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ABSTRACT: A semi-analytical-numerical method is developed to investigate the vertical dynamic response 
of a single pile embedded in multilayered soil. The governing differential equation for the pile and soil 
settlements is derived using the energy principles and variational approach that can consider both normal and 
shear strains in the vertical direction. The soil displacement in the vertical direction is expressed in terms of 
the pile displacement in the vertical direction and a decay function in the radial direction. The pile is modeled 
by a series of elements and the differential equation for each element is solved by applying the finite element 
method where exact shape functions are employed. The iterative algorithm is adopted to solve the pile 
settlement and the pile head impedance instead of solving simultaneously many equations and the proposed 
method is implemented in a computer code to obtain the solution. The validation of the proposed method is 
performed via a comparison of the pile head impedance and static stiffness with those from existing methods 
in the literature for both end-bearing and friction piles in homogeneous and multilayered soils. The pile head 
impedances calculated using the proposed method match well those obtained from approximate analytical 
solutions and are in good agreement with those from the three-dimensional finite element analyses at zero 
frequency. 
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1. INTRODUCTION 
 

Lateral dynamic loads such as earthquakes, and 
wind applied to high-rises transfer to pile 
foundation mostly in the vertical direction via 
overturning moment. The dynamic axial loads from 
machine vibrations and traffic are also applied 
vertically to the pile foundation. The pile head 
impedance represents the response of the pile 
foundation under harmonic load and is usually used 
in evaluating the dynamic behavior of soil-pile-
structure interaction.  

Several theoretical models were developed to 
investigate the dynamic interaction of the pile-soil 
system in the frequency domain in the literature. 
Novak [1] proposed a plane-strain model in which 
the soil is divided into a series of thin independent 
horizontal layers to analyze the dynamic response 
of an embedded cylindrical foundation. In the 
model, each thin soil layer is subjected to dynamic 
plane-strain deformation caused by vibration waves 
that s only propagate in the horizontal direction. The 
plane-strain model (a.k.a the Novak’s method) was 
extensively used in pile dynamics [1-5] and 
modified to improve the dynamic response of the 
pile [4,5]. Lakshmanan and Minai [2] developed a 
solution for piles embedded in radially 
inhomogeneous soil under vertical, torsional, and 
lateral loads based on Novak’s method. El Naggar 
[3] manipulated the k’s method and obtained the 

same subgrade equation as Lakshmanan and Minai 
[2] for the pile under vertical load. Mylonakis [4] 
accounted for the horizontal shearing stress and 
vertical normal stress in the plane-strain model and 
solved for the end-bearing pile under vertical 
excitation. The solutions based on Novak’s method 
[1-5] have the advantage that a dynamic subgrade 
reaction of the pile-soil system in viscoelastic layers 
with arbitrarily varying material properties can be 
obtained explicitly. Anoyatis and Mylonakis [5] 
derived an axisymmetric wave solution, based on 
linear elastodynamic theory, for the dynamic 
response of finite and infinitely long piles in a 
homogeneous viscoelastic soil with the former type 
of pile resting on rigid roa ck. The equilibrium of an 
arbitrary soil element in the vertical direction in 
these solutions [4,5] can yiyieldhethe  conventional 
static plane-strain model of Randolph and Wroth [6] 
if the frequency of vibration is zero. The solutions 
[4,5] were only applied for end-bearing piles 
penetrated in homogeneous soil. 

Rajapakse and Shah [7,8] and Rajapakse [9] 
developed a solution scheme based on Green's 
function representations for the surrounding half-
space. Rajapakse [9] proposed the fictitious bar 
extended half-space to provide a consistent and 
accurate solution for axisymmetric elastodynamic 
load transfer problems over a wide range of 
frequencies of excitation. The solutions can be 
applied for friction piles, but only homogeneous 
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soil was considered, and the results were not 
verified for the static pile head stiffness as the pile 
head impedance at zero frequency without material 
damping. 

Vallabhan and Mustafa [10] proposed the 
method based on the energy principles and 
variational approach (EPVA) for the pile embedded 
in homogeneous soils under vertical static load. The 
advantage of this continuum-based analysis is that 
it can capture the three-dimensional behavior of the 
pile-soil interaction and produce pile load-
settlement responses in seconds. The method was 
adopted to solve for the pile in layered soils [11-13] 
under static vertical load. For example, Seo and 
Prezzi [11] proposed the explicit solution for a 
circular pile, Seo et al. [12] solved for circular and 
rectangular piles, and Salgado et al. [13] accounted 
for both vertical and radial soil displacements in the 
solution of the circular pile. Gupta and Basu [were 
applied this approach to solve for the end-bearing 
pile under vertical dynamic load. The solution 
algorithm did not provide more general problems 
such as a friction pile embedded in multi-layered 
soils. 

 
2. RESEARCH SIGNIFICANCE 

 
Presently, no solution is developed using the 

energy principles and variational approach for 
friction pile embedded in multi-layered soil under 
vertical dynamic load. This shortcoming is 
overcome in the proposed method in which the 
finite element method for bar element on elastic 
foundation using exact shape functions and the 
iterative solution is employed [15]. 

 
3. PILE-SOIL MODEL  
 

A pile-soil system is subjected to vertically and 
laterally propagating waves during vertical 
excitations as shown in Fig. 1a. The pile with a 
circular cross-section is represented by geometrical 
and material properties such as radius pr , length 
Young’s modulus pE , and density pρ . A dynamic 
load applies at the pile head and center of the cross-
section in the vertical direction. The pile is 
embedded in a multilayered soil media with a total 
of n  soil layers extending to infinite in the 
horizontal direction. The pile penetrates through m  
soil layers where the pile base is assumed to be 
located at the bottom of the thm  layer. The soil 
properties are denoted by subscript “s” for the 
general soil layer while the properties of the thk  soil 
layer are described by subscript ”k” for the multi-
layered soil. The pile and the soil column (below the 
pile tip) are modeled by a series of bar elements as 
shown in Fig. 1a. If soil properties vary with depth 
in each layer, the pile and soil columns are divided 

into several sub-elements and the properties are 
considered constants for each sub-element. The thj  
element of length jL  (Fig. 1c) is surrounded by the 

thk soil layer. A cylindrical coordinate is 
appropriate to use in the axisymmetric model as 
gloabal coordinate system, as shown in Fig. 1a 
where the origin is located at the center of the pile 
cross-section at the pile head.  The coordinate 
system includes three axes: r-axis in the radial 
direction, Z-axis in the vertical direction, and θ-axis 
in the tangential direction, as shown in Figs. 1a and 
1b. The Z-axis is positive in a downward direction 
coinciding with the pile axis. The coordinate z  is 
considered athe s local coordinate of the jth element 
that varies from 0 to jL . 

 
 

Fig. 1. Pile-soil system 
 

The following assumptions are applied to the 
pile-soil system: 

1) Tangential and radial displacements are 
very small compared to vertical 
displacement and hence can be assumed 
negligible. 

2) The pile is single and vertical with a 
circular cross-section and isotropic linear 
elastic material. No slippage between soil 
and pile is allowed at the pile-soil interface 
then the displacements at the pile-soil 
interface meets compatibility requirement. 

3) The soil is considered a viscoelastic and 
isotropic material. 

4) No normal and/or shear tractions are 
applied at the surface of the soil media. 

The kth soil layer with a thickness of kH  is 
represented by the complex-valued Lamé constants 
as follows [16]: 
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; kE  is Young's 

modulus; kG  is shear modulus; kξ  is damping 
ratio ; and kν  is Poisson's ratio. 

4. DISPLACEMENT-STRAIN-STRESS
RELATIONSHIP 

Since the vertical displacement in the radial 
direction decreases with the increase of radial 
distance from the pile, the vertical displacement 
field in the soil can be approximated by a product 
of separable functions as follows [10-13]: 

z zu U φ=  (2) 

where zU is the vertical displacement of the pile at 
a depth of z ; φ  is the dimensionless function of r
describing the reduction of the displacement in the 
radial direction from the pile center. It is assumed 
that 1φ =  at pr r= , and 0φ =  at r = ∞ . 

The vertical dynamic displacement is expressed 
in a form of harmonic excitation as: 

i t
z zU U e ω= (3) 

where zU  is the amplitude of the vertical 
displacement; and ω  circular frequency of 
vibration. 

Velocity is the derivative of displacement versus 
time that can be obtained as: 

i tz
z z

duv i U e i U
dt

ωω φ ω φ= = =  (4) 

Inertial energy in the soil can be written in terms 
of velocity and soil density as the following 
equation: 

2
2 2 2 21 1 1

2 2 2
z

s s z
duv U
dt

ρ ρ ρω φ = = − 
 

(5) 

With the above assumptions, the strain-
displacement relationship can be expressed in terms 
of the displacement field as: 
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 (6) 

The following equation presents the 
relationships between stress and strain in the soil 
based on Hooke's law for isotropic linear 
viscoelastic material: 
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where σ  is normal stress; and τ  is shear stress. 

5. GOVERNING EQUILIBRIUM
EQUATIONS 

The potential energy Π  of the soil-pile system 
defined as the sum of internal energy and external 
energy can be expressed by following equation: 
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(8) 

where *
jE  is Young's modulus of the thj element, if 

j M≤  then * *
j pE E= , if j M>  then * *

j kE E= ; jρ

is mass density of the jth element; kρ  is mass 
density of the kth soil layer; A is the area of the pile 
cross-section; zjU  is displacement of the thj
element; P and 

0zU  are vertical dynamic load and 
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displacement at the depth 0z z= , respectively; { }σ  

and { }ε  are the stress and the strain tensors. 
Strain energy for the kth soil layer is obtained as: 
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Equation (9) is derived from Eq. (6) and Eq. (7) 
with soil displacement in the radial direction is 
assumed to be zero. This assumption completely 
introduces artificial restraint in the radial direction 
in the pile-soil system that may produce significant 
effect on the response of the vertically loaded pile. 
The effect of restraint was reduced by Seo et al. [12] 
for pile under static load and Mylonakis [5] for pile 
under dynamic load by modifying the term of 
( )* *2k kGλ +  in Eq. (9). 
 

The potential energy can be obtained in the 
following equation by substituting Eq. (9) with Eq. 
(8), and integrating concerningθ : 
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where * * *2k k kE Gλ= +  is constraint modulus. 

By minimizing the potential energy, or the first 
variation of the potential energy must be zero [10-
13], the equilibrium equations of the soil and pile 
elements can be made as follows: 
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Equation (11) can be written in the form of: 
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Equation (13) can be written in the short form 
as: 
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Applying the principle of minimum potential 

energy and taking a variation of φ , the governing 
differential equation for the soil is given by: 
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The differential equation (20) is a form of the 
modified Bessel differential equation, and its 
solution is given by: 
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Subgrade reactions calculated by Eq. (15) and 

(16) are written as follows: 
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6. DISPLACEMENT APPROXIMATION 
 

Vertical displacement along a bar element is 
approximated by nodal displacements as the 
following equation (Fig. 1c): 
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where 1z jU  and 2z jU  are vertical displacement at 

the first node and the second node of thj  pile 
element, respectively; 1 jN  and 2 jN  are shape 
functions that can be given the following forms: 
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where: 
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Based on the approximation of displacement in 

Eq. (26), values of a  and b  are calculated as: 
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7. ITERATIVE SOLUTION 
 

The iterative solution proposed by Nghiem and 
Chang [15] is employed in this study to solve Eq. 

(13). Consider the jth element as shown in Fig. 2, the 
equivalent impedance is defined as: 
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where jP  is the vertical load at the top of the jth 
element. All elements below the jth element (from 
j+1 to N) are modeled by a spring with an equivalent 
impedance of 1jK + . The spring is connected to the 
jth element at the second node, as shown in Fig. 2. 
 

 
 

Fig. 2. Spring model of the jth element 
 

Equation (14) can be written in the following 
matrix form by introducing Eq. (26) to Eq. (14): 
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where *

j j js E A t= + . 
Applying Galerkin method and Green theory 

[17] to Eq. (32) leads to stiffness matrix of the jth  
element as follows: 
 

( )
( ) ( )

( )
( )
( )

cosh 1
sinh sinh

cosh1
sinh sinh

j j

j j j j
j jj

j j

j j j j

L

L L
K s

L

L L

α

α α
α

α

α α

 
 −
 
 =    
 − 
  

 (33a) 

 
Equation (33a) can be written in the following form: 
 

11, 12,

21, 22,

j j
j

j j

k k
K

k k
 

=    
  

   (33b) 

 

where ( )
( )11, 22,

cosh

sinh
j j

j j j j
j j

L
k k s

L

α
α

α
= =   

and 
( )12, 21,
1

sinh
j j j j

j j
k k s

L
α

α
= = −  

The equilibrium equation for the jth element can 
be written as: 

Kj+1

Pj

1

Uz2j

Uz1j

2

j kj, tj
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[ ] { } { }z j jjK U P=    (34) 

 
where { }z jU  and { } jP  are displacement and load 

vectors. The matrix form of Eq. (34) is obtained as: 
 

11, 12, 1

21, 22, 2 1 2

j j z j j

j j z j j z j

k k U P

k k U K U+

        =     −          
 (35) 

 
The solution of Eq. (35) provides the 

displacement at the first and second nodes, as: 
 

1
12, 21,

11,
22, 1

j
z j

j j
j

j j

P
U

k k
k

k K +

=
−

   (36) 

 
21,

2 1
22, 1

j
z j z j

j j

k
U U

k K +
=

+
   (37) 

 
Substituting Eq. (36) to Eq. (31), the flowing 

equation of the equivalent impedance of the jth 
element can be written: 
 

12, 21,
11,

22, 1

j j
j j

j j

k k
K k

k K +
= −    (38) 

 
Assumption can be made that the second node 

of the Nth element is fixed, or 1NK + = ∞ . The 
equivalent impedance of this element can be 
calculated from Eq. (38), as: 
 

11,N NK k=      (39) 
 

Iterating the calculations of the equivalent 
stiffness from the bottom element (the Nth element) 
up to the top element (the 1st element) gives the 
equivalent impedance of all elements. As the 
definition in Eq. (31), the displacement at the pile 
head is calculated as: 
 

1
0 11

1 1
z z

P PU U
K K

= = =    (40) 

Since the displacement of the second node of the 
(j-1)th element is equal to the displacement of the 
first node of the jth  element ( 2( 1) 1z j z jU U− = ), the 
displacement at the second node of the jth element is 
calculated by Eq. (37). The vertical load at the top 
of the jth element is also calculated at the same time 
as displacement using the following equation: 
 

1j z j jP U K=     (41) 
 

The pile head impedance (or the impedance of 
the first element) can be expressed in terms of real 
(stiffness) and imaginary (damping) parts as: 
 

1 V VK K iC= +     (42) 
 
where VK  is the pile head stiffness; and VC  is the 
pile head damping. 
 Fig. 3 shows the flow chart of the iterative 
solution scheme. The solution converged when the 
relative difference of β  is less than a predefined 
tolerance, 0.000001ε = . The above theory and the 
Novak’s method [1,3] are implemented in a 
computer code written by Delphi programming 
language to perform the analyses in this study. 
 

 
 

Fig. 3. Flow chart for the solution scheme 
 
8. VALIDATION 
 
8.1 End-bearing Pile 
 
The proposed method is validated by comparing its 
analysis results with those from an approximate 
analytical method developed by Mylonakis [4] (the 
modified Novak’s method) for dynamic analysis of 
axially loaded end-bearing pile. In both methods, 
the governing equation derived with assumption 
that soil displacement in the radial direction is zero 
as the restraint in radial direction is applied to the 
pile-soil system. As a result, the pile stiffness is 
overestimated. To overcome this shortcoming, 
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Mylonakis [4] replaced * * *2s s sE Gλ= +  by 
* *

s sE Gη=  where ( )2 1s sη ν= −  and this 
modification is adopted in the analyses for 
comparison convenience. The pile and soil with  

p pL r  of 10, 14, and 20, p sE E  of 100, 300, and 
1000, 0.4sv = , 1.25p sρ ρ = , and 0.05sξ =  is 
used in the analyses. The normalized pile head 
stiffness, 0v vK K  and pile head damping ratio, 

( )2v vC K  are obtained from both methods, where 

0vK  is static pile head stiffness. As shown in Fig. 4, 
the normalized pile head stiffness and the pile head 
damping ratio are plotted versus dimensionless 
frequency, ( )0 p s sa r Gω ρ= . Nearly similar 

results can be observed for both the methods. It is 
indicated that they produce identical dynamic 
subgrade reaction. 

 

 

 
Fig. 4. Normalized stiffness and damping ratio 
versus dimensionless frequency of end-bearing 
piles 

7.2 Friction Pile 
 
 A friction pile with slenderness ratio of 

50p pL r =  is embedded in a homogeneous soil 
media. The ratios of pile and soil properties are 
selected as p sE E  of 100, 300, and 1000, and 

1.25p sρ ρ = . Other soil properties are constants in 
all analyses such as Poison’s ratio, 0.3sv = ,  and  
soil damping ratio, 0.05sξ = . The energy 
principles and variational approach (EPVA) and the 
Novak’s method (NM) [1,3] are used in the analyses. 
The effect of radial restraint is reduced by using the 
modification moduli proposed by Seo et al. [12] 
where the moduli *

sλ  and *
sG  of the soil were 

replaced by * 0sλ =  and ( )* 20.75 1 1.25s s sG G ν= + , 

respectively.  

 

 
 
 Fig. 5. Pile head impedance versus 
dimensionless frequency of friction pile in 
homogeneous soil 
 
Fig. 5 shows the pile head stiffness and damping 
versus dimensionless frequency a0 for both methods. 
The pile head impedances match perfectly for 
stiffness with 0 0.03a >  and for damping with 

0 0.1a > . At zero frequency, the subgrade reaction 
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in the NM is also zero [3] so the NM is unable to 
provide static pile head stiffness. This characteristic 
also explains why large differences of the pile head 
impedances occurred at low frequencies as shown 
in Fig. 5. Table 1 presented the pile head stiffnesses 
obtained from the EPVA and compared to those 
from the 3D finite element method (3DFEM) using 
SSI3D program [18]. The absolute values of 
relative differences between the EPVA and 3DFEM 
are found in range of 2.9% to 11.3%. 
 
Table 1 The static pile head stiffness (kN/m) for 
friction pile in homogeneous soil 

 
Case EPVA  3DFEM Differences 

(%) 
100p sE E =  814540 838000 -2.9 
300p sE E =  390130 422246 -8.2 

1000p sE E =  151960 169183 -11.3 
 
A single pile is embedded in three idealized multi-
layered soil profiles with configuration of geometry 
is shown in Fig. 6 and Table 2. The analyses are 
conducted using the EPVA and NM with pile 
slenderness ratio of 25p pL r = . The analyses 
using 3DFEM are also performed to verify the static 
pile head stiffness obtained from the EPVA. Fig. 7 
plots the pile head stiffness and damping versus 
dimensionless frequency ( )0 1 1pa r Gω ρ=  for 

both methods. The second analysis case provide 
highest pile head stiffness and damping at high 
frequencies. The results of pile head stiffness are in 
good agreement for 0 0.1a > while high 
discrepancies of the pile head damping are observed 
with values of 0a  vary from 0 to 0.4. The EPVA 
provides more accurate results than the NM because 
the normal stress component in the vertical 
direction is considered in EPVA while it was 
ignored in the NM. 
 

 
 

Fig. 6. Analysis cases for friction pile in layered soil 

 

Table 2 Analysis cases for friction pile in layered 
soil 

 

Layer No. 
Case 1 Case 2 Case 3 

k refE E  

1 1.0 4.0 2.0 
2 2.0 2.0 1.0 
3 4.0 1.0 4.0 

 
Table 3 The static pile head stiffness (kN/m) for 
friction pile in layered soil 

 
Case EPVA  3DFEM Differences 

(%) 
1 1174550 1317518 -12.2 
2 1152340 1125578 2.3 
3 1202810 1293134 -7.5 

 

 

 
 
Fig. 7. Pile head impedance versus dimensionless 
frequency of friction pile in layered soil 
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The pile head stiffnesses obtained from the EPVA 
and compared to those from the 3DFEM with 
differences in range of -12.2% to 2.3% as presented 
in Table 3. The differences mainly depend on the 
use of the reduction modulus equation proposed by 
Seo et al. [12] accounted for the effect of restraint 
in the radial direction. 

 
9. CONCLUSIONS 
 

The vertical dynamic response of end-bearing 
and friction piles with circular cross-sections 
embedded in multi-layered soil was investigated. 
Based on the comparison of the analysis results with 
the modified Novak’s method, the NM method and 
the 3D finite element method, the following 
conclusions are obtained: 

1) Both normal and shear strains in the vertical 
direction are considered in the energy 
principles and variational approach. 

2) The proposed solution produces the pile 
head impedance in excellent agreement in 
comparison to that from the modified 
Novak’s method for the end-bearing pile. 

3) The proposed solution can predict static and 
dynamic pile head stiffness while Novak’s 
method is unable to provide the static 
stiffness and underestimate the dynamic 
stiffness at a low frequency for friction pile. 
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