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ABSTRACT: Integral equation has been one of the essential tools for various areas of applied mathematics.
The Fredholm integral equations can be derived from boundary value problems. In this paper, we are
concerned with the application of the Adomian Decomposition Method by using MATLAB program for the
Fredholm integral equation of the second kind. The new computational algorithm is applied directly without
using any transformation, linearization, discretization or taking some restrictive assumptions. An exact solution
of the illustrative example was successfully fund using the proposed method, and the results are compared with
the results of the existing methods. The Adomain Decomposition will be obtained easily without linearizing
the problem by implementing the Adomain Decomposition Method by using MATLAB program rather than
the standard methods for the exact solutions. The concern will be on the determination of the solution y(x) of
the Fredholm integral equations of the second kind. The results indicated that the method is very effective and
simple.

Keywords: Fredholm integral equation of the second kind; Adomian Decomposition Method; MATLAB.

1. INTRODUCTION individually.

In this paper, we consider the Fredholm integral
equation of the second kind

() = f() + 4[] KCx, Dy (e) dt (1)
The unknown function y(x), that will be determined,
occurs inside and outside the integral sign. Th kernel
K (x,t) and the function f(x) are given real-valued
functions, and A is aparameter.

In this paper, we present the computation of exact
solution of Fredholm integral equation of the
second kind using MATLAB.

2. ADOMIAN DECOMPOSITION METHOD

In this section, we use the technique of the
Adomian Decomposition Method [4,9,13,14] . The
Adomain Decomposition Method consists of
decomposing the unknown function y(x) of any
equation into a sum of an infinite number of
components defined by the decomposition series

y(x) = o Ya(2), 2

Or equivalenty

y(x) = yo(x) + y1(x) + y2(x)+y3(x) + - (3)
Where the components y, (x),n = 0 will be
determined recurrently. The Adomain
Decomposition Method concerns itself with finding

the components y,(x), y; (x), v, (x), y3(x), -

To establish the recurrence relation, we substitute
(2) into the Fredholm integral equatin (1) to obtain

3 oY) = F(x) +
ALY K ) (e ya (D) dt, @)

or equivalenty
Yo(x) + 1 (x) + ¥, (x)+y3(x) + -+ = f(x) +
AL K@ [y0(0) +1(6) + 7, (0) - 1dt
(5)

The zeroth component y, (x) is identified by all
terms that are not included under the integral sign .
(This means that the components y,(x),n >0 of
the unknown function  y(x) are completely
determined by setting the recurrence relation

Yo(x) = f(x),  Ypy(x) =
AL KGOy dt, n>0 (6)

or equivalenty

Yo(x) = f(x),

b

() = 2 f K (x, )y t) dt

b
Y>(x) = f K (x, Oy, () dt
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b
7,00 = A [ KGooy,(0) de
a

10 = A[ KGOyt (7)
And so on for other component's.

In view of (7 ), the components
Yo (), ¥1(%), y2(x), y3(x), -+ are completely
determined. As a result, the solution y(x) of the
Fredholm integral equation (1) is readily obtained in

a series form by using the series as assumption in (2).

3. EXAMPLE

3.1 Example 1. Consider the Fredholm integral

equation of second kind
T

y(x) = cosx + 2x + f xty(t)dt.

0
Applying the Adomian Decomposition Method we
find

co T co
Z V() =cosx+2x+fxtz Y (t) dt .
n=0 0

n=0

To determine the components of y(x), we use the
recurrence relation
Vo(x) = cosx + 2x,
T

Vel (x) = fxt v, (0)dt, n=0.
0
This in turn gives
¥o(x) = cosx + 2x,
T
2x(m3 - 3)
y1(x) = f xt yo(Ddt = 3
0
. f” o Congp  2627688692113193xr
y2(0) = | xtyy(Ddt = — oo 65065984
0
w —f (e — 565797518176089xm3
ys(x) = | xty2(Ddt = —a 0 3072208
0
. r o Coge = 1461939532799565x7°
yalx —f *tys(Ddt = —— 155023255552
0
“ _f o corgp  5666162705481445xm?
ys(0) = | xtya(Ddt = =g esr70832
0
“ ‘f g - 22B758604898117xn?
Ye(¥) = | xtys(Odt = ——7o o7
0
. f” L g - 1773238149117601xn?
y7(0) = | xtys(Ddt = 2415919104
0
. f” orgp  2290896361316795xm?
ye(x) = | xt(t)dt = 301989888 ’
0
. f o Coge - 138734700048595xm?
yo(x) = | xtyg(Ddt = 1769472 ’

0
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T

: )_f o  1433882164955047xm?
yolx) = [ xt ys(ydt = 1769472 ’
0
: )_f o covge - 894677298961617xr
Y11\X) = xtyo()dt = 82944 )
0
: )_f s Conge - 1346209783445453
Y12\X) = xty1(Ddt = 15552

0
And so on. Using (2) gives the series solution
2x(m3 —3)

3
2627688692113193xm>

422212465065984
565797518176089xm3

8796093022208
1461939532799565xm3

2199023255552
5666162705481445xm3

824633720832
228758604898117xm3

3221225472
1773238149117601xm3

2415919104
2290896361316795xm3

301989888
138734700048595x73

1769472
1433882164955047xm3

1769472
694677298961617x73

82944
1346209783445453xm3

15552

y(x) =cosx + 2x +

y(x)
2x(m3 —3)

3
3277455530293170328219378537xm>

34199209670344704

=cosx + 2x +

Then the gives the exact solution
33873897660118575396366621689x
11399736556781568

y(x) = + cosx

Fig. 1 Plot 3D and 2D of the exact solutions result of
Fredholm integral equation for example 1.
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3.2 Example 2. Consider the Fredholm integral 1
equation of second kind Yo(x) = —2 f e**t yg(t)dt
1
0
y(x) = e*t2 -2 f e*tty(t)dt. _ —24801744464891759411050052979325e* (e? — 1)
0 - 1208925819614629174706176 ’
Applying the Adomian Decomposition Method we 1
find y10() = =2 [ X+ yo(de
0
> a2 : oat > _ 19807467092192025406293026624207e*(e? — 1)
Z Yalx) = e —zfe Z ya(t)dt . - 151115727451828646838272 ’
n=0 0 n=0

1
_ X+t
To determine the components of y(x), we use the () = -2 f ™ yio(D)dt
0

recurrence relation
_ —15818877303717202044491673925583e"(e2 -1

yo(x) = e¥+2, 18889465931478580854784 ’
1 1
Yusr () = =2 [ X (0, 0. yi2(0) = =2 [ ¥y (9de
0 0
This in turn gives _25266923628887507229618429573899¢* (e? — 1)
e - 4722366482869645213696 i
Yolx) = e**%, And so on. Using (2) gives the series solution
e? 1
7100 = =2 [ e+t yy(vdt = —2e72G - ) v g
0 =ex+2_zex+2 e__l
1 2 2
y,(x) = _zfexﬂyl(t)dt . 3596718833299159 ., (e? —1
2 281474976710656 © 2
_ 3596718833299159 o342 e? — 1) 23896921143600823608451547612389¢e*(e? — 1)
281474976710656 2 7 79228162514264337593543950336
, N 1192802888892091002535651796753e*(e2 — 1)
— x+
y3() = —Zfe y2(Ddt 618970019642690137449562112
0 7620884572098113352043020692037e*(e2 — 1)
_ —23896921143600823608451547612389¢* (e? — 1) - 618970019642690137449562112
- 79228162514264337593543950336 ’ 24345129527304974066926436076553e* (e2 — 1)
et 309485009821345068724781056
ya(x) = —2fe y3(Ddt 19442799785710562748951626477373e*(e2 — 1)
0 s 38685626227668133590597632
_ 1192802888892091002535651796753e*(e“ — 1) 31055284637795404994033548487189¢*(e? — 1)
6118970019642690137449562112 ’ + 9671406556917033397649408
ys(x) = =2 f eX*ty, (t)dt 24801744464891759411050052979325¢* (e2 — 1)
0 ) 1208925819614629174706176
_ —7620884572098113352043020692037e* (e? — 1) 19807467092192025406293026624207e*(e2 — 1)
- 618970019642690137449562112 ’ + 151115727451828646838272
: 15818877303717202044491673925583e*(e2 — 1)
Ye(x) = =2 f et ys(tdt 18889465931478580854784
0 25266923628887507229618429573899¢* (e2 — 1)
_ 24345129527304974066926436076553¢* (e? — 1) + 4722366482869645213696
- 309485009821345068724781056 ’ + o
B y(x)
y,(x) = —zfex“ ye(t)dt _ gxiz _ 3596718833299159 ..
0 - 562949953421312
—19442799785710562748951626477373e* (e? — 1) N 2341837215339010984094056314041165497573 .
= 318685626227668133590597632 ’ N 79228162514264337593543950336

7o) = =2 [ €54y (e

0
_ 31055284637795404994033548487189¢* (e? — 1)
h 9671406556917033397649408 ’

Then it gives the exact solution as

y(x) = e*
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Fig.2 Plot 3D and 2D of the exact solutions result of
Fredholm integral equation for example 2

4. CONCLUSION

The aim of this paper is to introduce a new
computational algorithm using MATLAB for
solving Fredholm integral equations of the second
kind using Adomain Decomposition Method without
any linearization, discritization, transformation, or
taking some  restrictive  assumptions.  The
computations associated with two examples were
performed using MATLAB. This method proved to
be an accurate and efficient technique.
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