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ABSTRACT: Effective environmental management and remediation strategies are required to remediate 
contaminated water resources. Accurate characterizing of unknown contaminant sources is vital for selection of 
appropriate environmental management plan and reduction of long term remedial costs. In order to characterize 
the sources of contamination, the aquifer boundary conditions and hydrogeologic parameter values need to be 
estimated or specified. In real life contaminated aquifers, often there are sparse and inaccurate information 
available. On the other hand, extensive collection of data is very costly. The uncertain and highly variable 
natures of water resources systems affect the accuracy of contaminant source identification models. 
In this study, an optimal source identification model incorporating Adaptive Simulated Annealing optimization 
algorithm linked with the numerical flow and transport simulation models, is designed to identify contaminant 
source characteristics. The fuzzy logic concept is used to identify the effect of hydrogeological parameter 
uncertainty on groundwater flow and transport simulation. The fuzzy membership values incorporate the 
reliability of specified parameter values in to the optimization model. An illustrative study area is used to show 
the potential applicability of the proposed methodology. The incorporation of fuzzy logic in source identification 
model increases the applicability of contaminant source detection models in real-life contaminated water 
resources systems. 
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1. INTRODUCTION 

 
Groundwater as the major source of potable, 

agricultural and industrial water is subject to various 
sources of contamination. The first signs of the 
presence of contaminated underground water may be 
detected from the water extracted from current 
extraction wells. Often surface water quality like 
rivers or lakes, is affected by contamination of 
underground water. The spread of pollution in 
underground water increases the necessity to 
develop efficient techniques for remediation of 
contaminated aquifer. The effectiveness of a 
remediation strategy depends on how efficiently the 
contamination source characteristics are identified. 
Accurate identification of the contaminant sources 
and reconstructing their release history plays an 
important role in modeling of subsurface flow and 
transport processes, and help to reduce the long-term 
remedial costs. 

The source identification problem deals with the 
spatial and temporal variations of the location, 
activity duration, and the injection rate of the 
pollutant source and is mostly inferred from the 
available sparse and sometimes erroneous 
concentration measurements at the site. Mainly 
source identification includes a simulation problem, 
like groundwater flow and pollutant transport 

models, which is used to estimate past phenomena or 
predict future scenario. The estimated values are 
then compared with observed values. Availability of 
adequate data is vital regarding the structure of 
source identification procedure. However, acquiring 
data is a cost and time intensive task. 

The source identification model requires an 
accurate flow and transport model to estimate the 
contaminant concentration distribution in aquifer. 
The lack of adequate geographic and parameter 
information, results in uncertain groundwater and 
solute transport model.  The solution of source 
identification model is highly sensitive to 
measurement errors either in the observation data or 
model parameters [1]. 

Various techniques has been proposed in 
literature to characterize the contamination sources 
including stochastic methods [2]; response matrix 
[3], [4]; embedded optimization [5] and linked 
simulation-optimization [6], [7]. Amirabdollahian 
and Datta [8] presented a comprehensive overview 
on different source identification methods. 

Most of the techniques represented in literature 
are designed for the case where the aquifer 
hydrogeological parameter values are known. Jha 
and Datta [7] tested their proposed method under 
uncertain hydrogeological parameter values. Their 
method is able to manage moderate degree of 
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uncertainty. By increasing the degree of uncertainty 
the accuracy and reliability of source identification 
decreases.  

In this study the linked simulation-optimization 
model is used to characterize the sources of 
contamination. The Adaptive Simulated Annealing 
(ASA) is utilized as the optimization method. In 
contrast to deterministic viewpoint where all the 
model parameters were considered known, in the 
proposed methodology the uncertainty in 
hydrogeologic zonation and parameter values are 
considered using Fuzzy Logic concept. In this way 
the available sparse model parameter data, in 
addition to available uncertain information about 
hydrogeologic zones are utilized to increase the 
reliability of pollutant source characteristics 
identification. 

 
2. METHODOLOGY 

 
The source identification model consists of an 

optimization algorithm linked to flow and transport 
process simulation models. The optimal solution is 
obtained by minimizing the differences between 
observed and simulated values. The objective 
function for the optimization problem is defined as 
follow. 

 
nk k

k k k 2 k k 2
1 iob iob iob iob iob

k 1 iob 1
Min F ( cest cobs ) w / ( cobs )µ

= =

= −∑∑
   (1) 
Subject to: 
 
cest = f(x,y,z,D,q,R)  (2) 
 
The above constraint essentially represents the flow 
and transport process simulation models. 
Where: 

k
iobcest =Concentration estimated by the simulation 

model at observation well location iob and at the end 
of time period k. 
k =Total number of concentration observation time 
periods; 
nob =Total number of observation wells; 

k
iobcobs =Observed concentration at well iob and at 

the end of time period k; 
k
iobµ =The fuzzy reliability factor for well iob and at 

the end of time period k; 
k
iobw =Weight corresponding to observation location 

iob, and the time period k.  
The weight k

iobw  can be defined as follows: 
 

k k 2
iob iobw 1 / ( cobs n )= +  (3) 

 
Where n is a constant and it should be 

sufficiently large so that errors at low concentrations 

do not dominate the solution [5]. The objective 
function is constrained by the flow and transport 
simulation models.  
 
2.1. Optimization Method 

 
In this paper the ASA optimization method is 

utilized to characterize the sources of contamination. 
Simulated Annealing (SA) optimization starts from a 
feasible solution and a specific objective function. A 
new solution is randomly selected from its neighbors 
and the objective function is evaluated for the new 
selected solution. If the new solution has a better 
objective function value, the most recent solution is 
definitely better than the old one. Therefore, it is 
then accepted and the search moves to a new point 
and continues from there. On the other hand, if the 
new solution is not better than the current one, the 
new solution may be or may not be accepted 
depending on the acceptance probability. The 
acceptance probability is strongly influenced by the 
choice of a parameter temperature (T). ASA is a 
variant of SA in which the algorithm parameters that 
control temperature schedule and random selection 
are automatically adjusted as the algorithm 
progresses. This makes the algorithm more efficient 
and less sensitive to the user defined parameters than 
SA [9]. 

 
2.2. Simulation Model 

 
The ASA based source identification model 

estimates the source fluxes using a linked 
simulation-optimization model. The simulation 
model evaluates the contaminant concentration 
values at monitoring locations corresponding to 
candidate contaminant source characteristics. 
Groundwater Flow and contaminant transport 
simulation models used in this study are, 
MODFLOW-2000 [10] and MT3DMS [11], 
respectively. 

 MODFLOW is a computer program that 
numerically solves the three-dimensional ground 
water flow equation for a porous medium by using a 
finite-difference method. The MT3DMS transport 
model uses a mixed Eulerian-Lagrangian approach 
for the solution of the three-dimensional advective-
dispersive-reactive equation. The Lagrangian part of 
the method, used for solving the advection term, 
employs the forward tracking Method of 
Characteristics (MOC), the backward-tracking 
Modified Method Of Characteristics (MMOC), or a 
hybrid of these two methods. The Eulerian part of 
the method, used for solving the dispersion and 
chemical reaction terms, utilizes a conventional 
block centered finite-difference method [11]. 
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2.3. Fuzzy Reliability Factor 
 
When there is inadequate available information 

about the hydrogeologic zonation and parameter 
values, the contaminant source identification model 
is subjected to uncertainty. The simulation model 
needs exact aquifer parameter information to 
accurately estimate contaminant concentration at 
monitoring locations. In practice usually an 
interpolation method is utilized to calculate 
hydrogeologic parameter values for entire aquifer 
using sparse data. Substantial variation of 
hydrogeologic parameter values in heterogeneous 
and non-uniform aquifers impose high level of 
uncertainty to the contaminant source identification 
model.  

The hydraulic conductivity values are used by 
the flow simulation model to generate the head 
distribution in the study area. This head information 
is used by the simulation model to calculate 
contaminant concentration at different monitoring 
locations. 

In this study the inverse Distance Weighting 
(IDW) interpolation technique is used to evaluate 
hydraulic conductivity value for entire aquifer using 
available sparse information. The IDW is a type 
of deterministic method for multivariate 
interpolation with a known scattered set of points. 
The assigned values at unknown points are 
computed using a weighted average of the known 
values at the known points. A general form of 
finding an interpolated value u at a given 
point x based on samples ui=u(xi) for  i=1,2,..,N 
using IDW is as below. 

 
N

i i
N

i 0
j

j 0

v ( x )uu( x )
v ( x )=

=

=∑
∑

  (4) 

 
Where: 
 

i p
i

1v ( x )
d( x,x )

=   (5) 

 
u(x) =Interpolated value at given location x; 
N =Number of nearest points which are utilized to 
estimate interpolated value; 

iu =known value corresponding to point i; 

jv =Weight corresponding to point i; 

id(x,x ) =distance between point x and xi; 
p = power; 
Power p determines the contribution of values at 
known points in estimation of value at unknown 
points with respect to distance between points with 
known and unknown values. This means that higher 
value of p results in using more near points with 

known values by the IDW interpolation method. 
The uncertainty in aquifer zonation with respect to 
hydraulic conductivity value is studied using 
different p values in IDW interpolation method. To 
calculate the fuzzy reliability factors, the fuzzy 
membership function is utilized. The reliability 
membership function is calculated using Eq. (6).  
 

k k k 2 k 2
iob iob,1 iob iob1 ( cest cest ) / ( cest )µ = − −   (6) 

 
Where k

iob,1cest  is estimated concentration values 
obtained using simulation model at observation well 
location iob and at the end of time period k, with 
p=M1 for the IDW interpolation method (Eq. (5)). 

k
iobcest  is estimated concentration values obtained 

using simulation model at observation well location 
iob and at the end of time period k, with p=M2 for 
the IDW interpolation method (Eq. (5)). In the 
optimal source identification model (Eq. (1)) the 
concentration estimations are based on p=M2. When 
the available information about field hydraulic 
conductivity zonation is not adequate, the 
concentration values estimated using simulation 
model will not be precise. On the other hand, there 
would be large discrepancy between simulated 
concentrations using two different p values by the 
IDW interpolation technique. Therefore, the fuzzy 
reliability factor will be less than one. 
The fuzzy reliability factor for each observation 
location and at the end of each time period is 
estimated progressively using optimization 
generated candidate source characteristics.  
 
3. PERFORMANCE EVALUATION 

 
Performance of the developed methodology is 
evaluated using synthetic hydrogeologic data. The 
advantage of using synthetic data is that the true 
source characteristics are known for evaluation. This 
allows testing of the source identification 
methodology. Figure 1 shows the hypothetical 
aquifer study area. There are three candidate 
locations for contamination sources. Two of them 
are active sources and the third one is dummy 
source. There are two active extraction wells and 9 
monitoring locations. The study area is 1500 meter 
by 1000 meter and is 40 meter deep. The three-
dimensional model of aquifer includes two layers, 
each of 30 rows and 20 columns. The hydraulic 
conductivity is generated using truncated Latin 
hypercube and lognormal distribution.  

Three different zones with respect to hydraulic 
conductivity value are considered. The mean 
hydraulic conductivity values for low, moderate and 
high permeable zones are 3, 10 and 20 m/day, 
respectively. The standard deviation is 0.1 times 
mean value for all zones. These hydraulic 
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conductivities represent actual field condition and 
are generated at 50 meter intervals of the study area. 
The simulation model requires hydraulic 
conductivity values at each node. These values were 
obtained by interpolation using Kriging method. The 
resulting filed is utilized by the simulation model to 
estimate the spatial and temporal concentration 
values. Figure 2 shows the generated actual 
hydraulic conductivity field. 

To evaluate the performance of the proposed 
methodology the hydraulic conductivity is assumed 
to be uncertain. Therefore the actual hydraulic 
conductivity values are assumed to be known at 
every 300 meters distance. By this assumption the 
known actual hydraulic conductivity values are 
reduced from 1303 values to 60 values. Using these 
61 values, the uncertain hydraulic conductivity field 
is generated by interpolating the available 60 values 
to entire aquifer using IDW technique. The selected 
p value is 2.  

To conduct the fuzzy ASA source identification, 
the fuzzy reliability factor needs to be calculated 
using candidate source characteristics. The fuzzy 
membership function is estimated using Eq. (6). The 
selected M1 and M2 values are 4 and 2, respectively. 
Figures 3a and 3b show the hydraulic conductivity 
generated fields using IDW method. In Figs 3a and 
3b, the p value (Eq. (5)) is set to 2 and 4, 
respectively. Since the hydraulic conductivity data 
used to generate both fields is the same, the 
illustrated difference is due to uncertainty and lack 
of adequate amount of data. 

 
4. RESULTS AND DISCUSSION 

 
Table 1, 2 and 3 show the results of source 

identification model for sources 1, 2 and 3, 
respectively. In these tables, the first row shows the 
actual source fluxes during each stress period. The 
fluxes corresponding to source 2 is zero which 

means that it is a dummy source.  
Second rows show the result of crisp source 

identification model solution where there is 
unaccounted uncertainty in the estimation of 
hydraulic conductivity field. For the crisp source 
identification the ASA optimization model uses the 
same objective function (Eq. (1)). However, in this 
case the fuzzy reliability factor is considered to be 
always equal to one. 

The huge discrepancy between the resulting 
source fluxes and actual ones shows the deficiency 
of the crisp source identification model in 
estimating of source characteristics while there is 
inadequate available data for the hydraulic 
conductivity field. 

The third rows show the result of fuzzy ASA 
source identification model. Comparing the results 
show that the fuzzy model is able to increase the 
accuracy of the source identification. 

Results show that the use of fuzzy logic can 
improve the source identification results by 47.3 and 
25.6 percent for sources one and three, respectively. 

Although both models are not able to specify 
zero fluxes for source two (dummy source), the 
estimated source fluxes by both models are small 
comparing to the magnitude of flux for other 
sources. However, the performance of both models 
will improve if more precise information about 
hydraulic conductivity field or more monitoring data 
are actually available. Since the inputs for the flow 
simulation model have associated high level of 
uncertainty, limited accuracy in source identification 
results is expected. However, by using the fuzzy 
model, the error in estimation of source fluxes has 
been reduced. Table 4 shows the estimation error 
using crisp and fuzzy ASA source identification 
models, and demonstrates improvement in 
estimation of source fluxes using fuzzy logic 
concept. 

 

 
 

Fig. 1 Study area 
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Fig. 2 Actual hydraulic conductivity values 

(m/day) (Dot points show the candidate 
source locations) 

 
Table 1 Estimated contamination fluxes for source 

one (g/s) 
 

Method Stress 
Period 1 

Stress 
Period 2 

Stress 
Period 3 

a 70 90 35 
b 5.7 40.4 55.1 
c 46.9 59.7 52.3 

Note: a: Actual source fluxes 
b) Result of crisp source identification. 
c) Result of fuzzy ASA source identification. 
 
Table 2 Estimated contamination fluxes for source 

two (g/s) 
 

Method Stress 
Period 1 

Stress 
Period 2 

Stress 
Period 3 

a 0 0 0 
b 0.3 9.55 15.6 
c 1.2 11.5 19.2 

Note: a: Actual source fluxes 
b) Result of crisp source identification. 
c) Result of fuzzy ASA source identification. 

 
Table 3 Estimated contamination fluxes for source 

three (g/s) 
 

Method Stress 
Period 1 

Stress 
Period 2 

Stress 
Period 3 

a 95 85 75 
b 39.3 65.1 52.1 
c 40.68 78.8 62.3 

Note: a: Actual source fluxes 
b) Result of crisp source identification. 
c) Result of fuzzy ASA source identification. 
 
Table 4 Error in estimation of contamination fluxes 

(g/s) and the improvement percentage 
 

Source Source 
1 

Source 
2 

Source 
3 

b 134 25.45 98.5 
c 70.7 31.9 73.22 

Improvement 
(%) 

47.3 -* 25.7 

Note: b) Result of crisp source identification. 
c) Result of fuzzy ASA source identification. 
* Source two is dummy. 

 
5. CONCLUSION 
 

A new methodology for unknown groundwater 
pollution source identification, using Adaptive 
Simulated Annealing (ASA) linked simulation-
optimization, and fuzzy logic is proposed. 
Uncertainties in hydrogeologic parameters are 
incorporated by using fuzzy membership function. 
Limited performance evaluations show the 
improvement in source identification using proposed 
methodology. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                      (a)                                                                           (b)  

Fig. 3 Uncertain hydraulic conductivity fields (m/day). Generated using IDW interpolation method where a) 
p=2; and b) p=4 
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