
1 
 

WAVE INTERACTIONS WITH TRIPLE SUBMERGED JARLAN-
TYPE PERFORATED BREAKWATERS 

*Mohammad Bana1, *Moussa S.  Elbisy 2 and Turki M. Alaboud3 

Umm Al-Qura University, Civil Engineering Department, College of Engineering, Saudi Arabia 
 

*Corresponding Author, Received: 24 Oct. 2021, Revised: 15 Nov. 2021, Accepted: 01 Dec. 2021 
 

ABSTRACT: This study examines wave interactions with triple submerged Jarlan-type perforated 
breakwaters consisting of two perforated front walls and a solid rear wall. A mathematical model based on an 
eigenfunction expansion method and a least-squares technique for Stokes second-order waves has been 
developed. The numerical results obtained for limiting cases for the single solid and single perforated 
breakwater, double submerged solid vertical plates, single solid and double perforated breakwater, and double 
Jarlan-type perforated breakwater are in agree reasonably well with previous studies and experimental results. 
The wave transmission CT; reflection CR, and energy-loss CL coefficients, and the horizontal wave force exerted 
on the front CFf and rear CFr walls are examined. The results indicate that the location of the middle wall 
between the front and rear walls has little effect on CR, CT, and CL. With the increasing value of porous effect 
parameter G, the values of CR, CT, and CFr first decreased, attained their minimum values, and then increased. 
However, the CFf decreased monotonously with the increasing G. The CR is maximum when B/L = 0.48n+0.07 
while it is minimum when relative chamber width, B/L = 0.46n+0.26 where n equals to (0, 1, 2,...). It also 
shows that the triple sub-merged Jarlan-type perforated breakwater significantly reduced CR values and 
enhanced the structure’s wave-absorbing ability compared with the double one. The optimum parameters 
recommended for engineering design were G = 0.1–0.2, relative sub-merged depth d/h = 0.1–0.2, and B/L = 
0.3–0.4. For practical engineering, the proposed model can be used to predict the structure's response during 
the preliminary design stage. 
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1. INTRODUCTION 
 

Breakwaters are mainly used to protect coasts 
from erosion, protect harbor facilities, and provide 
a calm basin for ships by reducing wave-induced 
disturbances. There are different types of 
breakwaters, full protection, and partial protection 
breakwater. There are many types of partial 
protection breakwaters, including pneumatic and 
hydraulic, submerged, floating, flexible floating, 
detached, perforated, pile, pipe, and slotted 
breakwaters. The flow behavior through permeable 
submerged breakwaters is complicated and requires 
further study to determine its hydrodynamic 
characteristics and performance efficiency in 
response to waves. 

Researchers have attempted to solve the 
problem of wave reflection and scouring at the 
breakwater toe by using perforated walls. Jarlan [1] 
proposed a breakwater with a perforated front wall 
and a solid rear wall. Isaacson et al. [2] investigated 
wave interaction with double slotted barriers 
numerically and experimentally. They found that 
the analytical results agree reasonably with the 
experimental data. Sahoo et al. [3] studied the 
reflection coefficient (CR) of a single perforated 
wall structure. This study showed the CR to be 
principally determined by the front-wall porosity 

and the ratio of the wave chamber width to the 
incident wavelength. For double- and triple-row 
breakwaters, Ji and Suh [4] developed a 
mathematical model that can calculate various 
hydrodynamic characteristics. According to the 
results, their mathematical model accurately 
reproduced most of the experimental findings. 

 Koraim [5] investigated one row of a vertical 
slotted breakwater under normal regular waves 
theoretically and experimentally and developed a 
simple theoretical model based on an eigenfunction. 
He tested the model's validity by comparing its 
results to other studies' theoretical and experimental 
results. He found that the transmission coefficient 
(CT) decreases with increasing values of a 
dimensionless wave number and wave steepness 
and decreasing breakwater porosity. 

Liu and Le [6] investigated the hydrodynamic 
performance of wave-absorbing double curtain-
wall breakwater. One wall is perforated to the sea-
ward side, and the other is impervious to the 
shoreward side. Two walls extend from above the 
seawater to some distance above the seabed of the 
breakwater. They calculated the CR, CT, and wave 
forces acting on the walls and found the obtained 
numerical results for limiting cases to agree very 
well with previous predictions for single and double 
partially immersed impermeable walls. 
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Liu et al. [7] used a submerged Jarlan-type 
breakwater consisting of a perforated front wall and 
a solid rear wall and examined the wave motion 
analytically and experimentally. Based on matched 
eigenfunction expansions to develop an analytical 
solution. The results showed the optimal values for 
the front wall porosity, the breakwater's relative 
submerged depth, and the chamber width were 0.1– 
0.2, 0.1– 0.2, and 0.3– 0.4, respectively. There will 
be no effect on the CT if the perforated front wall is 
interchanged with the solid rear wall.  

Liu et al. [8] investigated wave interactions with 
a semi-immersed breakwater consisting of a 
perforated front wall, a solid rear wall, and a 
horizontal perforated plate between the two walls 
using wave scattering based on eigenfunction 
expansions. Additionally, they experimentally 
investigated CR, and CT of the breakwater. The 
breakwater proved to be more effective at absorbing 
waves and reducing wave forces. 

Alsaydalani et al. [9] studied the hydrodynamic 
characteristics of three rows of slotted wall 
breakwaters with permeable and partially immersed 
front and middle walls, whereas a solid third wall is 
impermeable. Based on a mathematical model using 
the eigenfunction expansion method and the least-
squares technique to examine the hydrodynamic 
breakwater performance. The results of the 
mathematical model adequately reproduce the 
majority of the important features, according to 
comparisons with experimental measurements. 

Elbisy [10] has investigated waves that interact 
with multiple semi-immersed Jarlan-type 
perforated breakwaters. The results indicated that 
when the relative chamber width, B/L = 0.46n, CR is 
at its highest, and when B/L = 0.46n+0.24, (n=0, 1, 
2,), it is at its lowest.  
 Li et al. [11] investigated water wave interaction 
with a submerged perforated quarter-circular 
caisson breakwater using analytical solutions and 
laboratory experiments. Based on linear potential 
theory, analytical solutions of the problem are 
developed for normally and obliquely incident 
waves, respectively. They found that the analytical 
results agree reasonably with the experimental data. 

By extending Liu et al. [7] model, this study 
describes the flow behavior and the hydraulic 
performance of triple submerged Jarlan-type 
perforated breakwaters consisting of two perforated 
front walls and a solid rear wall. Therefore, examine 
and develop a numerical model for regular wave 
interaction of proposed breakwaters. Moreover, 
validate and assess the performance characteristics 
of these breakwaters by comparisons between 
previous studies' measurements of the transmission, 
reflection, and energy-loss coefficients. The rest of 
this paper is organized as follows: the analytical 
solution is developed in section 2. In section 3 the 
mathematical model is validated. There are also 

some numerical examples provided. Finally, the 
main conclusions of this study are summarized. 

 
2. THEORETICAL INVESTIGATION 
 

In this section, numerical solutions have been 
presented for wave interaction with triple 
submerged Jarlan-type perforated breakwaters 
consisting of two perforated front walls and a solid 
rear wall. The hydraulic performance of these 
breakwaters depends mainly on a numerical 
solution using Eigenfunction expansion and the 
least-squares technique. Hence, the estimation of 
the wave transmission, reflection, and energy-loss 
characteristics of the three rows of perforated walls 
breakwaters under regular linear wave conditions 
will be obtained. 

 
2.1 Theoretical Formulation and Assumptions 
2.1.1 Mathematical formulation 
 As shown in Fig. 1 schematic diagram of triple 
vertical walls, the triple permeable submerged 
Jarlan-type breakwaters, where the front and center 
walls are permeable and immersed, and third wall is 
impervious in a water channel. The water depth is h. 
The submerged depth of the breakwaters, d, is 
constant, the wall thickness is δ, and the chamber 
width, B is the distance between the front and back 
walls. The perforated breakwaters are encountered 
to regular waves of height H and wavelength L. An 
axis coordinate system x and z, both are positively 
oriented. The horizontal coordinate x from left to 
right and located on the front wall and the vertical 
coordinate z is positioned upward from the 
waterline. 
 The free surface boundary in the water wave 
problem travels with the velocity of the water 
particles. One of the unknown factors is velocity. 
As a result, before calculation, the position of the 
free surface boundary is likewise an unknown 
variable before computation. the fluid field the three 
walls split into four zones. There is a velocity 
potential that solves the Laplace equation if the fluid 
is incompressible, and the flow is irrotational. 
Derived the following boundary value problem for 
the velocity potential Φ (x, z, t) in each region for 
monochromatic incoming waves with angular 
frequency ω and time t: 
 

Φ(𝑥𝑥. 𝑧𝑧. 𝑡𝑡) = Re {𝜙𝜙 (𝑥𝑥. 𝑧𝑧) 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖} (1) 
 

 
 The real part of the argument is denoted by 𝑅𝑅𝑒𝑒[ ], 
the spatial velocity potential denoted by 𝜙𝜙, and 𝑖𝑖 =
√−1 . By considering an incompressible fluid and 
irrotational flow motion, the Laplace equation is 
satisfied by using the velocity potential. The 
following boundary value problem for the spatial 
velocity in each region is obtained: 
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𝜕𝜕2𝜙𝜙𝑗𝑗
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜙𝜙𝑗𝑗
𝜕𝜕𝑧𝑧2 = 0   For  𝑗𝑗 = 1.2.3.4 (2) 

 

 
 

(a) 

 
 

(b) 
Fig. 1  Schematic diagram of triple vertical walls, 
(a) 2D breakwater, and (b) 3D breakwater.  
 
where the variables in the region j are represented 
by the subscript j. on the free surface, these 
potentials must also satisfy appropriate boundary 
conditions, as the following: 
 
∂ϕj

∂z
=
ω2

g
ϕj   z = 0     j = 1.2.3.4 (3) 

∂ϕj

∂z 
= 0       z = −h      j = 1.2.3.4 (4) 

lim
𝑥𝑥→−∞

�𝜕𝜕𝜙𝜙𝑅𝑅
𝜕𝜕𝜕𝜕

+ 𝑖𝑖𝑘𝑘0𝜙𝜙𝑅𝑅 � = 0   (5) 

lim
𝑥𝑥→∞

  �
𝜕𝜕𝜙𝜙4
𝜕𝜕𝑧𝑧

− 𝑖𝑖𝑘𝑘0𝜙𝜙4 � = 0 (6) 

 
 By defining the incident wave number by 𝑘𝑘0 , 
the gravitational acceleration by g, the velocity 
potential of the reflected waves by 𝜙𝜙𝑅𝑅. As well, the 
reduced velocity potentials 𝜙𝜙  was obtained by 
using the eigenfunction expansion method that was 
used by Isaacson et al. [12] and Suh et al. [13]. The 

velocity potential was expressed by infinite 
solutions Eq. (2), the solutions satisfied. The 
boundary conditions of  Eq. (3) - (6), as follows: 
 
𝜙𝜙1 = − 𝑖𝑖g𝐻𝐻

2𝑖𝑖
[𝑒𝑒−𝛼𝛼0𝑥𝑥𝑍𝑍0(𝑧𝑧) + 𝑅𝑅0𝑒𝑒𝛼𝛼0𝑥𝑥𝑍𝑍0(𝑧𝑧) +

∑ 𝑅𝑅𝑛𝑛𝑒𝑒𝛼𝛼0𝑥𝑥𝑍𝑍𝑛𝑛(𝑧𝑧) ∞
𝑛𝑛=1 ]  

 
(7) 

𝜙𝜙2 = − 𝑖𝑖g𝐻𝐻
2𝑖𝑖
�∑ 𝐴𝐴𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑥𝑥𝑍𝑍𝑛𝑛(𝑧𝑧)∞

𝑛𝑛=0 +
∑ C𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛(𝑥𝑥−𝑎𝑎)𝑍𝑍𝑛𝑛(𝑧𝑧) ∞
𝑛𝑛=0 �  

 
(8) 

  𝜙𝜙3 = − 𝑖𝑖g𝐻𝐻
2𝑖𝑖
�∑ 𝐵𝐵𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛(𝑥𝑥−𝑎𝑎)𝑍𝑍𝑛𝑛(𝑧𝑧)∞

𝑛𝑛=0 +
∑ D𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛(𝑥𝑥−𝑏𝑏)𝑍𝑍𝑛𝑛(𝑧𝑧) ∞
𝑛𝑛=0 � 

 
(9) 

𝜙𝜙4 = − 𝑖𝑖g𝐻𝐻
2𝑖𝑖
�𝑇𝑇0𝑒𝑒−𝛼𝛼0(𝑥𝑥−𝑏𝑏)𝑍𝑍0(𝑧𝑧) +

∑ T𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛(𝑥𝑥−𝑏𝑏)𝑍𝑍𝑛𝑛(𝑧𝑧) ∞
𝑛𝑛=1 �                              

(10) 

 
By defining the coefficients of the component 

waves propagating forward and backward by 
𝑅𝑅𝑛𝑛 .𝐴𝐴𝑛𝑛 .𝐵𝐵𝑛𝑛 .𝐶𝐶𝑛𝑛 .𝐷𝐷𝑛𝑛  and,  𝑇𝑇𝑛𝑛 (n = 0, 1, 2, …) 
respectively. The wavenumbers 𝛼𝛼 = 𝑘𝑘𝑛𝑛 =
1,2, … are solutions to the first-order dispersion 
relation 𝜔𝜔 = −g𝑘𝑘𝑛𝑛 tan(𝑘𝑘𝑛𝑛ℎ) (Chakrabarti, [14]; 
Sarpkaya et al., [15]), In which the propagating 
evanescent wave and a pair of imaginary roots𝛼𝛼0 =
±𝑘𝑘0 for propagating waves have an infinite discrete 
set of real roots ±𝑘𝑘𝑛𝑛 for ( 𝑛𝑛 ≥ 1 ).  In Eq. (7)- (10), 
the negative sign was used so that the propagating 
waves correspond to the reflected and transmitted 
waves, respectively. The positive roots of 𝑛𝑛 ≥ 1 
was used so that the non-propagating waves fade 
exponentially with the distance from the wall. The 
depth-dependent functions Zn(z) (n = 0, 1, 2, …) in 
Eq. (7)- (10) are as the following: 

 
𝑍𝑍0(𝑧𝑧) = coshk0(𝜕𝜕+ℎ)

cosh(𝑘𝑘0ℎ)
 ,𝑍𝑍𝑛𝑛(𝑧𝑧) coskn(𝜕𝜕+ℎ)

cos(𝑘𝑘𝑛𝑛ℎ)
   (10) 

 
Equations (7) -(10) fulfill all the relevant 

boundaries and automatically fulfill the requirement 
that is needed to match the horizontal velocities at 
the breakwater. As a result, the velocity potentials 
must fulfill the boundary conditions at the interfaces 
of the breakwater as shown by the following: 

 
 

𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

= 𝑖𝑖 𝑘𝑘0G(𝜙𝜙1 − 𝜙𝜙2). 
  𝑥𝑥 = 0.         − ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  
 

(11) 

𝜕𝜕𝜙𝜙1

𝜕𝜕𝑥𝑥
=
𝜕𝜕𝜙𝜙2

𝜕𝜕𝑥𝑥
.     𝑥𝑥 = 0.     − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 

 

(12) 
 

𝜙𝜙1 = 𝜙𝜙2.      𝑥𝑥 = 0.       − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0    
 

(13) 
 

𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

= 𝑖𝑖 𝑘𝑘0G(𝜙𝜙2 − 𝜙𝜙3).  
(14) 
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𝑥𝑥 = 𝑎𝑎.         − ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  
 
𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

.     𝑥𝑥 = 𝑎𝑎.     − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 
 

(15) 
 

𝜙𝜙2 = 𝜙𝜙3.      𝑥𝑥 = 𝑎𝑎.       − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 
 

(16) 
 

𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜙𝜙4
𝜕𝜕𝑥𝑥

= 0.  𝑥𝑥 = 𝑏𝑏.     − ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  
 

(17) 
        

𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙4
𝜕𝜕𝑥𝑥

.     𝑥𝑥 = 𝑏𝑏.     − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 
 

(18)  
        

𝜙𝜙3 = 𝜙𝜙4.      𝑥𝑥 = 𝑏𝑏.       − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 
 

(19) 
 

 Using from Chwang [16] and Yu [17], G is 
expressed as follows: 

G = 𝜀𝜀
𝛿𝛿(𝑓𝑓−𝑖𝑖𝑖𝑖)

= |G|𝑒𝑒𝑖𝑖𝑖𝑖.    0 ≤ 𝜃𝜃 ≤ 𝜋𝜋 2⁄   (20) 
 

“G” is defined as the permeability parameter of 
a thin perforated well, which is usually complex, 
and the argument of the complex G is 𝜽𝜽 . When 
waves pass through a thin of the perforated wall, 
both a 𝜹𝜹 and a wave energy dissipation may happen. 
The resistance effect of the wall caused the energy 
dissipation and is relevant to the real part of G. The 
inertial effect of the wall causes the phase shift and 
is relevant to the imaginary part of G. The 
perforated wall decreases to an impermeable wall 
when G equals zero, and if G is shifted toward 
infinity, the wall is changed to completely 
transparent. The wall thickness is defined by 𝜹𝜹 and 
the friction coefficient is f. The distance between the 
centers of two neighbor Legs as 𝟐𝟐𝟐𝟐 and the opening 
widens between as 𝟐𝟐𝟐𝟐. The perforated part of the 
wall porosity is defined as 𝜺𝜺 = 𝟐𝟐/𝟐𝟐 and s for the 
inertia coefficient, as follows: 

𝑠𝑠 = 1 + 𝐶𝐶𝑚𝑚 �
1−𝜀𝜀
𝜀𝜀
�  (21) 

The added mass Coefficient is Cm, it is a constant 
(Cm=0) and f= 2.0 as recommended by Isaacson et 
al. [12]. 
 

2.1.2. .. Analytic Solution 

 The expressions for 𝜙𝜙𝑗𝑗 = 1.2.3.4 fulfill the free 
Surface, seabed, and convection conditions, in 
addition to the previously mentioned boundary 
conditions for 𝑥𝑥 =  𝑥𝑥𝑖𝑖 , The matching boundary 
conditions are reduced as follows in Eqs. (12)-(20): 

 𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

.     𝑥𝑥 = 0   
 

(22) 
 

𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

= 𝑖𝑖 𝑘𝑘0G(𝜙𝜙1 − 𝜙𝜙2).   
𝑥𝑥 = 0.         − ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  
 

(23) 
 

𝜙𝜙1 = 𝜙𝜙2.      𝑥𝑥 = 0.       − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0  
 

(24) 
 

 𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

.    𝑥𝑥 = 𝑎𝑎 
 

(25) 
 

𝜕𝜕𝜙𝜙2
𝜕𝜕𝑥𝑥

= 𝑖𝑖 𝑘𝑘0G(𝜙𝜙2 − 𝜙𝜙3).  𝑥𝑥 = 𝑎𝑎.  
−ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  
 

(26) 
 

𝜙𝜙2 = 𝜙𝜙3.      𝑥𝑥 = 𝑎𝑎.       − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0  
 

(27) 
 

𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝜙𝜙4
𝜕𝜕𝑥𝑥

.     𝑥𝑥 = 𝑏𝑏 
 

(28) 
        

𝜕𝜕𝜙𝜙3
𝜕𝜕𝑥𝑥

= 0.     𝑥𝑥 = 𝑏𝑏.     − ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  
 

(29) 
         

𝜙𝜙3 = 𝜙𝜙4.      𝑥𝑥 = 𝑏𝑏.       − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0 
 

(30) 
 

 Changing the expressions for the velocity 
potentials in Eqs. (7) and (8) into the boundary 
condition shown in Eq.  (23) gives the following: 
𝑅𝑅0 = 1 − 𝐴𝐴0 + 𝐶𝐶0𝑒𝑒

−𝛼𝛼0𝛼𝛼  (31) 

𝑅𝑅𝑛𝑛 = −𝐴𝐴𝑛𝑛 + 𝐶𝐶𝑛𝑛𝑒𝑒
−𝛼𝛼0𝛼𝛼.         𝑛𝑛 = 1.2. …  (32) 

 Changing Eqs. (7) and (8) into the boundary 
condition shown in Eqs. (24) and (25), with the help 
of Eqs. (32) and (33), gives the following: 
 

2𝑖𝑖𝑘𝑘0𝐺𝐺𝑍𝑍0 + ∑ (−2𝑖𝑖𝑘𝑘0𝐺𝐺 + 𝛼𝛼𝑛𝑛)𝐴𝐴𝑛𝑛𝑍𝑍𝑛𝑛 −∞
𝑛𝑛=0

∑ 𝛼𝛼𝐶𝐶𝑛𝑛𝑍𝑍𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎 = 0.  ∞
𝑛𝑛=0 − ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  

 

(33) 
 

2𝑍𝑍0 − 2∑ 𝐴𝐴𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 = 0.    − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0  

 
(34) 
 

 Also, changing Eqs. (8) and  (9) into the 
boundary condition shown in equation (26) gives 
the following: 

∑ 𝐴𝐴𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 − ∑ 𝐵𝐵𝑛𝑛𝑍𝑍𝑛𝑛∞

𝑛𝑛=0 +
 ∑ 𝐶𝐶𝑛𝑛𝑍𝑍𝑛𝑛∞

𝑛𝑛=0 + ∑ 𝐷𝐷𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛(𝑎𝑎−𝑏𝑏)𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 = 0  

 

(35) 
 

 Changing Eqs. (8) and (9) into the boundary 
condition shown in Eqs.  (27) and (28), with the help 
of Eqs (36), gives the following: 
 
∑ −(2𝑖𝑖𝑘𝑘0𝐺𝐺 + 𝛼𝛼0)𝐴𝐴𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎 𝑍𝑍𝑛𝑛 −∞
𝑛𝑛=0

∑ 𝛼𝛼𝑛𝑛𝐶𝐶𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 + ∑ 2𝑖𝑖𝑘𝑘0𝐺𝐺𝐵𝐵𝑛𝑛𝑍𝑍𝑛𝑛 =∞

𝑛𝑛=0
0            − ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑  
 

(36) 
 

2∑ 𝐴𝐴𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 − 2∑ 𝐵𝐵𝑛𝑛𝑍𝑍𝑛𝑛∞

𝑛𝑛=0 =
0    − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0  
 

(37) 
 

 Finally, changing Eqs. (9) and (10) into the 
boundary condition shown in Eq. (29) gives the 
following: 
−𝐵𝐵𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛(𝑏𝑏−𝑎𝑎) + 𝐷𝐷𝑛𝑛 + 𝑇𝑇𝑛𝑛 = 0. 
 𝑛𝑛 = 0.1.2. …   
 

(38) 
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 If Eqs. (9) and (10) are changed into the 
boundary condition shown in Eqs.  (30) and (31) 
give the following: 
 
∑ −𝐵𝐵𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛(𝑏𝑏−𝑎𝑎)𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 + ∑ 𝐷𝐷𝑛𝑛𝑍𝑍𝑛𝑛∞

𝑛𝑛=0 =
0.  −ℎ ≤ 𝑧𝑧 ≤ −𝑑𝑑 
 

(39) 
 

2∑ 𝐷𝐷𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 = 0.           − 𝑑𝑑 ≤ 𝑧𝑧 ≤ 0  

 
(40) 
 

 As described by Dalrymple and Martin [18], 
Eqs. (34), (35), (36), (37), (38), (39), (40), and (41) 
are known as series relations, and by using the least-
squares method, these equations are solved for the 
values of the coefficients. Along the z-axis, each 
condition specifies the potential and the function 
𝑆𝑆(𝑧𝑧) defined by the boundary condition of the wall 
as following: 
 
𝑆𝑆1−ℎ≤𝜕𝜕≤−𝑑𝑑(𝑧𝑧) = 2𝑖𝑖𝑘𝑘0𝐺𝐺𝑍𝑍0 +
∑ (−2𝑖𝑖𝑘𝑘0𝐺𝐺 + 𝛼𝛼𝑛𝑛)𝐴𝐴𝑛𝑛𝑍𝑍𝑛𝑛 −∞
𝑛𝑛=0

∑ 𝛼𝛼𝐶𝐶𝑛𝑛𝑍𝑍𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎 ∞
𝑛𝑛=0   

 

(41) 
 

𝑆𝑆1−𝑑𝑑≤𝜕𝜕≤0(𝑧𝑧) = 2𝑍𝑍0 − 2∑ 𝐴𝐴𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0   (42) 

𝑆𝑆2−𝑑𝑑≤𝜕𝜕≤0(𝑧𝑧) = ∑ 𝐴𝐴𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 −

∑ 𝐵𝐵𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 + ∑ 𝐶𝐶𝑛𝑛𝑍𝑍𝑛𝑛∞

𝑛𝑛=0 +
∑ 𝐷𝐷𝑛𝑛𝑒𝑒𝛼𝛼0(𝑎𝑎−𝑏𝑏)𝑍𝑍𝑛𝑛∞
𝑛𝑛=0   

(43) 

𝑆𝑆3−ℎ≤𝜕𝜕≤−𝑑𝑑(𝑧𝑧) = ∑ −(2𝑖𝑖𝑘𝑘0𝐺𝐺 +∞
𝑛𝑛=0

𝛼𝛼0)𝐴𝐴𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎 𝑍𝑍𝑛𝑛 − ∑ 𝛼𝛼𝑛𝑛𝐶𝐶𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 +

∑ 2𝑖𝑖𝑘𝑘0𝐺𝐺𝐵𝐵𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0   

 

(44) 
 

𝑆𝑆3−𝑑𝑑≤𝜕𝜕≤0(𝑧𝑧) = 2∑ 𝐴𝐴𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛𝑎𝑎𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 −

2∑ 𝐵𝐵𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0     

 

(45) 
 

𝑆𝑆4−ℎ≤𝜕𝜕≤−𝑑𝑑(𝑧𝑧) = ∑ −𝐵𝐵𝑛𝑛𝑒𝑒−𝛼𝛼𝑛𝑛(𝑏𝑏−𝑎𝑎)𝑍𝑍𝑛𝑛∞
𝑛𝑛=0 +

∑ 𝐷𝐷𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0   

 

(46) 
 

𝑆𝑆4−𝑑𝑑≤𝜕𝜕≤0(𝑧𝑧) = 2∑ 𝐷𝐷𝑛𝑛𝑍𝑍𝑛𝑛∞
𝑛𝑛=0   

 
(47) 
 

2.1.3 Least Squares Technique 
  
 As suggested by Dalrymple and Martin [18], the 
least-squares technique is used to determine the six 
coefficients, and requires that:  
 
∫ |𝑆𝑆(𝑧𝑧)|2𝑑𝑑𝑧𝑧0
−ℎ = minimum,  ℎ ≤ 𝑧𝑧 ≤ 0  (48) 

 
For each coefficient and reducing these integral, 
Am will give the following: 
 
∫ 𝑆𝑆∗(𝑧𝑧) 𝜕𝜕𝜕𝜕(𝜕𝜕)

𝜕𝜕𝐴𝐴𝑚𝑚
𝑑𝑑𝑧𝑧 0

−ℎ = 0.  𝑚𝑚 = 0.1.2. …  (49) 
 
 Defining the complex conjugate of by S (z). And 
for z in Eq. (50) and shortening after N terms, gives 
a set of linear equations as follows: 
 

[𝑎𝑎1𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐴𝐴𝑛𝑛∗ ]𝑁𝑁 + [𝑎𝑎2𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐶𝐶𝑛𝑛∗]𝑁𝑁 = (50) 

[𝑎𝑎3𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁 ,   
 

 

[𝑏𝑏1𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐴𝐴𝑛𝑛∗ ]𝑁𝑁 + [𝑏𝑏2𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐶𝐶𝑛𝑛∗]𝑁𝑁 +
[𝑏𝑏3𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐵𝐵𝑛𝑛∗]𝑁𝑁 + [𝑏𝑏4𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐷𝐷𝑛𝑛∗]𝑁𝑁 =
0,  
 

(51) 
 

[𝑐𝑐1𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐴𝐴𝑛𝑛∗ ]𝑁𝑁 + [𝑐𝑐2𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐶𝐶𝑛𝑛∗]𝑁𝑁 +
[𝑐𝑐3𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐵𝐵𝑛𝑛∗]𝑁𝑁 = 0,  
 

(52) 
 

[𝑑𝑑1𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐵𝐵𝑛𝑛∗]𝑁𝑁 + [𝑑𝑑2𝑚𝑚𝑛𝑛]𝑁𝑁 ×𝑁𝑁[𝐷𝐷𝑛𝑛∗]𝑁𝑁
= 0   

 

(53) 
 

𝑎𝑎1𝑚𝑚𝑛𝑛 = (−2𝑖𝑖𝑘𝑘0𝐺𝐺 + 𝛼𝛼𝑚𝑚)(2𝑖𝑖𝐾𝐾0𝐺𝐺∗ +
𝛼𝛼𝑛𝑛∗)∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧

−𝑑𝑑
−ℎ + 4∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧

0
−𝑑𝑑   

 

(54) 
 

𝑎𝑎2𝑚𝑚𝑛𝑛 = (−2𝑖𝑖𝑘𝑘0𝐺𝐺 +
𝛼𝛼𝑚𝑚)�−𝛼𝛼𝑛𝑛∗𝑒𝑒−𝛼𝛼𝑛𝑛

∗ 𝑎𝑎� ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧
−𝑑𝑑
−ℎ   

 

(55) 
 

𝑎𝑎3𝑚𝑚𝑛𝑛 = (−2𝑖𝑖𝑘𝑘0𝐺𝐺 +
𝛼𝛼𝑚𝑚)(2𝑖𝑖𝐾𝐾0𝐺𝐺∗)∫ 𝑍𝑍0𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧

−𝑑𝑑
−ℎ +

4∫ 𝑍𝑍0𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧
0
−𝑑𝑑     

 

(56) 
 

𝑏𝑏1𝑚𝑚𝑛𝑛 = −𝑒𝑒−𝛼𝛼𝑛𝑛∗ 𝑎𝑎 ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧   0
−ℎ   

 
(57) 
 

𝑏𝑏2𝑚𝑚𝑛𝑛  = −∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧   0
−ℎ   

 
(58) 
 

𝑏𝑏3𝑚𝑚𝑛𝑛 = −∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧   0
−ℎ   

 
(59) 
 

𝑏𝑏4𝑚𝑚𝑛𝑛 = −𝑒𝑒−𝛼𝛼𝑛𝑛∗ (𝑎𝑎−𝑏𝑏) ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧   0
−ℎ   (60) 

 
𝑐𝑐1𝑚𝑚𝑛𝑛 = 𝛼𝛼𝑚𝑚(2𝑖𝑖𝑘𝑘0𝐺𝐺∗ −
𝛼𝛼𝑛𝑛∗)𝑒𝑒−𝛼𝛼𝑛𝑛∗ 𝑎𝑎 ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧

−𝑑𝑑
−ℎ    

 

(61) 
 

𝑐𝑐2𝑚𝑚𝑛𝑛 = 𝛼𝛼𝑚𝑚𝛼𝛼𝑛𝑛∗ ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧   −𝑑𝑑
−ℎ   

 
(62) 
 

𝑐𝑐3𝑚𝑚𝑛𝑛 = −2𝑖𝑖𝑘𝑘0𝐺𝐺∗𝛼𝛼𝑚𝑚 ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧   −𝑑𝑑
−ℎ   

 
(63) 
 

𝑑𝑑1𝑚𝑚𝑛𝑛 = −𝑒𝑒−𝛼𝛼𝑛𝑛∗ (𝑎𝑎−𝑏𝑏) ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧   −𝑑𝑑
−ℎ   

 
(64) 
 

𝑑𝑑2𝑚𝑚𝑛𝑛 = ∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧
−𝑑𝑑
−ℎ + 4∫ 𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑑𝑑𝑧𝑧

0
−𝑑𝑑   

 
(65) 
 

 
2.2 Calculation of The Reflection, Transmission, 
Energy-Loss Coefficients, and Wave Forces: 
 
 To obtain the unknown Coefficients 
𝐴𝐴𝑛𝑛∗  ,𝐵𝐵𝑛𝑛∗,𝐶𝐶𝑛𝑛∗ and 𝐷𝐷𝑛𝑛∗  by using the linear equations 
(51) -(54) and solving them. Therefore, all the 
unknown expansion coefficients in the velocity 
potentials will be determined. In Eq.  (7) first part at 
its right side indicates incident waves propagating 
by following the positive x-direction, the second 
part indicates waves from the breakwater, and the 
third part indicates a series of evanescent modes 
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degrading in the negative x-direction. As well, in Eq. 
(10), the first part of the hand indicates transmitted 
waves propagating in the positive x-direction and 
the second part indicates a series of evanescent 
modes degrading in the positive x-direction. 
Various engineering wave properties can be 
obtained once the wave potentials are calculated. 
The real reflection coefficient 𝐶𝐶𝑅𝑅 can be defined as 
the ratio of the reflected wave height to the incident 
wave height as the following: 
 
𝐶𝐶𝑅𝑅 = |𝑅𝑅0| (66) 

 
 The real transmission coefficients 𝐶𝐶𝑇𝑇 is defined 
as the ratio of the transmitted wave height to the 
incident wave height, as the following: 
 
𝐶𝐶𝑇𝑇 = |𝑇𝑇0| (67) 

 
The energy-loss coefficient 𝐶𝐶𝐿𝐿  is calculated as 
follows: 
 
𝐶𝐶𝐿𝐿 = �1 − 𝐶𝐶𝑅𝑅2 − 𝐶𝐶𝑇𝑇2   (68) 

 
 The energy-loss coefficient is equal if |𝐺𝐺|  is 
equals to zero or tends toward infinity. The wave 
force acting on each wall is obtained by integrating 
the dynamic pressure along with the structure. On 
the unit width of the front wall  𝐹𝐹𝑓𝑓 , the magnitude 
of the horizontal wave force is obtained as follows: 
 
𝐹𝐹𝑓𝑓 = 𝑖𝑖𝑖𝑖𝜔𝜔 ∫ (−ℎ

−𝑑𝑑 𝜙𝜙1 − 𝜙𝜙2)│𝑥𝑥=0 𝑑𝑑𝑧𝑧 =
𝜌𝜌𝑖𝑖
𝐾𝐾0𝐺𝐺

∫ 𝜕𝜕𝜙𝜙1
𝜕𝜕𝑥𝑥

│𝑥𝑥=0 
−ℎ
−𝑑𝑑  𝑑𝑑𝑧𝑧  

 

(69) 
 

= 𝜌𝜌𝜌𝜌𝐻𝐻
2𝑖𝑖𝑘𝑘0𝐺𝐺

�(𝑅𝑅0 + 1) sinh(𝑘𝑘0ℎ)−sinh𝑘𝑘0(𝑑𝑑)
𝑖𝑖𝑘𝑘0cosh (𝑘𝑘0ℎ)

+

∑ 𝑅𝑅𝑛𝑛
sin(𝑘𝑘𝑛𝑛ℎ)−sin𝑘𝑘𝑛𝑛(𝑑𝑑)

𝑖𝑖𝑘𝑘𝑛𝑛cos (𝑘𝑘𝑛𝑛ℎ)
∞
𝑛𝑛=1 �   

 

(70) 
 

 On the unit width of the rear wall 𝐹𝐹𝑟𝑟 , the 
magnitude of the horizontal wave force is obtained 
as follows: 
 
𝐹𝐹𝑟𝑟 = 𝑖𝑖𝑖𝑖𝜔𝜔 ∫ (−ℎ

−𝑑𝑑 𝜙𝜙3 − 𝜙𝜙4)│𝑥𝑥=0 𝑑𝑑𝑧𝑧  
 
 

(71) 
 

𝐹𝐹𝑟𝑟 = 𝜌𝜌𝜌𝜌𝐻𝐻
2
�−𝑇𝑇0

sinh(𝑘𝑘0ℎ)−sinh𝑘𝑘0(𝑑𝑑)
𝑘𝑘0cosh (𝑘𝑘0ℎ)

+

∑ (2𝐷𝐷𝑛𝑛 − 𝑇𝑇𝑛𝑛) sin(𝑘𝑘𝑛𝑛ℎ)−sin𝑘𝑘𝑛𝑛(𝑑𝑑)
𝑖𝑖𝑘𝑘𝑛𝑛cos (𝑘𝑘𝑛𝑛ℎ)

∞
𝑛𝑛=1 �  

(72) 

 
 The dimensionless wave forces 𝐶𝐶𝐹𝐹𝑓𝑓  and 𝐶𝐶𝐹𝐹𝑟𝑟  is 
defined on the front and rear walls as follows: 
 

𝐶𝐶𝐹𝐹𝐹𝐹 =
�𝐹𝐹𝐹𝐹�
𝑖𝑖𝜌𝜌𝜌𝜌ℎ

  
 

(73) 
 

𝐶𝐶𝐹𝐹𝐹𝐹 =
|𝐹𝐹𝐹𝐹|
𝑖𝑖𝜌𝜌𝜌𝜌ℎ

    

 

(74) 
 
 

3. RESULTS AND DISCUSSION 

3.1 Validation of the Mathematical Model 

 The effectiveness of the present model is 
validated by comparing the calculated results with 
previous analytical results by Horiguchi [19], 
Natale [20], Fugazza and Natale [21], Porter’s [22], 
and Liu et al. [7] as well as previous experimental 
data of Kondo [23]. 

3.1.1 Comparisons with other Theoretical Models 

 For a single solid and single perforated 
breakwater, data from the theoretical results For a 
double walls (solid and perforated) breakwater, the 
results of Horiguchi [19] and Natale [20] are 
considered, in which the water depth, h = 3.0 m, the 
wave height, H = 1.0 m, the chamber width, B = 4.0 
m, d/h = 1.0, and the porosity of the perforated wall,  
𝜀𝜀 = 0.3 . As shown in Fig. 2, the results of the 
present model are close to the theoretical results of 
Horiguchi [19] and Natale [20]. 

 
Fig. 2 Comparison of the present model and 
Horiguchi [19] and Natale [20] results for a single 
solid and single perforated breakwater. 
 
 In addition, for the single solid and single 
perforated breakwater, data from the theoretical 
results of Fugazza and Natale [21] are considered, 
in which H = 4.0 cm, B = 0.5 m, d/h = 1.0, and 𝜀𝜀 =
0.2 . Fig. 3. shows that the present results agree 
reasonably well with the theoretical results of 
Fugazza and Natale [21].  
 When 𝜀𝜀  of the front walls increases to 1 (the 
front wall disappears and G = ∞) and  𝜀𝜀  of the 
second wall decreases to 0 (G = 0), the present 
breakwater becomes double submerged solid 
vertical plates. For this case (d/h = 0.1, B/h = 0.5, 
and G = 0), the present results of CR and CT were in 
identical to the analytical results of Porter [22] , as 
shown in Fig. 4. Owing to the fluid resonance 
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between two vertical plates, the multiple local peaks 
of the CR could be observed in Fig. 5. This was 
rather different from the single vertical plate in Fig. 
4. 

Fig. 3 Comparison of the present model and 
Fugazza and Natale [21] results for a single solid 
and single perforated breakwater.  

Fig. 4 Comparison of the present model with Porter 
[22] results for double submerged solid vertical 
plates at d/h = 0.1, B/h = 0.5, and G = 0. 

Fig. 5 Comparison of the present model and results 
of Liu et al. [7] for double Jarlan-type perforated 
breakwater at d/h = 0.1, B/h = 1.0, and G = 0.5. 

 Fig. 5 gives a comparison between the present 
model and the data from the multidomain boundary 
element method of Liu et al. [7] for submerged 
Jarlan-type breakwater (perforated front wall and a 
solid rear wall) at d/h = 0.1, B/h = 1.0, and G = 0.5. 
It can be seen from Fig. 5 that the present results of 

CR and CT were identical to the analytical results of 
Liu et al. [7] 

Fig. 6 Comparison between the present model and 
results of Kondo [23] for the single solid and double 
perforated breakwater. 

3.1.2 Comparisons with Experimental Data 

 The present model results for the CR of single 
and double perforated breakwaters were validated 
by comparison with the experimental results of 
Kondo [23]. The porosity of the perforated wall, 𝜀𝜀 , 
was 0.2. As shown in Fig. 6, the present results 
agree well with the experimental results of Kondo 
[23]. 

3.2 Numerical Examples 
3.2.1 Effect of Relative Submerged Depth 
 The relationship between the CR, CT, and CL of 
triple submerged Jarlan-type perforated 
breakwaters and Koh for different values of d/h (d/h 
= 0.1, 0.2, and 0.5) with B/h = 2.0, a = b, G = 0.75, 
and H/h =0.15 are shown in Figs. 7 to 9. It can be 
seen from these figures that CT of the breakwater 
decreased monotonously with the decreasing d/h. 
This is natural in physics. It seems that d/h = 0.1–
0.2 should be an advisable choice for obtaining a 
smaller CT. This agrees with the results of Liu et al. 
[7]. However, the variation in CR and CL with 
increasing d/h is related to Koh, as shown in Fig. 10. 

Fig. 4 Effects of the relative submerged depth, on 
CR at B/h = 2.0, a = b, G = 0.75, and H/h =0.15. 



International Journal of GEOMATE, Dec., 2021, Vol.21, Issue 88, pp.1-11 

8 

Fig. 5 Effects of the relative submerged depth, on 
CT at B/h = 2.0, a = b, G = 0.75, and H/h =0.15. 

Fig. 6 Effects of the relative submerged depth, on 
CL at B/h = 2.0, a = b, G = 0.75, and H/h =0.15. 

Fig. 10 Variation in the CR, CT, and CL against koh 
with B/h = 2.0, a= b, G = 0.75, H/h =0.15 and d/h = 
0.1. 

3.2.2 Effect of Relative Chamber Width 

 Fig. 11 gives the effect of the relative chamber 
width, B/L, on CR, CT, and CL. It is evident from Fig. 
11 that all the hydrodynamic quantities varied 
periodically with the increasing relative chamber 
width. Both CR and CT oscillate with changing B/L 
with the same trend. The mentioned effect is due to 
the dissipation of the wave’s energy by the 
perforated front wall and the CL oscillation with 
changing B/L. The variation of the CR versus the 
relative chamber width was most remarkable. The 
maximum value of CR is when B/L = 0.48n+0.07 

and its minimum value occurs when B/L = 
0.46n+0.26 where n equals to 0, 1, 2... Figure 11 
also represents the change in CL against B/L with 
opposite maximum and minimum values compared 
with CR and CT.  

Fig. 7 Variation in the CR, CT, and CL against B/h at 
k0h =1.5, a = b, G = 0.75, H/h =0.15, and d/h = 0.1. 

3.2.3 Effect of the Front Walls Porous Effect 
Parameter 

 Figs. 12 to 14 the effect of the front walls porous 
effect parameter, G, on CR, CT, and CL. It can be seen 
from the figures that the CR, CT of the present 
submerged Jarlan-type breakwater may be 
simultaneously small. This is significant in practice 
as a small CT brings good shelter for lee-side regions 
and a small CR is beneficial to reduce the seabed 
scour in front of the structure. With the increasing 
value of G, the values of CR, and CT first decreased, 
attained their minimum values, and then increased.  
Comparing Fig. 12 and Fig. 5 indicate that the CR 
increases with the increase of the number of 
breakwaters. Moreover, increasing the number of 
breakwaters produces larger energy dissipation and 
subsequently reduces the CT. 

Fig. 8 Variation in the CR against koh with different 
G at B/h =2.0, a = b, H/h =0.15, and d/h = 0.1. 

 Figs. 15 and 16 illustrate the effect of the G, on 
dimensionless wave force on the front wall, CFf, and
dimensionless wave force on the rear wall, CFr of 
triple submerged Jarlan-type perforated 



International Journal of GEOMATE, Dec., 2021, Vol.21, Issue 88, pp.1-11 

9 

breakwaters.  the front walls porous effect 
parameter, G could significantly reduce the wave 
forces acting on the front and rear walls. This is 
significant for the safety of the breakwater. A G = 
0.5–1.0 is recommended for the submerged Jarlan-
type breakwater by considering both good waves 
absorbing performance and small wave forces. With 
the increasing value of G, the values of CFr first 
decreased, attained their minimum values, and then 
increased. However, the CFf decreased 
monotonously with the increasing G. This was, in 
fact, the same as those observed in Fig. 15. This 
agrees with the results of Liu et al. [7]. 

Fig. 9 Variation in the CT against koh with different 
G at B/h =2.0, a = b, H/h =0.15, and d/h = 0.1. 

Fig. 10 Variation in the CL against koh with different 
G at B/h =2.0, a = b, H/h =0.15, and d/h = 0.1. 

3.2.4 Effect of the location of the middle wall 
between the front and rear walls 

 The location of the middle wall between the 
front and rear walls is varied three times.  Figs. 17, 
18, and 19 present the relationship between CFf and 
CFr and B/L for different values of the relative 
distance between the walls at G = 0.75, H/h =0.15, 
and d/h = 0.1. From the results, it can be concluded 
that the location of the middle wall has little effect 
on CR, CT, and CL. This agrees with the results of 
Elbisy [10]. 

Fig. 15 Variation in the CFf against koh with 
different G at B/h=2.0, a = b, H/h =0.15, and d/h = 
0.1. 

Fig. 16 Variation in the CFr against koh with 
different G at B/h=2.0, a = b, H/h =0.15, and d/h = 
0.1. 

Fig. 17 Variation in the CR, CT and CL against B/L 
at a= 0.25B, b= 0.75B, G = 0.75, H/h =0.15, and d/h 
= 0.1. 

4. CONCLUSIONS

A mathematical model based on an 
eigenfunction expansion method and a least-
squares technique for linear waves has been 
developed to study the hydrodynamic 
performance of triple submerged Jarlan-type 
perforated breakwaters. The model is validated 
by comparing the predicted results with the 
analytical results and the experimental data of 
previous studies. The comparisons showed that 
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the results of the presented mathematical model 
agree reasonably well with the previous 
analytical results and experimental data. Thus, 
the model can be used to analyze the 
performance of triple submerged Jarlan-type 
perforated breakwaters. 

 

 
Fig. 18 Variation in the CR, CT and CL against B/L 
at a= b= 0.5B, G = 0.75, H/h =0.15, and d/h = 0.1. 
 

 
Fig. 19 Variation in the CR, CT and CL against B/L 
at a= 0.75B, b= 0.25B, G = 0.75, H/h =0.15, and d/h 
= 0.1. 
 
 Numerical examples have shown that compared 
with triple submerged solid walls, the present 
breakwater with suitable design had better wave-
absorbing performance and lower wave forces. For 
the triple submerged Jarlan-type perforated 
breakwater, the optimum parameters (good wave 
absorbing performance and small wave forces) 
recommended for engineering design were G = 0.1–
0.2, d/h = 0.1–0.2, and B/L = 0.3–0.4.  
 It is also found that CR is maximum when B/L = 
0.48n+0.07 while it is minimum when B/L = 
0.46n+0.26 where n equals to 0, 1, 2.... With the 
increasing value of G, the values of CR, CT, and CFr 
first decreased, attained their minimum values, and 
then increased. However, the CFf decreased 
monotonously with the increasing G. Also, it was 
found that CT of the breakwater decreased 
monotonously with the decreasing d/h. Both CR and 
CT oscillate with changing B/L with the same trend. 
Also, it was found that the location of the middle 
wall between the front and rear walls has little effect 
on CR, CT, and CL.  

 The triple submerged Jarlan-type perforated 
breakwater significantly reduced CR values 
compared with the double one. Moreover, the triple 
type was found to be very helpful in enhancing the 
structure’s wave-absorbing ability compared with 
the double one.  

Additional research should be conducted in 
the future on the triple submerged Jarlan-type 
perforated breakwater with obliquely incident 
waves and sea currents. 
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