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ABSTRACT: A lot of reservoirs have thick and thin sand bodies at the same intervals, while the amplitude 

values of seismic data frequently highlight sand bodies near the ¼ wavelength for the tuning phenomena. These 

machine learning methods aim to link seismic attributes for the qualitative prediction of facies classification 

and compare the results obtained with the common seismic attributes visualizations controlled by the gamma-

ray log data as the lithofacies guidance. This study performed an extraction of Seismic Spectral Attributes 

(SSAs) in the area of interest for the spectral decomposition RGB Blending visualization. Furthermore, 

numerical values were applied for several seismic attributes in the clustering step, while a principal component 

analysis (PCA) was proposed towards lowering the computational time and storage space on these values. 

Subsequently, a subsurface depositional facies map was obtained using the frequency cube from the red-green-
blue (RGB) compounding technique, while the facies classification map, useful for the reservoir delineation, 

was obtained using the final facies map from the combination of principal component analysis of the original 

numerical seismic attributes value followed by unsupervised classification through clustering. 
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1. INTRODUCTION 

 

 

The seismic data method's low dominant 

frequency, narrow bandwidth, and low S/N ratio, 

owing to deficient contrast of impedance and 

powerful attenuation, necessitates the creation of 
other suitable methods for delineating subsurface 

depositional facies. The seismic spectral attribute 

has been used with some approaches, for instance, 

seismic spectral decomposition, while other 

approaches, including continuous wavelet, 

transforms (CWT) and the short-time Fourier 

transform (STFT), have been proposed. CWT 

results in time-frequency representative with 

various resolutions from the seismic signal in cases 

where a wavelet has been previously selected [1, 2, 

3]. 
This study, therefore, used CWT to detect 

sandstone frequency thickness, combined with 

RMS amplitude and machine learning clustering 

map, due to the method's ability to result in 

localized time-frequency representative and the 

seismic signal from Ricker wavelet. Using the red-

green-blue (RGB) color blending image shows 

three frequency cubes to be compared with the 

depth and thickness map, as well as other seismic 

attributes visualization, and this enables detection 

of sandstone facies boundary, as well as qualitative 
estimation of the sand's thickness.  

Subsequently, a bridging was performed from 

the commonly used seismic attributes to the use of 

seismic attributes parameters in clustering 

algorithm application in facies classification by 
initially applying a principal component analysis 

(PCA), a broadly applied technique to reduce 

dimensionality in machine learning [4]. PCA 

orthogonally converts a big set of seismic spectral 

attributes into a smaller set, while retaining the 

same information [4]. The resultant of the brand-

new variable, principal component (PC), is a linear 

combination from SSA with maximum variance 

and is not inter-correlated. 

After the seismic attribute's value has been well 

packaged in the form of principal components, the 
unsupervised machine learning step is applied 

using several clustering algorithms to determine 

whether the algorithm can map the seismic 

attributes data into several clusters interpreted as 

facies in this case. The clustering algorithm used in 

this study are K-Means Clustering, Balanced 

Iterative Reducing and Clustering using 

Hierarchies (BIRCH), and Gaussian Mixture. The 

interpretation of these clusters is then compared with 

the morphology forms found in spectral 

decomposition RGB visualization, RMS 
amplitude, and other seismic attributes 

visualization. 
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Fig. 1 South Sumatra Basin Physiography [18]. 

However, K-Means, BIRCH, and Gaussian 

Mixture algorithms using several seismic attributes 

data through principal components combined with 

Spectral Decomposition and conventional seismic 

attribute visualization, including RMS Amplitude 

has not been widely applied to Indonesian fields. 

This combination of several methods is aimed at 

improving the clustering of depositional facies in the 
"G" field, located in Jambi Sub-Basin, South 

Sumatra Basin. In addition, this combination is 

expected to distinguish the existent depositional 

facies in the field through the seismic attributes 

numerical data.  

In physiography, the South Sumatra Basin is a 

northwest-southeast direction basin which is bounded 

by the Semangko and the Bukit Barisan faults in the 

southwest, the Sunda Shelf in the northeast, and the 

Lampung Highlands in the southeast (Figure 1).  

 

2. RESEARCH SIGNIFICANCE 

 

The significance of the study is how seismic 

data and several unsupervised machine learning 

methods work in resulting tin he mapping of 

depositional facies can be assessed. The absence of 

known label of the facies in the training data let the 

most suitable configuration of the algorithm work 

to give the best facies clustering map results from 

the data used while keep considering all 

characteristics of the data fairly. Using more than 

one algorithm to work in picturing the clusters of 

the data can explain what kind of algorithms fit 

best with the data characteristics used in the 

process. 

 

3. METHODS 

 

3.1 RMS Attribute 

Amplitude attribute is commonly used to 

obtain the subsurface information, and the 

interpretative approach uses bright spot 

assumption on seismic, based on the amplitude's 

value, where this bright spot assumption may be 

related to the presence of hydrocarbon [16]. High 

hydrocarbon saturation condition, high porosity, 

and thick pay thickness is bound to produce high 

amplitude, meaning a more evident amplitude 
contrast implies a better prospect. 

Furthermore, amplitude represents the amount 

of energy in the time domain on the seismic wave, 

and this attribute is generally used as the straight 

hydrocarbon indicator, as well as in the delineation 

of facies and thickness. The instance of primary 

amplitude is RMS Amplitude, the square root of 

the sum of amplitude square of seismic data, 

expressed in the following equation. 
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𝑅𝑀𝑆 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  √
1

𝑁
∑ 𝐴𝑖

2𝑁
𝑖=1                          (1) 

 

Where N is the magnitude of amplitude sample 

in the window analysis and A is the amplitude 

value. 

 

3.2 Spectral Decomposition 

 

Continuous Wavelet Transform (CWT)-based 

Spectral Decomposition, is based on the presence 

of certain frequency characteristics response from 

the reflection seismic in a thin layer or below the 

seismic vertical resolution. Continuous Wavelet 

Transform separates signals into frequency 

distribution which is related to time with scaled 

translation and dilatation [11]. A detailed picture is 

obtainable by associating frequency value with the 

target area's thickness. 

The amplitude spectrum and phase to the 

specific wavelength are visible through this 

attribute. Furthermore, the thickness, density, and 

signal velocity parameters passing through a 

material provide a frequency characteristic 

description. The material layer usually comprises 

numerous rock layers, each with a unique 

frequency characteristic, and to obtain each layer's 

frequency, the thickness from the layer or layer 

volume must be included in the frequency interval 

until the desired maximum frequency is obtained. 
 

3.3 Principal Component Analysis (PCA) 

 

Principal Component Analysis (PCA) is a 

technique of decreasing performed to orthogonally 

convert a big data set upon a smaller set while 

retaining the same information [4]. The principal 

components produced is a linear combination from 

the original data with maximum variance and is not 

inter-correlated [12]. This is defined in the 

following equations, using the X vector of SSA. 
 

𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑚)       (2) 

 

Xi is an SSA, therefore, the mean vector of X is 

stated by: 

 

𝒖𝒙 = 𝑬{𝑿}         (3) 

 

Other than the above concept, there is proof 

that eigenvectors are the principal components. In 

this study, in analyzing the attributes for principal 

components, we use the analysis of the eigenvalue 

and eigenvectors. To see if eigenvectors are the 

principal components, we can consider a linear 

combination that has maxim mum variance. The 

variance explained by any eigenvector is its 
eigenvalue since the eigenvector is selected by 

choosing an appropriate unit vector [17]. 

 

3.4 Machine Learning Clustering with Seismic 

Attributes (Unsupervised Machine Learning) 

 

This step aims to use the seismic attributes data 

which have been transformed into two principal 

components through Principal Component 

Analysis to generate a facies clustering map. Both 

principal components (PCs) are used to create a 

facies model through several machine learning 

clustering algorithms. The algorithms used are K- 

Means Clustering, Balanced Iterative Reducing, 

and Clustering using Hierarchies (BIRCH), as well 

as Gaussian Mixture, and each algorithm uses a 

different method in deciding the effective number 

of clusters. 

In the K-Means algorithm, the sum of squares 

of the data points' Euclidean distance for the 

nearest representative is used to measure the 

clustering objective function. Therefore, the 
following equation is obtained. 

 

𝑫𝒊𝒔𝒕(𝑿𝒊
̅̅ ̅,𝒀𝒋

̅̅̅) = ‖𝑿𝒊
̅̅ ̅ – 𝒀𝒋

̅̅̅ ‖𝟐
𝟐

                   (4) 

 

Where, || ・  ||p represents Lp-norm. The 

expression of Dist (Xi, Yj) is evident as a squared 

error in data points with the nearest representative 

[14]. Generally, the purpose is to minimalize the 

sum of a square error on different data points. 

The BIRCH algorithm works by two 

parameters: branching factor B, as well as 

threshold T, and obtains the input data set from N 

data points, represented as a real-valued vector, 

and the desired sum of clusters K [15]. 
Subsequently, the algorithm scans all leaf entry in 

cluster factor tree to build smaller cluster features 

while removing the outlier and clustering the full 

sub-cluster into a larger sub-cluster. The 

agglomerative hierarchical clustering algorithm is 

then immediately applied to the sub-cluster 

represented by the cluster feature vector. This also 

provides flexibility, enabling the desired amount of 

cluster or threshold diameter to be determined. 

With this algorithm, the parameter branching 

factor and threshold are used to obtain cluster 

prediction.  
The Gaussian Mixture algorithm is a clustering 

method, where an ellipse form of the cluster is 

formed based on the density probability estimation 

using Maximization-Expectation. Each cluster is 

modeled as a Gaussian distribution, while the mean 

and covariance are compared only to mean in K-

Means clustering, enabling the algorithm to 

provide a better quantitative measurement, 

compared to the compatibility per sum of the 

cluster [6]. Gaussian Mixture is represented as the 

linear combination from Gaussian probability 
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distribution and is expressed in the following 

equation. 

 

𝒑(𝑿) = ∑ 𝝅𝒌
𝑲
𝒌=𝟏 N(X|𝝁𝒌, ∑𝒌)      (5) 

 
Where K is the amount of component from the 

mixed model and πk is the mixing coefficient 

providing density estimation from each Gaussian 

component [6]. 

To determine the clusters' amount K, the 

Bayesian Information Criterion (BIC) and Akaike 

Information Criterion (AIC) are used. The concept 

of BIC is to select the model from a set of model 

candidates by maximizing the posterior probability 

[7]. In cases where a model depends on straight to 
the sum of the cluster, the BIC criterion for a set of 

X' is defined by the following relationship. 
 

𝑩𝑰𝑪 (𝑲) =  −𝟐𝑳′ ∗ (𝑲) + 𝒓 𝐥𝐨𝐠(𝑵′)     (6) 
 

This is the criterion value in cases where there 

is no other information for the model with an 

independent parameter of r. The criterion also 

requires adjustments to consider side information. 

For the set of X, given the relation 1, the 

observation amount is N, while the possibility of 

the maximum log is L*(K), and this considers 
positive constraint measured differently. 

The second criterion, AIC which was proposed 

in (Akaike, 1974) [8], selects the model, where the 

Kullback-Leibler distance between the models 

with the truth M0, is minimalized. This is 

equivalent to choosing the model where the 

maximized value is the maximum value from the 

following equation. 
 

∫ 𝑃(𝑋|𝑀0)𝑃(𝑋|𝑀𝑖)
+∞

−∞
       (7) 

 
The AIC criterion without side information 

takes the following form. 
 

𝑨𝑰𝑪 (𝑲) =  −𝟐𝑳′ ∗ (𝑲) + 𝟐𝒓      (8) 
 

4. RESULT AND DISCUSSION 
 
4.1 RMS Attribute 
 

Figure 2 shows the form of distributary channel 

conceived by high RMS Amplitude value with the 

color of yellow to red at the southeast. Meanwhile, 

at the north, the form is interpreted as the fluvial 

floodplain correlated with the well-M, a well near 

the area interpreted as fluvial floodplain and 

distributary channel. At the area interpreted as a 

fluvial floodplain, the show of sand is found in the 

log data with a serrated form of gamma-ray log 

associated with aggrading deposition, the 
deposition with massive alternations of sandstone 

and mudstone. This also explains the area's high 

RMS Amplitude value, indicating a high-density 

sandstone distribution, and consequently, high 

amplitude anomaly. 

 

4.2 Spectral Decomposition 

 

In applying the spectral decomposition method, 

the seismic volume must first be extracted with 

three frequencies, from low, middle, and high. The 

frequencies used for the seismic cubes are 10 Hz, 
20 Hz, and 45 Hz, based on the seismic data's 

spectrum analysis (Figure 3). 

 

Fig. 2 RMS Amplitude visualization combined with gamma-ray (GR) log interpretation. 
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Fig. 3 Seismic Spectrum Analysis.

Figure 4 shows the north to northeast part, 
interpreted as the fluvial floodplain and close to the 

area interpreted as a channel (in the southeast part). 

This channel form is also found at the same area in 

the RMS Amplitude visualization (Figure 2). 

Meanwhile, the magenta to blue color at the 

northeast part interpreted as fluvial floodplain 

explains the show of high frequency associated 

with the thin sand layer. This is confirmed from the 

gamma-ray log near the area showing thin sand in 

between mudstone with serrated log form 

correlated with fluvial floodplain supporting this 
interpretation. Similar to Figure 3, the west 

direction's middle part is interpreted as shoreface 

delta form, indicating the form of the delta. This 

interpretation is supported by the deposition 

direction of NE – SW, and the deposition 

development begins from the fluvial floodplain to 

the distributary channel in the delta area (towards 

the marine). 

 

4.3 Principal Component Analysis (PCA) 

 

In this step, seismic attributes data is prepared 
for division into several principal components. The 

seismic attributes data used in this step are RMS 

Amplitude, Average Envelope, Average 

Instantaneous Frequency, Average Instantaneous 

Phase, Average Magnitude, Maximum Amplitude, 

and Standard Deviation of Amplitude. Data 

standardization was performed to ensure the data 

has mean and variance values of 0 and 1, 

respectively, and can produce the variance 

percentage of the components used [13]. 

Figure 5 shows only two features are used, and 
these are two principal components (PC). 

Therefore, the components used have variance 

above 0.1%. From Figure 5, feature 1 (PC 1) of 

PCA features axis (x-axis) is above 0.6%, while 

feature 2 (PC 2) is above 0.1%. Alternatively, the 
PCA feature is determined by creating explained 

variance plot from the components used in this 

step. 

Based on Figure 6, the resultant variance (y-

axis) depends on the quantity of the components 

used (x-axis). Practically, the PCA features used 

are the features covering about 70% of the 

variance. Therefore, two PCA features are used 

from these components. 

Table 1 shows the variance ratio and 

Eigenvalue for PC 1 and PC 2, each with 65% of 
the data variance and 15% of the data variance, 

combined to obtain 80% of the data variance. PC 

1and PC 2 also have Eigenvalues of 5.2 and 1.24, 

respectively. In addition, the Eigenvector is also 

explored to determine the PCs' significant features, 

as well as the percentage of each on a related PCA. 

Table 2 shows the RMS Amplitude, Average 

Envelope, Average Magnitude, Maximum 

Amplitude, and Maximum Magnitude are the most 

important features for PC 1 because these features 

have significantly high Eigenvector. Meanwhile, 

the PC 2 counterparts are Average Instantaneous 
Frequency and Standard Deviation of Amplitude, 

because these features have significantly high 

Eigenvector.  

 

4.4 Machine Learning Clustering with Seismic 

Attributes (Unsupervised Machine Learning) 

 

The Elbow method approach in K-Means 

Clustering is carried out by observing the elbow on 

the inertia graph. In the graph, the form before the 

elbow is usually sharp enough and becomes 
smooth afterward. To obtain a clustering 

prediction with the K-Means algorithm, the 

parameters k and inertia are used. 
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Fig. 4 Spectral Decomposition RGB Blending application on 10 Hz, 20 Hz, and 45 Hz. 

The k used is within range 1 to 8, while the 

inertia is obtained from fitting results with the 

training model from the K-Means. Subsequently, 

the possibility of cluster amount is resulted by 
using the Elbow method (Figure 7). 

Figure 7 shows the elbow form occurs at three 

clusters for the K-Means algorithm. Therefore, the 

clustering process is run using a k value of 3. 

For the BIRCH algorithm, in the process, the 

branching factor used is within the range of 100 to 

1000 with the interval of 50, while the threshold 

used is within the range of 0 to 1. This results in 

the possibility of an effective cluster (Figure 8). 

Figure 8 shows the effective sum of the cluster for 

the data used is three, therefore, the branching 

factor and threshold of 100 and 1, respectively, are 
used in the processing cluster. 

To determine the cluster prediction, the criteria 

AIC and BIC, the parameter k with a range of 1 to 

8, as well as the inertia are used. Figure 9 shows 

the effective sum of the cluster. 

 According to Figure 9, the effective sum of the 

cluster is three. In addition, AIC and BIC reflect 

each other quite well [9]. AIC and BIC are meant 

to be minimalized; therefore, the graph's least point 

is selected. Generally, the measurement of both 

criteria shows the same number on the sum of the 
cluster. However, in some cases, differences occur 

due to the BIC model's relative simplicity, and the 

AIC model's data complexity. Therefore, the sum 

of cluster k is applied. 

Contrary to supervised learning, the clustering 

process with BIRCH, K-Means and Gaussian 

Mixture does not use facies labeling but maps the 

facies based on the parameters. These three 

machine learning clustering methods have been 

able to map the data into three facies where the 
cluster distribution of the cluster is qualitatively 

similar to the facies distribution in RMS 

Amplitude and RGB Blending of the Spectral 

Decomposition visualization. Based on the 

resultant facies distribution map from the three 

clustering methods (Figure 10), the BIRCH 

method was concluded to produce the closest result 

to RMS Amplitude and Spectral Decomposition 

RGB Blending visualization. This is possible 

because the BIRCH method performs hierarchical 

clustering over, particularly large dataset process 

[10]. Meanwhile, the K-Means and Gaussian 
Mixture method modified with the addition of 

expectation-maximization algorithm can produce 

results with similar accuracy as the BIRCH 

algorithm result. Therefore, at the east to south part 

(Figure 10), in each facies cluster map, the three 

methods are unable to show the channel form 

described from the picture with the red dominant 

color distribution. Figure 10 only shows the area as 

a single cluster, possibly due to the algorithms' 

characteristics, general data density, and data 

density at the area interpreted as the channel in the 
east of south on the facies map, or the density of 

one of some parameters in PC 1 or PC 2. Further 

improvement is available to this study where there 

is a need to try or generate an improved algorithms 

aware le to model the depositional facies in a more 

detailed form. Other attributes or newly formed 
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attributes that can be derived in the future that can 

picture the depositional facies well can also be 

explored along with experimenting with the most 

suited algorithms.  

A previous study applied another machine 

learning clustering method in the central Ordos 

Basin, western China, and successfully determined 

the facies classification resulted from spectrally 

decomposed attribute with FSOM map. The result 

from clustering with FSOM map visualization 

showed similarity with the manual interpretation. 

Also, the elaborated spectral attributes are able in 

picturing the condition of subsurface deposition, 

however, misunderstandings tend to occur in the 

FSOM map on account of the good calibrations' 

absence on the unsupervised learning [5]. 

  

 
 

Fig. 5 The components' variance percentage. 

 

 
 

Fig. 6 Explained variance from the components. 

 

Table 1 Variance Ratio and Eigen Value table for PCA 1 and PCA 2. 

PC Variance Ratio Eigen Value 

PC 1 0.65 5.2 

PC 2 0.15 1.24 
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Table 2 Eigenvector table for PC 1 and PC 2. 

Surface Attribute Eigen Vector 

(PC 1) 

Eigen Vector (PC 2) 

RMS Amplitude 

Average Envelope 

0.43 

0.42 

0.1 

0.16 

Average Instantaneous Frequency 

Average Instantaneous Phase 

Average Magnitude 

Maximum Amplitude 

Maximum Magnitude 

Standard Deviation of Amplitude 

0.24 

0.07 

0.41 

0.42 

0.41 

0.27 

0.61 

0.03 

0.25 

0.23 

0.23 

0.65 

 

 
 

Fig. 7 Elbow Method Graph to determine the effective amount of cluster. 

 

 
 

Fig. 8 Heatmap to determine the effective amount of cluster. 
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Fig. 9 AIC and BIC score graph in determining the effective sum of the cluster. 

 

 
Fig. 10 Facies Cluster Maps with BIRCH (left), K-Means (middle), and Gaussian Mixture (right). 

 

5. CONCLUSION 

 

This study describes a new method 

combination of RMS Amplitude, Spectral 

Decomposition, and machine learning clustering 

using numerical seismic attributes values, and 
applied this method to the "G" Field of the South 

Sumatra Basin, to obtain facies clustering map 

from machine learning clustering algorithms. 

Subsequently, the map obtained is then compared 

to RMS Amplitude, Spectral Decomposition, and 

supported by the gamma-ray log interpretation. 

The result shows the facies found in the target area, 

and these are the fluvial floodplain, distributary 

channel, as well as shoreface delta. Furthermore, 

the results shown from the machine learning 

clustering have the same morphology and pattern 
as the RMS Amplitude and Spectral 

Decomposition visualization. Also, the 

interpretation from the machine learning clustering 

in the area interpreted as the channel does not show 

the form of the channel but shows the area as a 

single cluster, and this is possibly due to several 

factors, including the algorithms' characteristics, as 

well as the data density. 
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