Scaled 
Conjugate Gradient and the Gaussian Process 
Regression can also be applied with minimal error. 
Although the WBM does not fit that well, it can 
still be used to estimate the wet area surrounding 
the waterbody of the delta and the outflow.  

 
7. ACKNOWLEDGMENTS 
 
   Our warm thanks go to the Mali National 
Hydraulics Service for their support in terms of 
providing some of the data. Thanks also go to the 
Laboratory of Water Resources Engineering at Mie 
University for their help. 

 
8. REFERENCES 
 
[1]  Zwart L., Beukering P. V., Kone B.  and  Wymenga 

E., The Niger, a Lifeline. Effective Water 
Management in the Upper Niger Basin, Leo Zwarts 
(RIZA), Pieter van Beukering (IVM), Bakary Kone 
(Wetlands International) and Eddy Wymenga 
(A&W), Eds., Sevare (Mali), Amsterdam 
(Netherlands): Wetlands International/Institute for 
Environmental Studies (IVM)/A&W Ecological, 
2005, p. p. 169-190. 

[2]  Cubry P., Tranchant-Dubreuil C.,. Thuillet A.-C, 
Monat C., Ndjiondjop M.-N., Labadie K., Cruaud 
C.,Engelen S, Scarcelli N.,  Rhone B.,Buregarella 
C., Dupuy C., Larmande P.,  Wincker P.,Francois 
O., Sabot F. and Vigouroux Y., “The Rise and Fall 
of African Rice Cultivation Revealed by Analysis of 
246 New Genomes,” Current Biology, vol. 28, 
2018, pp. 2274-2282.  

[3]  Mariko A., Mahe G., Orange D.,Royer A.,  
Nonguierma A., Amani A. and Servat E., “Suivi des 
zones d inondation du Delta Interieur du Niger, 
Perspective avec les donnees de basse resolution 
NOAA/AVHRR,” Gestion Integree en zones 
inondables tropicales, 2002, pp. 231-244.  

[4]  Kassambara B., Ganji H. and Kajisa T., “Impact of 
Agricultural Water Allocation on the Ecosystems in 
the Inner Niger River Delta,” GEOMATE, vol. 14, 
no. 42, 2018, pp. 164-170.  

[5]  Garrett H., “The Tragedy of the Commons,” 
American Association for the Advancement of 
Science, vol. 162, no. 3859, 1968, pp. 1243-1248.  

[6]  Ibrahim M, Wisser D., Ali A.,Diekkrüger B., O. 

Saidou, Mariko A. and Alfouda A., “Water Balance 
Analysis over the Niger Inland Delta-Mali: Spatio-
temporal Dynamics of the Flood Area Water 
Losses,” MDPI-Hydrology, vol. 4, no. 40, 2017, pp. 
1-23.  

[7]  Mohammad Kalteh A., “Monthly river flow 
forecasting using artificial neural network and 
support vector regression models coupled with the 
wavelet transform,” ELSEVIER, vol. 54, 2013, pp. 
1-8.  

[8]  Rezaeianzadeh M., Tabari H., Arabi Yazdi A., Isik 
S. and Kalin L., “Flood flow forecasting using 
ANN, ANFIS and regression models,” Springer, 
vol. 25, no. 1,  2014, pp. 25-37.  

[9]  Marquardt D. W., “An Algorithm for Least-Squares 
Estimation of Nonlinear Parameters,” J. Soc. 
Industry. Appl. Math., vol. 11, no. 2, pp. 431-441, 
1963.  

[10]  Aljebaly A., “Western Michigan University 
Computer Science,” 20 November 2016. [Online]. 
Available: https://wmich.edu/cs. [Accessed 05 
December 2016]. 

[11]  MacKay D. J. C., “Bayesian Interpolation,” 
Computation and Neural Systems, vol. 4, 1992, pp. 
415-447.  

[12]  Foresee F. D. and Hagan M. T., “Gauss-Newton 
Approximation to Bayesian Learning,” in 
International Conference on Neural Network, 
Houston, TX, USA, 1997.  

[13]  Moller M. D., “A Scaled Conjugate Gradient 
Algorithm for Fast Supervised Learning,” Neural 
Networks, vol. 6, 1993, pp. 525-533.  

[14]  Rasmussen C. E. and Williams C. K. I., Gaussian 
Processes for Machine Learning, Cambridge, 
Massachusetts: The MIT Press, 2006.  

[15]  Hewlett J. D.  and Hibbert A. R., “Factors affecting 
the response of small watersheds to precipitation in 
humid areas,” Progress in Physical Geography, vol. 
33, no. 2, 1967, pp. 288–293.  

[16]  Dunne T., Moore T. R. and Taylor C. H., 
“Recognition and Prediction of Runoff-Producing 
Zones in Humid Regions,” Hydrological Science, 
vol. XX, no. 3, 1975, pp. 305-325.  

[17]  Moriasi D. N., Arnold J. G., Vanliew M. W., Binger 
R. L., Harmel D. R.and. Veith T. L, “Model 
Evaluation Guidelines for Systematic Quantification 
of accuracy in Watershed Simulations,” ASABE 
Soil & Water Division, vol. 50, no. 3, 2007, pp. 885-
900.  

[18]  Rosenberg E. A., Wood A. W. and Steinemann A. 
C., “Statistical applications of physically based 
hydrologic models to seasonal streamflow 
forecasts,” Water Resources Research, vol. 47, no. 
W00H14, 2011, pp. 1-19.  

[19]  Risley J. C., Gannett M. W., Lea J. K. and  Roehl E. 
A. Jr, Scientific Investigation Report, An Analysis 
of Statistical Methods for Seasonal Flow 
Forecasting in the Upper Klamath River Basin of 



International Journal of GEOMATE, May 2019, Vol.16, Issue 57, pp.217- 224 

224 
 

Oregon and California, Reston, Virginia: U.S. 
Geological Survey (USGS), 2005.  

[20]  Dawson C. and Wilby R., “Hydrological modeling 
using Artificial Neural Networks,” Progress in 
Physical Geography, vol. 25, no. 1, 2001, pp. 80-
108.  

[21]  Xiong L., O'Connor K. M., and Guo S., 
“Comparison of three Updating Shemes Using 
Artificial Neural Network in Flow Forecasting,” 
Hydrology and Earth System Sciences, vol. 8, no. 2, 
2004, pp. 247-255.  

[22]  Dawson C. W. and Wilby R., “An artificial neural 
network approach to rainfall-runoff modeling,” 
Hydrological Sciences Journal, vol. 43, no. 1, 2009, 
pp. 47-66.  

[23]  Khan M. S.  and Coulibaly P., “Application of 
Support Vector Machine in Lake Water Level 
Prediction,” Journal of Hydrologic Engineering, vol. 
11, no. 3, 2006. , pp. 199-205 

 
 
 
 
 
 
 
 

[24]  Özgür K., “Streamflow Forecasting Using Different 
Artificial Neural Network Algorithms,” Journal of 
Hydrologic Engineering, vol. 12, no. 5, 2007, pp. 
532-539.  

[25]  Costa V., Chapter 9 Fundamentals of Statistical 
Hydrology,edition Naghettini M Belo Horizonte, 
Brazil: Springer, 2016, pp.391-440  

[26]  Yu Z., Lei G., Jiang Z., and Liu F., “Arima Modelling 
and Forecasting of Water Level in the Middle Reach 
of the Yangtze River,” Conference proceedings, in 
ICTIS, Banff(Canada), pp. 172-177, 2017.  

 
 

Copyright © Int. J. of GEOMATE. All rights reserved, 
including the making of copies unless permission is 
obtained from the copyright proprietors.  

 
 

 
 
 

  
 

 


	1. INTRODUCTION
	2. STUDY AREA AND DATA SOURCES
	3. METHODS
	3.1 Artificial Neural Network (ANN)

	3.1.1. Levenberg-Marquardt Algorithm (LM)
	3.1.2. Bayesian Regularization Algorithm (BR)
	3.1.3. Scaled Conjugate Gradient Algorithm (SCG)
	3.2. Gaussian Process Regression (GPR) model with Matlab regression learner
	3.3. Water Balance Model using Variable Source Area (WBM/VSA)
	3.4. Multiple Linear Regression (MLR)
	4. RESULTS
	5. DISCUSSION
	7. Acknowledgments
	8. referenceS

