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ABSTRACT: In this paper, we study the mathematical physics model, which is an Abel-type Volterra integral 
equation that describes the distribution Temperature of heat along the surface when the heat transfer to it is 
balanced by radiation from it. We applied the adomian decomposition method (ADM) to the heat transfer 
Lighthill Singular integral equation and by converting it to the nonlinear singular Volterra equation of the 
second kind using the Maple program. The nonlinear term can easily be handled with the help of adomian 
polynomials. The solution takes the form of a convergent series with easily computable terms. The method is 
based on the application of Heat Transfer to a nonlinear Integral equation. The Pad e approximants are used 
effectively in the study to capture the solution's critical behavior. The method's efficiency and reliability are 
demonstrated by numerical examples. For a broad range of linear and nonlinear singular Integral equations, 
the approach is very effective and useful in finding analytical and numerical solutions. It gives you more 
concrete series solutions that converge quickly. 
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1. INTRODUCTION 
 

Many areas of applied mathematics depend on 
knowledge of integral equations, as they arise 
naturally in various applications in mathematics, 
engineering, physics, and technology. They can be 
used to model a wide range of physical problems 
such as thermal conductivity, propagation and 
continuity, mechanics, geophysics, electricity, 
magnetism, neutron transport, traffic theory, and 
many more. Integrative equations provide solutions 
in designing effective parameter algorithms for 
algebraic curves, surfaces, and superficial surfaces. 
Many associated elementary and boundary value 
problems can be reformulated as integral 
differential equations. Weak singular and scalar 
integral equations are of particular interest because 
they are accustomed to solving inverse boundary 
value problems whose domain is fractal curves, 
where classical calculus cannot be used. Abel's 
equations and other fractional integral equations 
have been extensively studied and are used in the 
modeling of various phenomena in biophysics, 
elastic viscosity, electrical circuits, etc. The 
solubility and properties of Volterra's integral 
equations have been studied using various 
analytical and approximate methods. 

In this paper, we consider the second kind of 
nonlinear weakly-singular Volterra integral 
equations are provided by  

 𝑢𝑢(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + ∫ 𝛽𝛽
√𝑥𝑥−𝑡𝑡

𝑥𝑥
0 𝐹𝐹�𝑢𝑢(𝑡𝑡)�𝑑𝑑𝑑𝑑,   

  𝑥𝑥 ∈ [0,𝑇𝑇]    (1) 

And 

𝑢𝑢(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + �
𝛽𝛽

[𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑡𝑡)]𝛼𝛼

𝑥𝑥

0

𝐹𝐹�𝑢𝑢(𝑡𝑡)�𝑑𝑑𝑑𝑑,  

0 < 𝛼𝛼 < 1,    𝑥𝑥 ∈ [0,𝑇𝑇],                                     (2)  
where 𝐹𝐹(𝑢𝑢(𝑡𝑡))  is a nonlinear function of 

𝑢𝑢(𝑡𝑡) and 𝛽𝛽is a constant. The generalized nonlinear 
weakly-singular Volterra equation (2) is also known 
as the Volterra equation. Many mathematical 
physics and chemistry applications use these 
equations, including stereology, heat conduction, 
crystal formation, and heat radiation from a semi-
infinite material. Singular equations with singular 
kernels include the nonlinear weakly-singular and 
extended nonlinear weakly-singular equations (1) 
and  )2(  

𝐾𝐾(𝑥𝑥, 𝑡𝑡) =
1

√𝑥𝑥 − 𝑡𝑡
, 

𝐾𝐾(𝑥𝑥, 𝑡𝑡) = 1
[𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑡𝑡)]𝛼𝛼

,   0 < 𝛼𝛼 < 1,           (3) 
 

Several authors have investigated the numerical 
solvability of (1). In [1], Diogo et al. used a 
collocation with graded mesh. A hybrid collocation 
approach was introduced in [2] for (1).  After a 
smoothing adjustment, a Nystrom type technique 
[3] was also considered (1).  

The Jacobi spectral collocation method [4] was 
recently proposed for the solution of (1). Ortiz and 
Samara [5] introduced an operational strategy based 
on the conventional Tau approach for the numerical 
solution of nonlinear ordinary differential equations 
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with certainly added constraints in 1981. Ordinary 
differential equations (ODEs), partial differential 
equations, integral equations, and 
integrodifferential equations have all been solved 
using the Tau technique [8, 7, 6].  

The kernels in many applications modeled by 
integral equations are not smooth, making it 
difficult to identify a solution and numerically 
approximate it, as the convergence of 
approximation methods is dependent on the 
smoothness of the solution in general. As a result, 
traditional analytical approaches, such as projection 
methods, perform poorly in such situations, as the 
linear system they lead to is often poorly 
conditioned and difficult to solve. When classical 
calculus cannot be utilized, proving convergence 
and estimating error can be time-consuming. They 
frequently have a significant implementation cost. 
As a result, fast, easy-to-use numerical algorithms 
for these types of equations are in high demand. The 
approach we offer is based on a traditional fixed-
point solution that has been appropriately altered. 
The product integration numerical approach we 
utilize is also highly efficient for approximating the 
integrals involved, because most of the 
computations may be done in a single step. 

The kernels in many applications modeled by 
integral equations are not smooth, making it 
difficult to identify a solution and numerically 
approximate it, as the convergence of 
approximation methods is dependent on the 
smoothness of the solution in general. As a result, 
traditional analytical approaches, such as projection 
methods, perform poorly in such situations, as the 
linear system that they lead to is often poorly 
conditioned and difficult to solve. 

When classical calculus cannot be utilized, 
proving convergence and estimating error can be 
time-consuming. They frequently have a significant 
implementation cost. As a result, fast, easy-to-use 
numerical algorithms for these types of equations 
are in high demand. 

The adomian decomposition approximation of 
the second kind weakly singular nonlinear Volterra-
Hammerstein integral equations is the subject of 
this research. 

 
2. RESEARCH SIGNIFICANCE 

 
Integral equations emerge naturally in many 

applications in Mathematics, Engineering, Physics, 
and Technology, hence they are used in many 
domains of Applied Mathematics. They can be used 
to simulate a variety of physical problems, 
including heat conduction, diffusion, and 
continuum. Mechanics, geophysics, electricity, 
magnetism, neutron transport, traffic theory, and 
many other subjects are covered in this paper. 
Integral equations help in the development of 

efficient algebraic parametrization techniques 
curves, surfaces, and hypersurfaces are all examples 
of curves. There are numerous initial and boundary 
value concerns related to Integral equations that can 
be reformed from ordinary and partial differential 
equations Integral equations, both singular and 
weakly singular, are of particular significance since 
they are used to handle inverse boundary value 
problems using fractal curves as domains, using 
classical calculus unable cannot be utilized The 
Abel equations, as well as other fractional order 
integral equations, were widely researched . and are 
employed in the simulation of biology, 
viscoelasticity, electrical circuits, and other 
phenomena. 

 In this research, we shed light on the heat 
transfer Lighthill singular integral equation and we 
solved it with the Maple program to know the 
properties of this equation, and then deduce its 
properties and advantages that are useful for 
engineers, mathematicians, and physicists on a 
large scale. 

 
3. THE ADOMIAN DECOMPOSITION 
METHOD  
 

Consider the differential equation [11]. Because 
Eq. (1) is a particular case of the generalized 
nonlinear weakly-singular Volterra equation (2), 
the Adomian decomposition method will be used to 
solve it.𝛼𝛼 =  1 2 ,𝑔𝑔(𝑥𝑥)  =  𝑥𝑥 .As previously said, 
we will provide a brief overview of the method's 
framework. We substitute the decomposition series 
for the decomposition series to (2) find the solution 
𝑢𝑢(𝑥𝑥) of 𝑢𝑢(𝑥𝑥) = ∑ 𝑢𝑢𝑛𝑛∞

𝑛𝑛=0 (𝑥𝑥) 
 

𝑢𝑢(𝑥𝑥) = ∑ 𝑢𝑢𝑛𝑛∞
𝑛𝑛=0 (𝑥𝑥),                                 (4) 

 
And 

𝐹𝐹�𝑢𝑢(𝑥𝑥)� = �𝐴𝐴𝑛𝑛

∞

𝑛𝑛=0

(𝑥𝑥), 

𝐴𝐴𝑛𝑛 =
1
𝑛𝑛!

𝑑𝑑𝑛𝑛

𝑑𝑑𝜆𝜆𝑛𝑛
�𝐹𝐹(�𝜆𝜆𝑖𝑖𝑢𝑢𝑖𝑖

∞

𝑛𝑛=0

)�
𝜆𝜆=0

,𝑛𝑛 = 0,1,2,⋯ 

                                                                 (5) 
 
where an is the Adomian polynomials, and (2) 

on both sides to get 

�𝑢𝑢𝑛𝑛

∞

𝑛𝑛=0

(𝑥𝑥)

= 𝑓𝑓(𝑥𝑥) + �
𝛽𝛽

[𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑡𝑡)]𝛼𝛼

𝑥𝑥

0

��𝐴𝐴𝑛𝑛

∞

𝑛𝑛=0

(𝑡𝑡)�𝑑𝑑𝑑𝑑,  

                                                          0 < 𝛼𝛼 < 1,  
(6) 

 
𝑢𝑢0(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 
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𝑢𝑢1(𝑥𝑥) = �
𝛽𝛽

[𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑡𝑡)]𝛼𝛼

𝑥𝑥

0

𝐴𝐴0(𝑡𝑡)𝑑𝑑𝑑𝑑, 

𝑢𝑢2(𝑥𝑥) = �
𝛽𝛽

[𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑡𝑡)]𝛼𝛼

𝑥𝑥

0

𝐴𝐴1(𝑡𝑡)𝑑𝑑𝑑𝑑, 

𝑢𝑢3(𝑥𝑥) = �
𝛽𝛽

[𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑡𝑡)]𝛼𝛼

𝑥𝑥

0

𝐴𝐴2(𝑡𝑡)𝑑𝑑𝑑𝑑, 

                                       
𝑢𝑢4(𝑥𝑥) = ∫ 𝛽𝛽

[𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑡𝑡)]𝛼𝛼
𝑥𝑥
0 𝐴𝐴3(𝑡𝑡)𝑑𝑑𝑑𝑑,              (7) 

 
and so forth After determining te components 

𝑢𝑢0(𝑥𝑥),𝑢𝑢1(𝑥𝑥), and 𝑢𝑢2(𝑥𝑥), the solution 𝑢𝑢(𝑥𝑥) of (2) 
will be determined as a series by substituting the (4) 
derived components in the formula. 
 
Definition 1. 
Let (𝑋𝑋, ||  ·  ||) be a Banach space. A mapping 𝑇𝑇 ∶
 𝑋𝑋 →  𝑋𝑋 is called a 𝑞𝑞 −contraction if there exists a 
constant 0 ≤  𝑞𝑞 <  1 such that 

�|𝑇𝑇𝑇𝑇 −  𝑇𝑇𝑇𝑇|� ≤  𝑞𝑞�|𝑥𝑥 −  𝑦𝑦|�, 
 for all 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋. On Banach spaces, the well-

known contraction principle holds: 
Theorem 1.  
Consider a Banach space  (𝑋𝑋, ||  ·  ||) and let 

𝑇𝑇 ∶  𝑋𝑋 →  𝑋𝑋 be a q−contraction. Then  
(i) 𝑇𝑇  has exactly one fixed point, which means 
equation  𝑥𝑥 =  𝑇𝑇𝑇𝑇  has exactly one solution 𝑥𝑥∗  ∈
 𝑋𝑋;  
(ii) the sequence of successive approximations 
𝑥𝑥𝑛𝑛+1 = 𝑇𝑇𝑇𝑇𝑛𝑛, 𝑛𝑛 ∈  𝑁𝑁, converges to the solution𝑥𝑥∗ , 
where 𝑥𝑥0  can be any arbitrary point in 𝑋𝑋;  
(iii) for every 𝑛𝑛 ∈  𝑁𝑁, the following error estimate  
||𝑥𝑥𝑛𝑛  − 𝑥𝑥∗  ||  ≤ 𝑞𝑞𝑛𝑛

1−𝑞𝑞
  ||𝑇𝑇𝑥𝑥0  −  𝑥𝑥0|| holds. 

We utilize Banach's theorem to prove the 
existence and uniqueness of a solution to Equation 
(1) under particular conditions, and to approximate 
it by applying the operator consecutively. The 
values of the solution at specific nodes are then 
approximated using an appropriate numerical 
integration scheme.  
Remark1. Theorem 1remains valid when X is 
replaced by a closed subset 𝒀𝒀 ⊆ 𝑿𝑿, satisfying 
𝑻𝑻(𝒀𝒀) ⊆ 𝒀𝒀. 

Remark 2. Since 𝒂𝒂 ∈  𝑪𝑪 ([𝟎𝟎,𝑻𝑻] × [𝟎𝟎,𝑻𝑻] ×
 𝑹𝑹)and 𝒇𝒇 ∈  𝑪𝑪(𝟎𝟎,𝑻𝑻], it is well known that the 
operator 𝑭𝑭 ∶  𝑪𝑪[𝟎𝟎,𝑻𝑻] →  𝑪𝑪[𝟎𝟎,𝑻𝑻] is well defined, 
i.e., 𝑭𝑭(𝑪𝑪[𝟎𝟎,𝑻𝑻]) ⊆ 𝑪𝑪[𝟎𝟎,𝑻𝑻]) 

Theorem 2. Let 𝑭𝑭 ∶  (𝑿𝑿, ||  ·  ||𝝉𝝉)  →  (𝑿𝑿, ||  ·  ||𝝉𝝉) 

 be defined by Equation (3). Assume that there 
exists a constant 𝑳𝑳 >  𝟎𝟎 such that 

|𝒂𝒂(𝒕𝒕, 𝒔𝒔,𝒖𝒖)  −  𝒂𝒂(𝒕𝒕, 𝒔𝒔,𝒗𝒗)|  ≤  𝑳𝑳|𝒖𝒖 −  𝒗𝒗|, 

 for all 𝒕𝒕, 𝒔𝒔 ∈  [𝟎𝟎,𝑻𝑻] and all 𝒖𝒖,𝒗𝒗 ∈  𝑹𝑹. Then  

(i) Equation (4) has a unique solution 𝒖𝒖 ∗ ∈  𝑿𝑿;  

(ii) the sequence of successive approximations 

𝒖𝒖𝒏𝒏+𝟏𝟏 = 𝑭𝑭𝒖𝒖𝒏𝒏+𝟏𝟏   𝒏𝒏 = 𝟎𝟎,𝟏𝟏,⋯ 

 converges to the solution u∗ for any 𝒖𝒖𝒖𝒖 ∈  𝑿𝑿;  

(iii) for every n ∈ N, the following error estimate 

||𝒖𝒖𝒖𝒖 –  𝒖𝒖 ∗  ||𝝉𝝉 ≤  𝒒𝒒 𝒏𝒏 𝟏𝟏 –  𝒒𝒒 ||𝑭𝑭𝑭𝑭𝑭𝑭 –  𝒖𝒖𝒖𝒖||𝝉𝝉  

holds, where 𝒒𝒒 = 𝑳𝑳𝚪𝚪(𝜶𝜶)
𝝉𝝉𝜶𝜶

 is the contraction constant 

Theorem 3.  

Let the conditions of Theorem 2 hold If, in 
addition,𝒇𝒇 ∈  𝑪𝑪 𝟐𝟐,𝟏𝟏 − 𝜶𝜶 (𝟎𝟎,𝑻𝑻]and  

𝒂𝒂 ∈  𝑪𝑪 𝟐𝟐 ([𝟎𝟎,𝑻𝑻] ×  [𝟎𝟎,𝑻𝑻] ×  𝑹𝑹), 

 then 𝒖𝒖 ∗ ∈  𝑪𝑪 𝟐𝟐,𝟏𝟏 − 𝜶𝜶 (𝟎𝟎,𝑻𝑻],  

The Lipschitz condition in Theorem 2 can be very 
prohibitive if required on the entire space. To be 

able to use it on a wider range of applications, we 
restrict it to a closed subset. Let ||  ·  || denote the 
Chebyshev norm on 𝑪𝑪[𝟎𝟎,𝑻𝑻] (which is equivalent 

to the Bielecki norm) and consider the closed ball  

𝑩𝑩𝑹𝑹 ∶=  {𝒖𝒖 ∈  𝑪𝑪[𝟎𝟎,𝑻𝑻]   ||𝒖𝒖 −  𝒇𝒇 ||  ≤  𝑹𝑹}, 

for some 𝑹𝑹 >  𝟎𝟎. Then 𝑩𝑩𝑩𝑩 ⊆  𝑿𝑿 and we have the 
following results 

Theorem 4.  

Let us suppose that there exists a constant 𝑳𝑳 >  𝟎𝟎 
such that 

 |𝒂𝒂(𝒕𝒕, 𝒔𝒔,𝒖𝒖)  −  𝒂𝒂(𝒕𝒕, 𝒔𝒔,𝒗𝒗)|  ≤  𝑳𝑳|𝒖𝒖 −  𝒗𝒗|, 

for all 𝒕𝒕, 𝒔𝒔 ∈  [𝟎𝟎,𝑻𝑻] and all 

𝒖𝒖,𝒗𝒗 ∈  [𝑹𝑹𝟏𝟏  −  𝑹𝑹,𝑹𝑹𝟐𝟐  +  𝑹𝑹], 

where 𝑹𝑹𝟏𝟏 ∶=  𝒎𝒎𝒎𝒎𝒎𝒎 𝒕𝒕 ∈ [𝟎𝟎,𝑻𝑻] 𝒇𝒇(𝒕𝒕), 𝑹𝑹𝟐𝟐: =
 𝒎𝒎𝒎𝒎𝒎𝒎 𝒕𝒕 ∈ [𝟎𝟎,𝑻𝑻] 𝒇𝒇(𝒕𝒕). Further assume that 

𝑴𝑴𝑻𝑻𝜶𝜶

𝜶𝜶
≤ 𝑹𝑹, 

where 𝑴𝑴 ∶=  𝒎𝒎𝒎𝒎𝒎𝒎 |𝒂𝒂(𝒕𝒕, 𝒔𝒔,𝒖𝒖)| over all 𝒕𝒕, 𝒔𝒔 ∈
 [𝟎𝟎,𝑻𝑻] and all 𝒖𝒖,𝒗𝒗 ∈  [𝑹𝑹𝑹𝑹 −  𝑹𝑹,𝑹𝑹𝑹𝑹 +  𝑹𝑹]. Then 
the conclusions of Theorem 2 hold on 𝑩𝑩𝑹𝑹. 

4.  SEVERAL EXAMPLE 
 

In this section, we use the adomian 
decomposition method (ADM)  to solve the 
problems discussed earlier. In addition, the number 
of iterations for various values is also determined. 
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And also plot the surface for the approximate 
solution of the heat transfer Lighthill singular 
integral equation. 

 
Example1. Consider the heat transfer Lighthill 

Singular integral equation  
 

𝑢𝑢(𝑥𝑥) = 1 −
√3
𝜋𝜋
�
𝑡𝑡
1
3𝑢𝑢4(𝑡𝑡)

(𝑥𝑥 − 𝑡𝑡)
2
3
𝑑𝑑𝑑𝑑

𝑥𝑥

0

,   

  𝑥𝑥𝑥𝑥[0,1] 
 
With the exact solution 𝑢𝑢∗(𝑥𝑥) = √𝑥𝑥 
 

Applying the Adomian Decomposition Method 
using Maple, we find 
 

Table 1 Numerical results and exact solution of 
heat transfer Lighthill Singular integral equation for 
example 1 
 

𝒙𝒙  𝑬𝑬𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙
= √𝒙𝒙 

𝒖𝒖(𝒙𝒙) 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.0010 0.0316228 0.0316227 0.0000001 
0.0020 0.0447214 0.0447209 0.0000005 
0.0030 0.0547723 0.0547710 0.0000013 
0.0040 0.0632456 0.0632429 0.0000027 
0.0050 0.0707107 0.0707060 0.0000047 
0.0060 0.0774597 0.0774523 0.0000073 
0.0070 0.0836660 0.1475523 0.0000108 
0.0080 0.0894427 0.0894277 0.0000151 
0.0090 0.0948683 0.0948481 0.0000202 
0.0100 0.1000000 0.0999737 0.0000263 

 

 
Fig.1 Plot 2D of the exact solutions result of heat 
transfer Lighthill Singular integral equation for 
example 1. 

 
 
Fig.2 The surface shows the approximate solution 
of the heat transfer Lighthill Singular integral 
equation for example 1. 
 
Example2. Consider the heat transfer Lighthill 
Singular integral equation 
 

𝒖𝒖(𝒙𝒙) = 𝒙𝒙 +
𝟒𝟒
𝟑𝟑
𝒙𝒙
𝟑𝟑
𝟐𝟐 − �

𝟏𝟏
√𝒙𝒙 − 𝒕𝒕

𝒙𝒙

𝟎𝟎

𝒖𝒖(𝒕𝒕)𝒅𝒅𝒅𝒅 

𝒙𝒙𝒙𝒙[𝟎𝟎,𝟏𝟏]  
 
With the exact solution 𝑢𝑢∗(𝑥𝑥) = 𝑥𝑥 

 
Applying the Adomian Decomposition Method 
using Maple, we find 
 
Table 2 Numerical results and exact solution of 
heat transfer Lighthill Singular integral equation for 
example 2 
 

𝒙𝒙 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
= 𝒙𝒙 

  𝒖𝒖(𝒙𝒙)   𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.0010 0.0010000 0.0010001 0.0000001 

0.0020 0.0020000 0.0020003 0.0000003 

0.0030 0.0030000 0.0030008 0.0000008 

0.0040 0.0040000 0.0040017 0.0000017 

0.0050 0.0050000 0.0050030 0.0000030 

0.0060 0.0060000 0.0060047 0.0000047 

0.0070 0.0070000 0.0070069 0.0000069 

0.0080 0.0080000 0.0080096 0.0000096 

0.0090 0.0090000 0.0090129 0.0000129 

0.0100 0.0100000 0.0100168 0.0000168 
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Fig.3 Plot 2D of the exact solutions result of heat 
transfer Lighthill Singular integral equation for 
example 2. 

 
Fig.4 The surface shows the approximate solution 
of the heat transfer Lighthill Singular integral 
equation for example 2. 
 
Example3. Consider the heat transfer Lighthill 
Singular integral equation 
 

𝒖𝒖(𝒙𝒙) = 𝟐𝟐√𝒙𝒙 −�
𝟏𝟏

√𝒙𝒙 − 𝒕𝒕

𝒙𝒙

𝟎𝟎

𝒖𝒖(𝒕𝒕)𝒅𝒅𝒅𝒅 

𝒙𝒙𝒙𝒙[𝟎𝟎,𝟐𝟐] 
With the exact solution  

𝑢𝑢∗(𝑥𝑥) = 𝟏𝟏 − 𝒆𝒆𝝅𝝅𝝅𝝅𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(√𝝅𝝅𝝅𝝅) 
 
Applying the Adomian Decomposition Method 
using Maple, we find 
 
Table 3 Numerical results and exact solution of 
heat transfer Lighthill Singular integral equation for 
example 3 

𝒙𝒙 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
= 𝟏𝟏
− 𝒆𝒆𝝅𝝅𝝅𝝅𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(√𝝅𝝅  

𝒖𝒖(𝒙𝒙) 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.0010 0.0602316 0.0602315 0.0000002 
0.0020 0.0835154 0.0835145 0.0000009 
0.0030 0.1007661 0.1007636 0.0000025 
0.0040 0.1149105 0.1149055 0.0000050 
0.0050 0.1270797 0.1270710 0.0000087 
0.0060 0.1378525 0.1378389 0.0000136 
0.0070 0.1475722 0.1475523 0.0000199 
0.0080 0.1564618 0.1564341 0.0000277 
0.0090 0.1646760 0.1646391 0.0000370 
0.0100 0.1723273 0.1722794 0.0000479 

 
Fig.5 Plot 2D of the exact solutions result of heat 
transfer Lighthill Singular integral equation for 
example3.

 
 

Fig.6 The surface shows the approximate solution 
of the heat transfer Lighthill Singular integral 
equation for example 3. 
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Example4. Consider the heat transfer Lighthill 
Singular integral equation 
 

𝒖𝒖(𝒙𝒙) = 𝒙𝒙 −
𝟏𝟏
√𝝅𝝅

�
𝟏𝟏

√𝒙𝒙 − 𝒕𝒕

𝒙𝒙

𝟎𝟎

𝒖𝒖𝟑𝟑(𝒕𝒕)𝒅𝒅𝒅𝒅 

With the exact solution  
𝒖𝒖∗(𝒙𝒙) = 𝒙𝒙 

Applying the Adomian Decomposition Method 
using Maple, we find 
 
Table 4 Numerical results and exact solution of 
heat transfer Lighthill Singular integral equation for 
example 4 

 
𝒙𝒙 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 = 𝒙𝒙 𝒖𝒖(𝒙𝒙) 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.0010 0.0100000 0.0099999 0.0000001 

0.0020 0.0200000 0.0199994 0.0000006 

0.0030 0.0300000 0.0299976 0.0000024 

0.0040 0.0400000 0.0399934 0.0000066 

0.0050 0.0500000 0.0499856 0.0000144 

0.0060 0.0600000 0.0599727 0.0000273 

0.0070 0.0700000 0.0699533 0.0000467 

0.0080 0.0800000 0.0799255 0.0000745 

0.0090 0.0900000 0.0898875 0.0001125 

0.0100 0.1000000 0.0998375 0.0001625 

 

 
Fig.7 Plot 2D of the exact solutions result of heat 
transfer Lighthill Singular integral equation for 
example 4. 
 
5. CONCLUSION 
 
In this paper, we are frequently directed to integral 
Volterra equations that are difficult to solve 
analytically when addressing numerous nonlinear 
issues in thermal conductivity, boundary layer heat 
transfer, chemical kinetics, and superfluidity. 

 
 

Fig.8 The surface shows the approximate solution 
of the heat transfer Lighthill Singular integral 
equation for example 4. 
 
6. CONCLUSION 
 

In this paper, we are frequently directed to 
integral Volterra equations that are difficult to solve 
analytically when addressing numerous nonlinear 
issues in thermal conductivity, boundary layer heat 
transfer, chemical kinetics, and superfluidity. The 
domain decomposition method is provided in this 
article for solving nonlinear Volterra integral 
equations with a single weak core. The Maple 
program was used to produce numerical results as 
well as drawings illustrating the degree of accuracy 
between the numerical and accurate solutions. 
Some examples are given to demonstrate the 
scheme's applicability and accuracy. Other 
numerical methods can be used in the future, and 
the results of the numerical solution can be 
compared to the exact solution. 

Some examples are given to demonstrate the 
scheme's applicability and accuracy. We can apply 
different numerical methods in the future, and we 
may extend the current method to a system of 
nonlinear Volterra integral equations and nonlinear 
Volterra integral equations of the mix type or the 
first type by comparing the results of the numerical 
solution with the exact solution. 
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