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ABSTRACT: Application of linked simulation-optimization approach for solving groundwater identification 
problems is well established. Pollutant concentration measurements from different sets of monitoring locations, 
when used in a linked simulation-optimization approach, results in different degrees of accuracy of 
source identification. Moreover, the accuracy of source identification results depends on the number and 
spatiotemporal locations of pollutant concentrations measurements. This study aims at improving the accuracy of 
source identification results, by using concentration measurements from an optimally designed monitoring 
network. A linked simulation optimization based methodology is used for optimal source identification. 
Genetic programming based impact factor is used for designing the optimal monitoring network. Concentration 
measurement data from the designed network is then used, in the Simulated Annealing based linked simulation-
optimization model for efficient source identification. The potential application of the developed 
methodology is demonstrated by evaluating its performance for an illustrative study area. These 
performance evaluation results show improvement in the efficiency in source identification when such 
designed monitoring networks are utilized. 
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INTRODUCTION 

The most common problem encountered in 
remediation of a polluted aquifer, is the accurate 
identification of pollution source locations and their 
release histories from sparse set of spatiotemporal 
concentration measurements. In scenarios where 
potential source locations and activity duration are 
known with fair degree of certainty, linked 
simulation-optimization based approach is often 
applied for solving groundwater pollution source 
identification problem for recreating the flux release 
history of the sources.  

A large number of concentration measurements 
spread over time and space is necessary for accurate 
identification of pollution sources. However, long 
term monitoring over a large number of monitoring 
locations has budgetary constraints. Hence 
monitoring locations should be chosen such that 
concentration measurements from such designed 
monitoring network when used in a linked 
simulation-optimization approach, improves the 
accuracy of source identification results. Contrary to 
this, monitoring locations often consists of 
arbitrarily located single water supply well, or a 
group of arbitrarily placed wells which may not be 
optimally located for accurate source identification.  

Design of monitoring networks may have 
different underlying objectives, such as optimal 
monitoring network for efficient identification of 

pollution sources [1], [2] and pollution source 
locations [3]. Optimization based solution for 
reducing the redundancy in a groundwater quality 
monitoring network [4], sequential monitoring 
network design [5], and variation of dynamic 
monitoring network design methodology is 
discussed in [6]. 

Most of the existing methodologies of source 
identification using linked simulation-optimization 
use concentration measurements from arbitrarily 
located monitoring wells. Limited amount of work 
has been reported for improving the accuracy of 
source identification using concentration 
measurements from an optimally designed 
monitoring network. A methodology is proposed for 
design of optimal monitoring network for improving 
the accuracy of source identification results using 
concentration measurements from a designed 
monitoring network. The simulated response of the 
aquifer is compared to the observed response of the 
aquifer at these optimal monitoring locations in a 
classical linked simulation-optimization technique.  

The monitoring network designed to improve the 
accuracy of source identification is based on two 
conflicting objectives, (1) reduce the possibility of 
missing an actual source, and (2) decreases the 
degree of non-uniqueness in the set of possible 
aquifer responses to subjected geo-chemical 
stresses. The proposed methodology uses genetic 
programming (GP) models to calculate the impact 
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factor of a source on a candidate monitoring 
location. This impact factor is utilized as the design 
criteria for choosing the optimal monitoring 
locations out of the candidate well locations. The 
conflicting objectives considered are, (1) 
maximization of the normalized impact of all 
potential pollution sources at selected monitoring 
locations and (2) to maximize the relative impact of 
a potential source  at the chosen monitoring location. 
The Pareto-optimal solutions obtained from the two 
objective model is utilized to relate the variation in 
the accuracy of source identification results and the 
trade-off between the above stated conflicting 
objectives for designing an optimal monitoring 
network. Performance of the proposed source 
identification methodology is evaluated by solving 
an illustrative problem. The results of source 
identification are compared for different random 
monitoring networks with that of the optimal 
network. This method can be applied to practical 
scenarios where the observed concentration data is 
to be restricted to a few monitoring locations. 

 
METHODOLOGY 

 
In this proposed methodology, first GP models 

are trained against a large set of data pattern 
comprising of source flux history for all the potential 
sources as input and corresponding aquifer response 
at all potential monitoring locations as the output. 
Based on R2 value specified, a number of fittest GP 
models are chosen for calculating the impact factor 
of potential source on a monitoring location. The 
impact factor is calculated for all candidate 
monitoring locations at each monitoring time step. 
A multi–objective optimization formulation is 
applied to select the optimal set of monitoring 
location for source identification using linked 
simulation-optimization technique. In the second 
step, a SA based linked simulation-optimization 
model for source identification is solved to minimize 
the deviation between the simulated and measured 
pollutant concentrations at these optimally chosen 
monitoring locations.  

 
Genetic Programming and Impact Factor 
 

GP is an evolutionary optimization algorithm 
based on the concepts of genetics and natural 
selection. It starts with an initial population of 
randomly generated computer programs and 
optimizes the parameter values of a given model 
structure within predefined parameter space to find 
a highly fit computer program that produces desired 
output for particular set of input. Each GP model is 
essentially a computer program that represents the 
mathematical relationship between the dependent 
variable (pollutant concentration at chosen 
monitoring locations and times) and the independent 
variables (flux values of pollutant at potential 

pollutant source locations). 
Specified number of best individual GP models 

is used for computing the impact factor. The impact 
factor is described as a measure of how much an 
input variable accounts for the output result i.e., a 
factor by which the result would differ if the variable 
was removed.  This essentially implies that, if by 
removing a variable from the mathematical function 
(GP model) there is a large change in the output, then 
the removed variable has a high impact on the output 
and hence the impact factor of that variable will be 
high. The impact factor value is then used as design 
criteria in a multi-objective optimization 
formulation for designing an optimal monitoring 
network.  

 
Multi-Objective Optimization for Monitoring 
Network Design Model 
 

An SA based multi-objective optimization 
model is utilized for choosing monitoring locations 
such that the possibility of missing an actual source 
is reduced, and at the same time reduces the degree 
of non-uniqueness due to overlapping of multiple 
pollutant plumes. This is accomplished by an SA 
based multi-objective optimization model that finds 
monitoring well locations with the following 
objectives (1) finding well locations with maximum 
normalized impact from all the potential sources and 
(2) finding well locations with maximum 
normalized relative impact from an individual 
potential source over a chosen observation period. 
Finding well locations with maximum normalized 
average impact (objective 1) reduces the possibility 
of missing an actual source as it chooses locations 
where overlapping of plumes due to potential 
sources is maximum. This also reduces the 
likelihood of choosing monitoring locations where 
the impact of potential sources are small. However 
objective 1 is in conflict with objective 2 of finding 
well locations with maximum normalized relative 
impact from an individual potential source. The 
second objective essentially reduces the non-
uniqueness due to overlapping of different pollutant 
plumes resulting from different sources.  

A multi-objective optimization model is 
formulated to design an optimal monitoring network 
with multiple conflicting objectives. One of the 
objectives is traded off to improve the other 
objective and vice versa. The constrained method is 
utilized, which iteratively maximizes one of the 
objectives subject to the other objective achieved at 
a specified level. The number of monitoring wells to 
be selected is essentially governed by budgetary 
constraints. The formulation for the multi-objective 
optimization for monitoring network design is given 
in Eq. (1) through Eq. (11). 
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S
iobIF is the impact factor of source S on monitoring 

well location iob  
St

iobF  is the impact factor of source S on monitoring 
well location iob at stress period t 
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S
iobSumIF is the sum of the impact factors of a 

potential source S at any given monitoring location 
iob for nk sampling steps 
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norm
iobSumIF is the normalised sum of impact factor at 

any monitoring location iob due to all the potential 
sources nS for all nk monitoring time steps 

nt is the total number of stress periods 

nk is the total number of monitoring time steps  
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iob
l SumIFRe is the relative impact factor due to all the 

sources nS at a given monitoring well location iob 
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norm
iob

l SumIFRe  is the normalized relative impact factor 
at monitoring well location iob for all potential 
sources 

∑
=

nS

S

S
iobSumIF

nS 1

1 is the average impact factor at 

monitoring well location iob for all potential sources 

The two objectives F1 and F2 of the multi-objective 
optimization model for optimal monitoring network 
design for accurate identification of unknown 
pollution sources is defined by Eq. (6) and Eq. (8) 
respectively.  
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α is integer constant representing the maximum 
number of wells that can be chosen 

iobf  represent the binary decision variable to select a 
monitoring well location }1,0{≡iobf  such that when 

iobf  value equal to 1 representing monitoring well to 
be selected at location iob, and zero otherwise 
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λ≥2MaxF            (10) 

λ≤12MaxFF                                                  (11) 

The two objective multi-objective optimization 
model is solved using the constrained method where 
one of the objective function (F1) is maximized 
keeping minimum level of satisfaction (λ also 
termed as the trade-off constant) of the second 
objective function (F2) as shown in Eq. (9). All 
solutions lying on the Pareto-optimal front 
corresponds to a different monitoring network. 

Linked Simulation-Optimization Model for 
Source Identification 
 

Groundwater flow (MODFLOW) and solute 
transport (MT3DMS) simulation model are used to 
simulate the physical process within the 
optimization model.Simulated Annealing (SA) is 
used as an optimization algorithm to solve the 
optimization problem. Candidate values of unknown 
variables (source fluxes) are generated in 
optimizations algorithm for simulations of flow and 
transport models. The difference between simulated 
and observed pollutant concentrations are computed, 
and finally obtain an optimal solution that minimizes 
the difference between observed and simulated 
values.  
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ssCq is the pollutant source fluxes 

sq  is the volumetric flux  

sC is the concentration of the sources or sinks 
ABS  is the absolute difference 

k
iobcest  is the simulated concentration  

nk  is the total number of monitoring time steps 
nob  is the total number of observation wells 

k
iobcobs  is the observed concentration  

 
PERFORMANCE EVALUATION  

 
The performance of the developed methodology 

was evaluated for the study area shown in Fig. 1, 
with hydro-geological parameters as given in Table 
1. Three sources with three stress periods of 500days 
each were considered. The pollutant flux from each 
of the sources is assumed to be constant over a stress 
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period. Four temporal concentration measurements 
at each potential location (starting t = 1600 days) are 
taken after every 200 days. 

 
Fig. 1 Plan view of the Illustrative Study Area 
 
Table 1 Hydro-geological Parameters  
 

Parameter Unit Value 

Maximum length of study area 
Maximum width of study area 
Saturated thickness, b 
Grid spacing in x-direction, Δx 
Grid spacing in y-direction, Δy 
Grid spacing in z-direction, Δz 
Hydraulic conductivity, K 
Effective porosity, θ 
Longitudinal Dispersivity, αL 
Transverse Dispersivity, αT 
Horizontal Anisotropy 
Initial contaminant 
concentration 
Diffusion Coefficient 
Contaminant Flux 

m 
m 
m 
m 
m 
m 
m/d 
 
m/d 
m/d 
 
g/l 
 
g/s 

2100 
1950 
30 
50 
50 
30 
20 
0.3 
20 
10 
1 
0 
0 
0-100 

 
Genetic Programming Impact Factor 
 

The impact factor is calculated for 3 sources and 
25 (W1 to W25 as shown in Fig. 1) potential 
monitoring well locations. The input data consists of 
flux values for each source at every stress period. 
The corresponding output data consists of the 
resulting pollutant concentration measurement due 
to these source fluxes at all the 25 potential 
monitoring well at t = 1600, t = 1800, t = 2000 and t 
= 2200 days. 3000 data patterns are used of which 
50% is used for training, 40% for validation, and 
10% for testing the GP models. DiscipulusTM 5.1 
(RML Technologies, Inc.) is used for training, 
validation and testing. Based on R2 fitness value, top 
30 GP models are used for computing the impact 
factor. The impact factor for all the potential 

monitoring locations at every sampling time step is 
calculated likewise which is then used to calculate 
the normalized relative impact factor norm

iob
l SumIFRe  

and normalised sum of impact factor due to all the 
potential sources norm

iobSumIF . 
 

Optimal Monitoring Network and Arbitrary 
Monitoring Network 

 
The optimal monitoring design model is solved 
using normalized impact factor values as calculated 
above. The value of the minimum satisfaction level 
of objective function F2 is varied from a minimum -
1.7 to a maximum of 8.06 to obtain 12 different 
Pareto-optimal solutions representing different 
Pareto-optimal monitoring networks: MN1to 
MN12. To show the comparison, 10 arbitrary 
monitoring networks ARMN1 to ARMN10 are 
chosen. A total of 6 monitoring wells are selected in 
each monitoring network.  
 
Source Identification using Data from Pareto-
Optimal Monitoring Networks and Arbitrary 
Monitoring Network  

 
To evaluate the performance, observed 

concentration measurements are generated 
synthetically. These simulated measurements are 
then perturbed with random error term (maximum 
deviation of 10 percent of the measured 
concentration data) to incorporate realistic 
measurement errors (Eq. 17 to Eq. 18). A linked 
simulation-optimization model is solved using 
measurements from 12 Pareto-optimal monitoring 
networks (MN1to MN12) and 10 arbitrary 
monitoring networks (ARMN1to ARMN10). The 
source identification model is solved with error free 
data and perturbed erroneous data. 

errcobscobs k
iob

k
iob

Pert +=   (14)
 randpererr ×= µ    (15) 

k
iob

Pert cobs is the perturbed concentration value 
k
iobcobs  is the numerically simulated concentration 

value 
err is the error term 

perµ is the specified maximum deviation expressed 
as a fraction < 1  
rand is a random fraction between -1 and +1 
 
RESULTS AND DISCUSSION 

 
The Pareto-optimal solution for the two-

objective optimal monitoring network design model 
is shown in Fig. 2. The first objective function 
values F1 is plotted against the minimum 
satisfaction level of the second objective function 
value F2. 
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The non-inferior solutions show the conflicting 
nature of the two objective functions and their trade-
off.  

The results of source flux identification solution 
results obtained by using linked simulation-
optimization model is compared for all the 12 
Pareto-optimal monitoring locations (MN1 to 

MN12), obtained as solutions, using error free and 
perturbed error data (Fig 3 and Fig 4).  

To choose the best monitoring network out of the 
12 Pareto-optimal monitoring networks (MN1 to 
MN12), absolute difference of actual source flux and 
the estimated source flux for all the 12 Pareto-
optimal monitoring networks is calculated using 
error free data and erroneous data (Fig. 5 and Fig. 6).  

Absolute difference of actual source flux and the 
estimated source flux for all the 12 Pareto-optimal 

monitoring networks (MN1 to MN12) with error 
free data and erroneous data show similar trend. The 
average of the absolute difference, between the 
actual source flux and the estimated source flux is 
minimum for monitoring network 5 (MN5), hence 
can be designated as the optimal monitoring 
network.  The source identification model is solved 
for 10 arbitrary networks (ARMN1 to ARMN10) 
with both error free data and erroneous data. The 
estimated flux values using the arbitrary networks is 
averaged and compared with the actual flux values 
and estimated flux value from monitoring network 5 
(MN5), both for error free data and erroneous data 
(Fig. 7 and Fig. 8). It is seen that the estimated flux 
using monitoring network 5 (MN5), are closer to the 
actual flux values as compared to the flux estimated 
using the arbitrary networks (AVG-AR).  

 
CONCLUSIONS 
 

Not all monitoring locations are ideally located 
for accurate identification of source flux using 
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 Fig. 3 Identification Results using Error free data 
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  Fig. 4 Identification Results using Erroneous data 
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linked simulation-optimization. The solution results 
in the illustrative example problem show that the 
accuracy of source flux identification varies when 
using pollutant concentration measurement data 
from different monitoring locations. A methodology 
has been developed for designing an optimal 
monitoring network for accurate source flux 
identification. Concentrations measurements from 
such a designed monitoring network when used in 
source flux identification, can improve the accuracy 
of the source identification results. 

Fig. 8 Comparison of Identification Results using 
Optimal Network and Arbitrary Networks: 
Erroneous Data 

An optimal monitoring network design for 
source flux identification is a multi-objective 
problem. It requires the right balance between well 
locations where the impact of all the potential 
sources are significantly large, reducing the 
possibility of missing an actual source  and,  well 
locations where non-uniqueness due to overlapping 
of source plumes is less. In all real world problems 
of source identification, the degree of uncertainty in 
terms of source locations and aquifer response to 
subjected geo-chemical stress are large. Moreover, 
the number of monitoring wells to be implemented 
for concentration measurement data is governed by 
budgetary constraints. The proposed methodology 
can be applied to polluted aquifer sites. This method 
can decrease such uncertainties using limited 
number of monitoring wells which otherwise will 
have to be reduced by implementing large number 
of monitoring wells, resulting in increased capital 
cost. This method can increase the accuracy of 

source identification with concentration 
measurement data from limited number of 
monitoring wells in a designed monitoring network. 
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