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ABSTRACT: The water environment of the most important watersheds of Japan generally have not improved 
in a considerable manner in the last two decades although central and local governments have made 
considerable management and improvement efforts, such as increasing sewerage system coverage rates 
nationwide and installing advanced wastewater treatment systems. It is believed that the marginal effects of 
these direct efforts have been diminishing. This study seeks to discover the most effective water environment 
improvement measures in a wider range other than those direct measures. An artificial intelligence (AI) model 
has been constructed with Deep Learning technology by applying the watershed information from 104 
watersheds as teacher data to train the AI model. The well-trained AI model is used to identify the effectiveness 
of all the direct and indirect water-environment-related factors, ranging from geological/geographical factors, 
hydrological/hydraulic factors to socio-economic factors. This study concludes by pointing out that Deep 
Learning through big data can reveal and simulate the complicated relationships between river management 
goals and diverse water environment factors. It is hoped that this study will contribute to establishing a more 
reliable river environment planning and management methodology.   
 
Keywords: Water Environment Evaluation, Sensitivity Analysis, Big Data, Artificial Intelligence (AI) Model, 
Deep Learning  
 
 
1. INTRODUCTION 
 

Water environment evaluation and planning 
have been mainly dependent on 1) mathematic 
models that simulate all the physical, chemical and 
biochemical processes leading to water 
environment changes over time and space, and 2) 
expertise of planners on a specific river [1]. 
Mathematic models connect all direct water 
environment factors to management goals, and the 
final evaluation and decision-making are usually 
based on the expertise of planners. In this planning 
process, most of the indirect environmental factors 
have not been taken into consideration in a 
reasonable and proper manner, and expertise tends 
to put much more weight on the characteristics of a 
specific river and ignore the common 
characteristics of all the other rivers in the same 
region. How to evaluate and apply the experiences 
and lessons all rivers with some common 
characteristics can provide is a question that 
remains unanswered. This study approaches this 
problem by applying the water environment big 
data to environment planning.  

In Japan, a water quality survey of public water 
areas focusing on items that are used in 
environmental quality standards (EQSs) for the 
prevention of water pollution has been performed 
since 1971 under the provisions of the “Water 
Pollution Control Law” (enacted in December 

1970). This survey has been conducted by local 
governments (including prefectures and designated 
cities) under the Water Pollution Control Law, and 
also in the case of direct-administrative-control 
areas of Class-A rivers. 

The survey has shown that the requirements of 
the environmental quality standards for human 
health have been achieved in almost all monitoring 
sites for the last thirty years, and the achievement 
rate was 99.1% in 2018 [2]. As for the 
environmental quality standards for conservation of 
the living environment, their achievement rate of 
BOD improved significantly in the first three 
decades after the survey started, and the compliance 
rate reached 90% in 2004 for the first time since the 
survey started [3].  

However, the compliance rate of the 
environmental quality standards for conservation of 
the living environment was still only 94.1% in 2018 
[2], and  the water environment of the most 
important watersheds, almost all of which are 
designated as the direct-administrative-control 
areas of Class-A rivers, generally has not been 
improved in a considerable manner in the last two 
decades, although the Japanese government has 
made significant management as well as 
improvement efforts, such as increasing sewerage 
system coverage rates nationwide and installing 
advanced wastewater treatment systems. It is 
believed that the marginal effects of these direct 

International Journal of GEOMATE, Sept. 2022, Vol.23, Issue 97, pp.146-153 
ISSN: 2186-2982 (P), 2186-2990 (O), Japan, DOI: https://doi.org/10.21660/2022.97.3357 
Geotechnique, Construction Materials, and Environment 
 



International Journal of GEOMATE, Sept. 2022, Vol.23, Issue 97, pp. 146-153 

147 
 

efforts have been diminishing [4]. The questions of 
what are and how to find the most effective river 
environment improvement measures need to be 
addressed with urgency. 

 
2. RESEARCH SIGNIFICANCE 

 
This study seeks to discover the most effective 

water environment improvement measures in a 
wider range outside of the common direct measures 
provided by a traditional physically-based or 
biochemically-based models. An artificial 
intelligence (AI) model has been constructed with 
Deep Learning technology by applying the 
watershed information from the 104 Class-A 
watersheds as the teacher data to train the AI model. 
With the well-trained AI model, we have 
successfully identified 7 river environment factors 
that have the most significant impacts on the present 
water environment quality. This result has also been 
verified by both reality checks and theoretical 
analyses, and shows an AI model is a reliable river 
environment planning tool. 

 
3. ARTIFICIAL INTELLIGENCE MODEL 

 
An artificial intelligence model, specifically a 

neural network model has been adopted to compose 
a water environment evaluation method for 
evaluation or prediction problems due to the 
suitability of neural network models [5], [6]. 
 
3.1 Structure of A Neural Network [6] 
 

 A neural network is a network system 
constructed artificially by idealizing the neurons 
(nerve cells), and consists of a number of nodes and 
lines that are called units and connections (or links) 
respectively. Based on the differences in network 
structures, neural networks generally are classified 
into two types: layered networks and interconnected 
networks. It has been shown that a layered network 
is suitable for evaluation/prediction problems due to 
its abilities in learning (self-organization) and 
parallel processing of information. 

A typical layered neural network, which has a 
layer of input units at the top, a layer of output units 
at the bottom, and a number of hidden layers 
between the input layer and the output layer. 
Connections exist only between the units in the 
adjacent layers, and connections within a layer or 
from higher to lower layers are forbidden.  
  
3.2 Modelling A Neural Network 
 

For the sake of simplicity, consider a neural 
network consisting of three layers.  

Let the unit numbers of the input layer, hidden 
layer and output layer be N, M, and 1, respectively. 

When an input {𝐼 , 𝑖 = 1,2, ⋯ , 𝑁 } is given to the 
units of the input layer, the inputs and outputs of the 
hidden layer units as well as the output layer units 
are represented as follows. 

 
𝑌 = 𝑓 𝑋 ,   𝑗 = 1,2, ⋯ , 𝑀                                    (1) 

                            

𝑋 = 𝑤 𝐼 + 𝜃     ,    𝑗1,2, ⋯ , 𝑀                       (2) 

 
𝑂 = 𝑓(𝑍)                                                                    (3) 

 

𝑍 = 𝑤 𝑌 + 𝜃                                                       (4) 

 
Where  𝑌  is output from the unit 𝑗 of the hidden 
layer, 𝑋  is input to the unit 𝑗 of the hidden layer,    
𝑓(∙)  is unit output function, w  is connection 
weight between the input layer unit 𝑖  and hidden 
layer unit 𝑗, 𝜃  is threshold value of the hidden layer 
unit 𝑗, O is output from the output layer unit, Z is 
input to the output layer unit, w  is connection 
weight between the hidden layer unit 𝑗  and the 
output layer unit, and Θ is threshold value of the 
hidden layer unit 𝑗. 

For the unit output function 𝑓(∙) , some 
expressions have been proposed. The following 
Sigmoid function has been applied frequently. 
However, it is not necessarily the best one in terms 
of learning efficiency. A testing process for 
different output functions is strongly suggested. In 
this studied this Sigmoid function has been finally 
adopted after careful tests. 
 

𝑓(𝑥) =
1

1 + 𝑒
                                                        (5) 

 
      Theoretically, the neural network model 
expressed by Eq. (1) through Eq. (5) is able to 
approximate any non-linear relationship between 
inputs and outputs with any degree of accuracy by 
using enough hidden layer units and setting 
connection weights and thresholds to be appropriate 
through proper learning processes [6]. The potential 
of this model has been verified with similar problem 
to this study [4]. 
 
3.3 Learning Process of Neural Network Model 
 

For a neural network model, the process of 
setting the connection weights and unit thresholds 
is called learning. The term learning here means the 
self-organization process through which the neural 
network model automatically adjusts all the 
parameters (i.e. all the connections and thresholds) 
to the appropriate values, when a series of samples 
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of input-output data (called teacher data or teacher 
signals) are shown to the model. If we consider the 
information processing in a neural network model 
as a transformation of input data to output data, then 
model learning can be considered to be a process 
through which the neural network model gradually 
becomes capable of imitating the transforming 
patterns represented by the teacher data. 

A lot of learning algorithms have been proposed, 
and among them the Error Back Propagation 
Algorithm is the most widely used and most 
successful algorithm. The following is the summary 
of the Error Back Propagation Algorithm [7]. 

Suppose T sets of teacher data are given. 
 

𝐼
( )

, 𝐼
( )

, ⋯ , 𝐼
( )

, 𝑂( ) ;   𝑡 = 1,2, ⋯ , 𝑇                 (6) 

 
Notice that the teacher data consists of two parts: 

the input part 𝐼
( )

,  𝐼
( )

, ⋯ ,  𝐼
( )

;   𝑡 = 1, 2, ⋯ , 𝑇  

and the output part 𝑂( ) ;   𝑡 = 1,2, ⋯ , 𝑇  .  
Now consider an initial value 
 

𝑤
[ ]

, 𝑤
[ ]

, 𝜃
[ ]

, 𝜃[ ]   ,  𝑘 = 0                                  (7) 
 
for each of the connection weights and threshold 
values, respectively. Notice that the superscript [k] 
indicates the number of learning iterations and 
[k=0] means the initial values for all the parameters 
directly preceding the start of the learning process. 
Then the outputs corresponding to the inputs of the 

teacher data 𝐼
( )

,  𝐼
( )

, ⋯ ,  𝐼
( )

;  𝑡 = 1, 2, ⋯ , 𝑇  can 

be obtained from Eq. (1) ~ Eq. (5). Let these outputs 
be 𝑈[ ]( );   𝑡 = 1, 2, ⋯ , 𝑇 𝑎𝑛𝑑 𝑘 = 0 . Clearly, 
𝑈[ ]( );   𝑡 = 1, 2, ⋯ , 𝑇 𝑎𝑛𝑑 𝑘 = 0  are different 

from the outputs of the teacher data 𝑂( ) ;   𝑡 =

1,2, ⋯ , 𝑇 , and an error function can be defined 
with the two different kinds of outputs as follows. 

 

𝑅[ ] = 𝑂( ) − 𝑈[ ]( ) ,   𝑘 = 0                     (8) 

 
Obviously, 𝑅[ ]  is a function of connection 

weights and threshold values because 𝑈[ ]( );   𝑡 =

1, 2, ⋯ , 𝑇 𝑎𝑛𝑑 𝑘 = 0  are calculated after all 𝑤[ ]
,

𝑤
[ ]

, 𝜃
[ ]

 𝑎𝑛𝑑 𝜃[ ] are given. 
The Error Back Propagation Algorithm makes 

use of the connection weights and threshold values 
that minimize the above error function  𝑅[ ] . 
Usually a non-linear programming method is 
required to solve the optimization problem along 
with an iteration process in order to obtain the 
optimal (but possibly suboptimal) connection 
weights and threshold values. The final iteration 
procedures derived from a non-linear programming 

method known as the Method of Gradient Descent 
are as follows. 

 

𝑤
[ ]

= 𝑤
[ ]

− 𝜂 ⋅ 𝛿[ ]( ) ⋅ 𝑌
[ ]( )

                                    (9) 

 

𝜃[ ] = 𝜃[ ] − 𝜂 ⋅ 𝛿[ ]( )                                                      (10) 

 

𝑤
[ ]

= 𝑤
[ ]

− 𝜂 ⋅ 𝛿[ ]( ) ⋅ 𝑤
[ ]

⋅ 𝛾
[ ]( )

⋅ 𝐼
( )

         (11) 

 

𝜃
[ ]

=  𝜃
[ ]

−  𝜂 ∙ 𝛿[ ]( ) ⋅ 𝑤
[ ]

⋅ 𝛾
[ ]( )

                  (12) 

 
where the superscript [k] indicates the number of 
learning iterations as mentioned earlier, and η is a 
small positive number that indicates the step size of 
the Method of Gradient Descent for optimization 
iteration process, and we have set  η = 0.25 in this 
study. The other variables which occurred in the 
final learning procedures are defined as follows. 
 
𝛿[ ]( ) = (𝑂( ) − 𝑈[ ]( )) ∙ 𝑂( ) ∙ (1 − 𝑂( ) )                            (13) 

 
𝛾

[ ]( )
= 𝑌

[ ]( )
∙ 1 − 𝑌

[ ]( )
                                                     (14) 

 
In order to avoid the overfitting (or over-learning) 
problem, a criterion is usually required to make a 
judgement when the iterative learning process 
should be terminated. In this study the learning 
process will be stopped when the Mean Relative 
Error (MRE) of the outputs is less than a specified 
relative error expectation for prediction/evaluation 
results, which is a common treatment for a learning 
process of teacher data with random errors (i.e. 
white noise). Needless to say, this error expectation 
should be set according to the required accuracy of 
the problem which is being dealt with. In this study 
we have set the error expectation to 2%, which is 
considered an accuracy that is good enough for the 
expected result. 
 
3.4 Verification of Neural Network Model 

 
The proposed neural network model has been 

verified by applying it to an urban daily water 
demand prediction problem [8], which has been 
studied with several different models, and for which 
there is clarity regarding what is a good or an 
acceptable prediction for daily water demand. We 
will examine whether the proposed neural network 
model is able to predict daily water demand with the 
same or even higher accuracy by using the same 
information as the other prediction models used. 

Specifically, the neural network model has been 
compared with three different prediction models: 
Multiple Regression Model [9], ARIMA (Auto-
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Regressive Integrated Moving Average) Model [10, 
11] and Kalman-Filtering Model [11]. All the 
models used the same daily water delivery records 
from April 1982 to March 1990 for a city in Japan, 
the weather information during the same time 
period and each day’s characteristics (weekday or 
weekend/ national holiday) to calibrate or identify 
the model parameters. This historical data is used 
because the comparison models are composed with 
these data. For the neural network model, these 
records are used as the teacher data to train the 
model. As for the weather information, the records 
of daily high temperature, weather (sunny, cloudy 
or rainy) and daily precipitation are included.   

Three accuracy indexes have been applied to 
compare the models to identify which model is able 
to give the most accurate prediction for daily water 
demands. Mean Relative Error (MRE, %) is a very 
straight index:  the smaller the Mean Relative Error 
is, the better the predictions are. Correlation 
Coefficient (CC) between predictions and records 
indicates how good the predictions are: the 
predictions are perfect when CC=1.0, and the 
predictions are totally random when CC=0. Relative 
Root Mean Square Error (RRMSE) is  similar to CC 
and reflects how good the predictions are: 
RRMSE=0 for perfect predictions and RRMSE=1 
when all the predictions are equal to the mean of the 
records. 

Table 1 shows the prediction accuracies of daily 
water demands over the course of a year for the 
same city from April 1991 to March 1992 by 
different models. The neural network model gave 
the best predictions by far in terms of all the three 
accuracy indexes. The improvement magnitudes of 
prediction accuracy in each index show the 
reliability and the potential of the neural network 
model.  

 
Table 1 Prediction accuracy comparison of 

different models 
 

Model 
MRE 
(%) 

CC RRMSE 

Multiple Regression Model 2.90 0.764 0.659 

ARIMA Model 2.80 0.794 0.623 

Kalman Filtering Model 2.69 0.808 0.599 

Neural Network Model 2.13 0.877 0.483 

 
In order to understand the error structure of the 

predictions given by the neural network model, the 
prediction error distribution is shown in Table 2, 
and the possible causes have been examined for the 
5 days which have a prediction relative error greater 
than 10%, which is shown in Table 3. Per Table 3, 
the largest prediction error was yielded when 
important information that affected daily water 
demands was missed. In other words, prediction 

accuracy is expected to be further improved when 
this missed information, such as typhoon, 
continuous rain periods, extreme weather events or 
atypical days, are taken into consideration by 
including all of them into the teacher data for neural 
network training. This demonstrates that careful 
teacher data hunting is important in artificial 
intelligence model application research. 

Based on these results, it is reasonable to 
conclude that the proposed neural model is a 
reliable and capable tool in information processing 
of data. In the next section we will apply this neural 
network model to river environment evaluations 
and predictions to provide more reliable 
information for water environment planning and 
management. 

 
Table 2 Relative error distribution of the predictions 

 made by the Neural Network Model 
 

Relative Error Range 
(%) 

No. of 
Days 

Composition 
(%) 

[0.0, 3.0) 278 76.2 
 

[3.0, 5.0) 
 

  61 
 

16.7 
 

[5.0, 8.0) 
 

 19 
 

 5.2 
 

[8.0, 10.) 
 

  2 
 

 0.5 
 

[10., ∞) 
 

  5 
 

1.4 

 
Table 3   The possible causes for the days with 

       a relative error more than 10% 
 

Date 
Demand 

prediction 
(m3/day) 

Delivery 
record 

(m3/day) 

Relative 
error 
(%) 

Possible causes 

May 
5 

354.5 320.0 10.8 

The last day of  
“Golden Week” 

holiday and 
sunny after a 
rainy week. 

Sept. 
17 

364.9 319.5 14.2 Hit by typhoon. 

 
Oct. 

5 
362.9 315.0 15.2 

Heavy rain. 
(105.5mm/day) 

Oct. 
7 

361.4 404.4 10.6 

 
Sunny after 5 

continuous 
rainy days. 

Jan. 
 2 

358.5 315.0 13.8 

 
New Year 

Holiday and 
sunny. 

 
 
4. TRAINING NEURAL NETWORK MODEL 
 
4.1 Teacher Data  
 

In order to apply the neural network model 
proposed above to a water environment evaluation 
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problem, the model has to be trained appropriately 
through a deep learning process by using water-
environment-related data. 

In this study, the data obtained from the 
continuous water quality survey conducted for the 
109 Class-A rivers of Japan by Japanese central 
government [12], which are available for publics as 
an open source, are used for the deep learning 
process. 

 After a careful data verification process, only 
104 rivers out of 109 are chosen to be included in 
the teacher data set for deep learning because there 
are quite a few of data missing for the other 5 rivers 
that are excluded from the teacher data set. For each 
river the data includes 58 water environment items 
from 7 categories as shown in Table 4. The data 

records used in this study are from 1998 to 2018 
with a duration of 21 years long, during which, the 
compliance rate of the environmental quality 
standards for conservation of the living 
environment has not been improved in a meaningful 
manner for the most important Class-A watersheds. 

The 58 environment items are divided into two 
parts to form a teacher data set, evaluation goal 
variables and explanation variables. The evaluation 
goal variables include the five environment items 
that are used to define The Water Environment 
Quality Standards (EQSs) for Rivers as shown in 
Table 5 [13], which are pH, BOD, SS, DO and Total 
coliform. All the remained environment items are 
used to explain how the achievement of water 
environment standards are impacted. 

  
Table 4 Water environment items included in the teacher data for deep leaning 

 
Category(Number of Items) Water Environment Item 

Time of Sampling(4) 
Year                                                        Month 
Day                                                         Hour 
 

River/Flow Conditions(17) 

Place of Sampling                                  Weather 
Water Level                                           Quantity of Flow 
Total Water Depth                                 Water Depth of Sampling 
Temperature                                           Water Temperature 
Vertical Visibility                                  Horizontal Visibility 
Water Smell 
Time of Low Tide of Sampling Day 
Time of High Tide of Sampling Day 
Visual Appearance:                                 

 Water Color                                   Flow Strength                                  
 Turbidity (Muddiness)                  Floating Waste/Garbage 

 

Watershed Conditions(7) 

Length of Main Stream                          Catchment Area 
Catchment Population                            Number of Tributaries 
Annual Average Stream Flow                Number of Dams 
Number of Hydraulic Power Plants 
 

Water Quality Indexes For The 
Living Environment(10) 

pH                                                           BOD 
COD                                                        SS 
DO                                                           Saturation Degree of DO 
Total Coliform 
The Amount of N-Hexane Extract (Oil) 
Total Nitrogen                                         Total Phosphorus 
 

Water Quality Indexes About 
Human Health(9) 

Cadmium                                                 Cyanogen 
Lead                                                         Hexavalent Chromium 
Arsenic                                                    Total Mercury 
Alkyl Mercury                                         PCB 
Dichloromethane 
 

Water Quality Index For Inflow Of 
Domestic Wastewater(1) 

Ammonium Nitrogen 

Others(10) 

 
Chromaticity                                            Turbidity 
Evaporation Residues                              Total Hardness 
Potassium Permanganate Consumption 
Sodium                                                     Iron 
Manganese                                               Aluminum 
Residual Chlorine 
 

(7 categories in total) (58 items in total) 
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Table 5 Water environment quality standards for rivers [13] 

 

Item 
Class 

Water Use 

Standard Value 

Hydrogen-ion 
Concentration 

(pH) 

Biochemical 
Oxygen 
Demand 
(BOD) 

Suspended 
Solids 
(SS) 

Dissolved 
Oxygen 

(DO) 
Total Coliform 

AA 
Water supply class 1, conservation of 
natural environment and uses listed in 
A-E 

6.5≤pH≤8.5 ≤1 ㎎/L ≤25㎎/L ≥7.5 ㎎/L ≤50MPN/100mL 

A 
Water supply class 2, fishery class 1, 
bathing and uses listed in B-E 6.5≤pH≤8.5 ≤2 ㎎/L ≤25 ㎎/L ≥7.5 ㎎/L ≤1000MPN/100mL 

B Water supply class 3, fishery class 2, 
and uses listed in C-E 6.5≤pH≤8.5 ≤3 ㎎/L ≤25 ㎎/L ≥5.0 ㎎/L ≤5000MPN/100mL 

C Fishery class 3, industrial water class 
1, and uses listed in D-E 6.5≤pH≤8.5 ≤5 ㎎/L ≤50 ㎎/L ≥5.0 ㎎/L - 

D 
Industrial water class 2, agriculture 
water, and uses listed in E 6.0≤pH≤8.5 ≤8 ㎎/L ≤100 ㎎/L ≥2.0 ㎎/L - 

E 
Industrial water class 3 and 
conservation of environment 6.0≤pH≤8.5 ≤10㎎/L 

Floating 
matter such 
as garbage 
should not 

been 
observed 

≥2.0 ㎎/L - 

    The achievement of water environment quality 
standards has been scored with an effort to make the 
final scores for different standard classes that are 
corresponding to different water use purposes a 
uniform distribution, which is expected to maximize 
the score distance between different standard classes. 
The results of scoring are shown in Table 6. 
 

Table 6 Scoring of achievement degree of EQSs 
 

Water quality class ranked with EQSs for 
conservation of the living environment Score 

AA  0.9 
A with indexes  ranked in AA 0.8 

A  0.7 
B with indexes ranked in A or higher 0.6 

B  0.5 
C  0.4 
D  0.3 
E  0.2 

Below E  0.1 

 
4.2 Training of Neural Network Model  

 
The neural network model has been trained (put 

under a learning process) with the collected teacher 
data explained above. The training process is based 
on the learning procedures as described prior, but it is 
still a process of trial and error because there are still 
many details that remain undecided, such as a suitable 
step size of optimization, a suitable output function, 
an efficient order to present the teacher data to the 
neural network model, and a proper initial network 
size (layers and units in each layers). The learning 
process was stopped after the trained neural network 
model is able to reproduce the entire teacher data with 

an acceptable error, which was set in this study to be 
below 2% in terms of the mean relative error. 
 
5. WATER ENVIRONMENT EVALUATION  
 
5.1 Sensibility Analyses of Variables  
 

The well-trained neural network model has been 
used to carry out a sensibility analysis for all the 
variables to identify how much each variable impacts 
on the achievement of water environment standards. 
The sensibility coefficient of a variable is defined as 
the partial derivative of the achievement score 
regarding each variable as follows. 
 
 𝑆 =  

( , ,⋯, )
|                (15)  

 
where 𝑆  is the sensitivity coefficient of variable 𝑋  at 
a given variable value set.  

For all the variables, the sensitivity coefficients 
have been evaluated for the average variable value of 
the last data year 2018. This sensitivity analyses have 
identified 7 variables that have the most significant 
and meaningful impacts on the achievement degree of 
water environment standards as shown in Table 7. As 
for all the other variables, the sensitivities were not 
great enough to treat them as variables with a 
considerable impact in terms of average variable 
values. 

Needless to say, the sensitivity is defined as the 
differentiation of the evaluation function with respect 
to each factors at a given time (the final year of the 
data records in this study), and just means how 
sensitive the evaluation function is to the change in 
each factor. It is reasonable to view the sensitivity as 
a relative index to compare different factors, but it is  
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Table 7 The environment items with the greatest impacts on achievement of water environment standards 

 
Environment Item Sensitivity Descriptions 

Month of Sampling 0.16 It means that water environment has a clear tendency of seasonal 
change. 

Annual Average Stream Flow 0.09 It is reasonable and expected that water quantity has a tremendous 
impact on water quality. 

Catchment Population 0.07 This just reconfirmed that human activity is one of the main factors 
that are able to make a great difference on water environments. 

Visual Appearance: Turbidity 
(Muddiness) 0.04 

Visual turbidity usually gets remarkably worse right after storms 
that cause landslides or debris flow in mountain areas, soil erosion 
in farmland and sewage overflow in urban areas. 

Total Nitrogen 0.03 Total nitrogen in water environment is mainly contributed by 
sewage inflow and agriculture drainages. 

Dichloromethane 0.02 Dichloromethane is almost entirely from industrial wastewater. 

Number Of Hydraulic Power Plants 0.01 Power plants change river flow, consequently water environments 

not designed to make a sense in terms of absolute 
impacts of each factor on the evaluation function. 

 
5.2 Discussions 

 
The environment items with the greatest impacts 

on the achievement degree of water environment 
standards can be classified into three categories:  
natural factors, human factors and mixed factors. 

Natural factors include month of sampling and 
annual average stream flow. The fact that the month 
of sampling has great impacts means that water 
environment has a clear tendency of seasonal 
change. This is because of the subtropical climate 
pattern in Japan with a clear rainy season and a 
typhoon season. The seasonal rainfall change is 
considered the main cause for the seasonal change 
tendency in river water environment. This is 
consistent with the fact that the annual average 
stream flow is ranked as the second most important 
factor to water environment. This is also a 
reasonable result expected from the common 
knowledge that water quantity has a tremendous 
impact on water quality [14]. 

 
Human factors include catchment population, 

total nitrogen, dichloromethane and number of 
hydraulic power plants. Catchment population 
implies that human activity is one of the main 
factors that can make a significant difference on 
water environments. Total nitrogen in water 
environment is mainly contributed by sewage 
inflow and agriculture drainages (overuse of 
fertilizers), and dichloromethane is almost entirely 
from industrial wastewater. Power plants are the 
most controversial factor. The conflicts between 
power generation and conservation of river 
environment have been problems in most basins and 
a priority problem of river flow for different 
purposes is remained to be resolved.  

The only mixed factor is turbidity or muddiness 

in terms of visual appearance. Visual turbidity 
usually gets remarkably worse right after a heavy 
storm that causes landslides or debris flow in 
mountain areas, soil erosion in farmland and 
sewage overflow in urban areas. Both catchment 
natural condition and farming or urban human 
activities are contributing indirectly to river flow 
turbidity during rainy time. 
 
6. CONCLUSION 
 

With the purpose of developing a better 
methodology for water environment evaluation and 
management of rivers, an artificial intelligence 
model has been proposed for water environment 
evaluation in this study. The artificial intelligence 
model was trained through a deep learning process 
with the water environment big data of the most 
important 104 Class-A rivers that are under direct 
administrative control. 

The well-trained artificial intelligence model 
was applied to a sensitivity analysis of water 
environment factors. The sensitivity analysis results 
have identified 7 variables that have the most 
significant and meaningful impact on the 
achievement degree of water environment standards, 
of which there are natural factors (season and 
annual average stream flow), human factors 
(catchment population, total nitrogen, 
dichloromethane and number of hydraulic power 
plants) and a mixture of both (visual turbidity). 
These results are reasonable and are consistent with 
the expectation derived from common knowledge. 

 Importantly, the above analysis results have 
shown that an artificial intelligence model with 
deep learning technology can treat both numerically 
continuous variables such as annual average stream 
flow and categorical variables such as visual 
turbidity with the discrete values yes/no without 
substantial effort or hindrance. 

With this well-trained neural network model, 
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the next step is to identify the most influential 
environmental factors for each river, and find the 
most effective combination of water environment 
improvement measures. 

In terms of modelling philosophy. the biggest 
difference between a physically-based or 
biochemically-based traditional water environment 
model and an artificial intelligence model is what 
kind of the knowledge base is applied in 
environment evaluations. Traditional models are 
mainly based on the knowledge and experiences (or 
expertise) with regard to a specific target river. 
Artificial intelligence models, however, are able to 
utilize the full knowledge and experiences that are 
hidden in the environment survey data of all rivers 
with similar characters. More analyses are required 
to show what kind of new developments this 
character of artificial intelligence model can make 
in water environment evaluation and management 
in the future. These results combined together in 
their entirety will demonstrate that artificial 
intelligence is an effective and promising tool for 
water environment evaluation. 
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