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ABSTRACT: The autoregressive model (AR) is one of the stochastic models in the time series that is used 

for forecasting. The AR model is affected by noise which has a distribution. The accuracy in choosing the 

noise distribution has an impact on the fit of the AR model to the data. This paper presents an AR model in 

which the noise has a Laplace distribution. And also, the Laplacian AR model is compared with the Gaussian 

AR model. The Bayesian approach was adopted to estimate the AR model parameters. The Binomial 

distribution was chosen as the prior distribution for the older model, the uniform distribution was chosen as 

the prior distribution for the AR model coefficients. The Bayesian estimator for the AR model parameters is 

calculated based on the posterior distribution with the help of the reversible jump algorithm Markov Chain 

Monte Carlo (MCMC). The results in this paper indicate that the reversible jump MCMC algorithm is 

categorized as valid in estimating the parameters of the AR model. Based on a simulation study, this paper 

shows that the Laplacian AR model can be used as an alternative to approximate an AR model that contains 

non-Gaussian noise. To support this finding, the research can be studied further from a theoretical point of 

view. With the help of the reversible jump MCMC algorithm, the Bayesian estimator for the AR model 

parameters is computed based on the posterior distribution. According to the findings of this paper, the 

reversible jump MCMC algorithm is suitable for estimating the parameters of the AR model. This research 

illustrates that the Laplacian AR model can be utilized as an alternative to approximate an AR model with 

non-Gaussian noise, based on a simulation analysis. The findings can be investigated further from a 

theoretical standpoint to support this finding. 

 

Keywords: Autoregressive processes, Bayes methods, Gaussian noise, Laplacian noise, Monte Carlo 
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1. INTRODUCTION 

 

The Autoregressive (AR) model is one of the 

stochastic models in the time series. Forecasting, 

model determination, estimation, and process 

management can all be done with stochastic 

models, including AR models [1]. In engineering 

areas as well as other subject areas, data often 

appear as time series. Along with the times, the 

area of application of statistical models is 

increasing. Therefore, the development of AR 

models is a topic that is still open for research. 

Like the stochastic model in general, the AR 

model contains noise. The noise selection 

correlates with the accuracy of the AR model in 

matching the data. In the theory and methods 

related to the AR model, various kinds of literature 

assume that the noise has a Gaussian (normal) 

distribution, for example [2]. In various 

applications, some data do not meet the 

assumption of normality. Thus, some literature 

proposes non-Gaussian AR models such as [3-4]. 

In addition, Gaussian noise is used as an 

approximation when the related theory of non-

Gaussian noise has not been found, for example 

[5]. On the other hand, several types of noise 

distribution are used in data modeling, for example 

[6-10]. In [6], Laplace noise is used in the sparse 

representation. Gamma noise and Gaussian noise 

are employed in the picture model in [7]. The 

Signal model in [8] uses both Rayleigh and 

Gaussian noise. The pictured model in [9] uses 

Cauchy noise. Meanwhile, the Internal HIV model 

in [10] employs Gaussian noise. Furthermore, the 

literature has examined the differences between 

non-Gaussian and Gaussian noise, for example 

[11]. However, there hasn't been much research on 

the comparison of Laplacian and Gaussian noise in 
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the AR model. As a result, the goal of this research 

is to compare Laplacian and Gaussian noise in the 

AR model. In addition, this article also aims to 

determine whether Laplacian noise can be used as 

an alternative in approximating non-Gaussian AR 

models. 

The order of the AR model, the AR model 

coefficients, and the AR model noise variance are 

all AR model parameters. There are two 

techniques to estimate the parameters of the AR 

model: the Bayesian approach and the non-

Bayesian approach. The Bayesian statistical model 

is created using a parametric statistical model and 

the prior distribution of parameters in the Bayesian 

technique [12]. In this paper, parameter estimation 

uses the Bayesian approach. The AR model 

parameter space is a combination of parameter 

spaces that have different dimensions because the 

model order is part of the parameters. Green [13] 

suggested the reversible jump MCMC algorithm, 

which is an extension of the metropolis-Hasting 

algorithm. The reversible jump MCMC algorithm 

has an advantage over the Metropolis-Hasting 

algorithm in that it generates a Markov chain that 

can hop across parameter spaces of different 

dimensions. To estimate the AR model parameters 

with both Gaussian and Laplacian noise, this paper 

uses the reversible jump MCMC approach. 

 

2. RESEARCH SIGNIFICANCE 

 

In modeling time series data using the AR 

model, the literature often assumes that the noise 

has a Gaussian distribution. And the AR modeled 

time series analysis was developed based on the 

assumption of normality. Sometimes, the Gaussian 

AR model is used to approximate the non-

Gaussian AR model when the method for the non-

Gaussian AR model is not available. This paper 

proposes a Laplacian AR model. This paper also 

compares the Laplacian AR model and the 

Gaussian AR model in approximating the AR 

model with different distributed noise. The 

significance of this paper is to provide a Laplacian 

AR model as an alternative in time series analysis 

data modeling. In addition, this paper contributes 

to providing an alternative in approximating non-

Gaussian AR models. 

 

3. METHODOLOGY 

 

The AR model parameters are estimated using 

a Bayesian technique. The binomial distribution is 

the prior distribution for the older model. The AR 

model parameters' prior distribution is a uniform 

distribution. The inverse Gamma distribution is the 

prior distribution for a noise variance. The 

reversible jump Markov Chain Monte Carlo 

(MCMC) process is used to generate the Bayes 

estimator, which is based on the posterior 

distribution. Reference [2] discusses the theory 

behind the reversible jump MCMC approach for 

parameter estimation of the Gaussian AR model. 

Meanwhile, [14] discusses the theory behind the 

reversible jump MCMC technique for parameter 

estimation of the Laplacian AR model. 

The performance of the reversible jump 

MCMC algorithm was validated by a simulation 

study using six artificial data sets. Theories related 

to modeling and simulation can be studied in 

various literature, for example [15]. The first three 

artificial data sets were created following the 

Gaussian AR model. The next three artificial data 

sets were created following the Laplacian AR 

model. Furthermore, a comparison between the 

Gaussian AR model and the Laplacian AR model 

was carried out using three artificial data sets. 

These three artificial data sets were created 

following the uniform AR model. 

 

4. RESULTS AND DISCUSSION  

 

This section discusses the validation of the 

reversible jump MCMC algorithm [13] in 

estimating the parameters of the AR model, both 

Gaussian noise and Laplacian noise. Then, the 

Laplacian AR model is compared with the 

Gaussian AR in approximating the AR model 

containing different noise. 

 

4.1 Algorithm Validation 

 

A simulation study is used to validate the 

algorithm. The Gaussian AR model was used to 

produce the artificial data set. The reversible jump 

MCMC technique for the Gaussian AR model is 

then applied to this fabricated data set as input. A 

model parameter estimator is the algorithm's 

output. The algorithm is categorized as valid if the 

parameter estimator is close to the model 

parameter value. In the same way, the algorithm 

for the Laplacian AR model is validated using an 

artificial data set created using the Laplacian AR 

model. 

 

3.4.1 Gaussian AR model 

Three artificial data sets were created based on 

the Gaussian AR model. The creation of this 

artificial data set uses parameter values as shown 

in Table 1. The first line is the parameter value for 

the first artificial data, the second line is the 

parameter value for the second artificial data, and 

the third line is the parameter value for the third 

artificial data. Three artificial data sets are 

presented in Figs. 1-3. These three artificial data 

sets were made of 250 each. 

Using three artificial data sets presented in 
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Figs. 1-3 as input, the reversible jump MCMC 

algorithm  [13] is used to find the Gaussian AR 

model parameter estimator. More details regarding 

the use of algorithms in the estimation of Gaussian 

AR model parameters can be found in [2]. The 

output of the MCMC reversible jump algorithm is 

a Markov chain. This Markov chain is used to 

estimate the Gaussian AR model parameters. The 

histogram of the order Gaussian AR model is 

presented in Figs. 4-6. Fig. 4 is the histogram of 

the order for the first artificial data (Fig. 1), Fig. 5 

is the histogram of the order for the second 

artificial data (Fig. 2), and Fig. 6 is the histogram 

of the order for the third artificial data (Fig. 3). 

 

 

Table 1 Parameter values for the three artificial data sets were created based on the Gaussian AR model 

 

Artificial data        

1 4 (0.32, 0.04, -0.41, -0.71) 4 

2 5 (1.69, 1.35, -0.32, -1.07, -0.81) 4 

3 6 (-0.08, -0.80, -0.06, 0.93, 0.15, -0.80) 4 

 

 

 
 

Fig.1 Artificial data with Gaussian AR (p = 4) 

 

 
 

Fig. 2 Artificial data with Gaussian AR (p = 5) 

 

 
Fig.3 Artificial data with Gaussian AR (p = 6) 

 
 

Fig.4 Histogram of the order for the data in Fig.1 

 

 
 

Fig.5 Histogram of the order for the data in Fig.2 

 

 
Fig.6 Histogram of the order for the data in Fig.3 
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Fig. 4 shows that the order reached its 

maximum on the 4th order. These results indicate 

that the order model estimator is  ̂    (for the 

first artificial data). Fig. 5 shows that the order 

reached its maximum on the 5th order. These 

results indicate that the order model estimator is 

 ̂    (for the second artificial data). While Fig. 6 

indicates that the order reached its maximum on 

the 6th order. These results indicate that the order 

model estimator is  ̂    (for the third artificial 

data). 

With condition at  ̂     the coefficient 

estimator of the AR model and the estimator of the 

noise variance of the AR model (for the first 

artificial data) are calculated and the results are 

presented in Table 2 (second row). In the same 

way, the third row presents the coefficient 

estimator of the AR model and the estimator of the 

noise variance of the AR model (for the second 

artificial data). While the fourth line presents the 

coefficient estimator of the AR model and the 

estimator of the noise variance of the AR model 

(for the third artificial data). 

 

 

Table 2 Parameter estimator for three artificial data sets (Gaussian AR model) 

 

Artificial data  ̂  ̂  ̂  

1 4 (0.32, -0.02, -0.36, -0.74) 3.94 

2 5 (1.73, 1.46, -0.17, -0.96, -0.75) 3.75 

3 6 (-0.78, -0.83, -0.04, 0.90, 0.14, -0.84) 4.35 

 

 

4.2 Laplacian AR model 

As for the case of the Gaussian AR model, the 

results for the Laplacian AR model are presented 

in Tables 3-4 and Figs. 7-12. Table 3 shows the 

parameter values for the three artificial data sets 

with the Laplacian AR model. Figs. 7-9 shows the 

artificial data created using the parameters in Table 

3. The Laplacian AR model of order 4 is presented 

in Fig. 7. The Laplacian AR model of order 5 is 

presented in Fig.8. The Laplacian AR model of 

order 6 is presented in Fig. 9. 

While Figs 10-12 show a histogram of the 

order for the 3 artificial data. Fig. 10 indicates that 

the maximum value was reached on the 4rd order. 

Fig. 11 indicates that the maximum value was 

reached on the 5th order. Fig. 12 indicates that the 

maximum value was reached on the 6th order. 

Table 4 presents parameter estimators for the 

Laplacian AR model generated by the MCMC 

reversible jump algorithm. The algorithm is run for 

100,000 iterations and the burn-in period is 

25,000. 

  

 

Table 3 Parameter values for the three artificial data sets were created based on the Laplacian AR model 

 

Artificial data        

1 4 (1.50, 1.05, 0.77, 0.42) 4 

2 5 (-0.42, -0.16, 0.62, -0.27, 0.35) 4 

3 6 (1.08, 0.87, 1.01, 0.70, 1.10, 0.69) 4 

 

 

 
 

Fig.7 Artificial data with Laplacian AR (p = 4) 

 
 

Fig.8 Artificial data with Laplacian AR (p = 5) 
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Fig.9 Artificial data with Laplacian AR (p = 6) 

 

 
 

Fig.10 Histogram of the order for the data in Fig.7 

 
 

Fig.11 Histogram of the order for the data in Fig.8 

 

 
 

Fig.12 Histogram of the order for the data in Fig.9 

 

Table 4 Parameter estimator for three artificial data sets (Laplacian AR model) 

  

Artificial data  ̂  ̂  ̂  

1 4 (1.31, 0.83, 0.70, 0.45) 4.80 

2 5 (-0,40, -0.14, 0.62, -0.25, 0.37) 6.34 

3 6 (1.06, 0.85, 0.99, 0.70, 1.12, 0.68) 6.64 

 

 

4.2 Comparison between Laplacian and 

Gaussian Noises 

 

The comparison between the Laplacian AR 

model and the Gaussian AR model was carried out 

through a simulation study using three artificial 

data sets. Three artificial data sets were created 

following the Uniform AR model with parameter 

values presented in Table 5. 

In the first case, these three artificial data sets 

are approximated using the Gaussian AR model. 

Using these three artificial data sets as input, the 

reversible jump MCMC algorithm is used to find 

the Gaussian AR model parameter estimator. The 

parameter estimators of the Laplacian AR model 

are presented in Table 6. 

In the second case, these three artificial data 

sets were approximated using the Laplacian AR 

model. Similarly, the parameter estimators of the 

Laplacian AR model are presented in Table 7. 

 

 

Table 5 Parameter values for three artificial data sets (Uniform AR model) 

 

Artificial data        

1 4 (0.00, -0.06, -0.52, 0.52) 0.33 

2 5 (-1.58, 1.66, -1.23, 0.51, -0.34) 0.33 

3 6 (-0.35, 0.29, -0.72, 0.46, -0.31, 0.89) 0.33 
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Table 6 Parameter estimators for three artificial data sets (Approximated by Gaussian AR model) 

 

Artificial data  ̂  ̂  ̂  

1 4 (-0.08, -0.15, -0.57, 0.53) 0.32 

2 5 (-1.57, 1.70, -1.29, 0.57, -0.38) 0.32 

3 6 (-0.33, 0.30, -0.71, 0.44, -0.28, 0.86) 0.33 

 

Table 7 Parameter estimators for three artificial data sets (Approximated by Laplacian AR model) 

 

Artificial data  ̂  ̂  ̂  

1 4 (-0.09, -0.17, -0.58, 0.55) 0.65 

2 5 (-1.58, 1.66, -1.23, 0.51, -0.34) 0.61 

3 6 (-0.35, 0.30, -0.68, 0.46, -0.30, 0.81) 0.61 

 

 

4.3 Discussion 

 

For parameter estimation of the Gaussian AR 

model, the distances between the parameter 

estimators in Table 9 (third column) and the 

parameter values in Table 9 (second column) were 

calculated using the Euclidean distance. These 

Euclidean distances are presented in Table 9 

(fourth column). Similarly, the Euclidean distances 

between parameter estimators and parameter 

values for the Laplacian AR model are presented 

in Table 10 (fourth column). 

The Euclidean distance is relatively small, as 

shown in Tables 8 (fourth column) and 9 (fourth 

column). This suggests that the Gaussian AR 

model's parameters can be successfully estimated 

using the reversible jump MCMC approach. The 

reversible jump MCMC approach is included in 

the valid category in estimating the parameters of 

the Gaussian AR model, according to this 

simulation. The same results were found when the 

Laplacian AR model was estimated. As a result, 

the reversible jump MCMC approach is considered 

to be valid for estimating both Laplacian and 

Gaussian noise parameters in the AR model. 

Table 10 (fourth column) also shows that the 

Euclidean distance is relatively small. And in 

Table 11 (fourth column) it is also seen that the 

Euclidean distance is relatively small. This means 

that both Gaussian AR and Laplacian AR models 

can be used as alternatives to approximate the 

Uniform AR model. 

 

Table 8 The Euclidean distances for three artificial data sets (Gaussian AR model) 

 

Artificial 

data 
   ̂ |   ̂| 

1 (0.32, 0.04, -0.41, -0.71) (0.32, 0.04, -0.41, -0.71) 0.22 

2 (1.69, 1.35, -0.32, -1.07, -0.81) (1.73, 1.46, -0.17, -0.96, -0.75) 0.47 

3 (-0.08, -0.80, -0.06, 0.93, 0.15, -0.80) (-0.78, -0.83, -0.04, 0.90, 0.14, -0.84) 0.09 

 

Table 9 The Euclidean distances for three artificial data sets (Laplacian AR model) 

 

Artificial 

data 
   ̂ |   ̂| 

1 (1.50, 1.05, 0.77, 0.42) (1.31, 0.83, 0.70, 0.45) 0.46 

2 (-0.42, -0.16, 0.62, -0.27, 0.35) (-0,40, -0.14, 0.62, -0.25, 0.37) 0.08 

3 (1.08, 0.87, 1.01, 0.70, 1.10, 0.69) (1.06, 0.85, 0.99, 0.70, 1.12, 0.68) 0.07 

 

Table 10 The Euclidean distances for three artificial data sets (Approximate by Gaussian noise) 

 

Artificial 

data 
   ̂ |   ̂| 

1 (0.00, -0.06, -0.52, 0.52) (-0.08, -0.15, -0.57, 0.53) 0.21 

2 (-1.58, 1.66, -1.23, 0.51, -0.34) (-1.57, 1.70, -1.29, 0.57, -0.38) 0.01 

3 (-0.35, 0.29, -0.72, 0.46, -0.31, 0.89) (-0.33, 0.30, -0.71, 0.44, -0.28, 0.86) 0.04 
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Table 11 The Euclidean distances for three artificial data sets (Approximate by Laplacian noise) 

 

Artificial 

data 
   ̂ |   ̂| 

1 (0.00, -0.06, -0.52, 0.52)      (-0.09, -0.17, -0.58, 0.55) 0.22 

2 (-1.58, 1.66, -1.23, 0.51, -0.34) (-1.58, 1.66, -1.23, 0.51, -0.34) 0.02 

3 (-0.35, 0.29, -0.72, 0.46, -0.31, 0.89) (-0.35, 0.30, -0.68, 0.46, -0.30, 0.81) 0.03 

 

 

The findings in this paper are examined in 

terms of a simulation study using several artificial 

data sets. The Gaussian AR model and the 

Laplacian AR model were compared using an 

artificial data set with the uniform AR model. To 

support this, further research can be studied 

theoretical evidence so that these findings can be 

applied to various types of data. 

 

5. CONCLUSION 

 

For both Gaussian noise and Laplacian noise, 

the reversible jump MCMC algorithm is 

categorized as valid in estimating the AR model 

parameters. Simulation studies using several 

artificial data sets show that both the Gaussian AR 

model and the Laplacian AR model can be used to 

approximate the Uniform AR model. Between the 

Gaussian AR model and the Laplacian AR model, 

there is no significant difference in approximating 

the uniform AR model. 

The findings in the study were validated by a 

simulation study using several artificial data sets. 

To support these findings, further research can be 

studied from a theoretical point of view so that the 

findings can be applied to a wider range of data. In 

addition, further research can study AR models for 

other types of noise. 
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