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ABSTRACT: Tetrahedral wedges in rock slopes can have symmetric and asymmetric shapes. Asymmetry is 
commonly recognized as differences in dip angles of the sliding planes. This form of asymmetry is known to 
influence the kinematic feasibility and stability of a wedge. Asymmetry also influences the appearance of 
wedges and therefore the ability to recognize wedges in rock faces and in data from rock masses. The relative 
orientation of the sliding planes in relation to the lower and upper slope faces is also part of the asymmetry 
system.  In particular, the direction of the line of intersection which determines the sliding direction of two 
planes, relative to the direction of the slope of the rock face introduces an additional type of asymmetry. This 
form of asymmetry is defined here as off-center wedges. A detailed terminology for asymmetric tetrahedral 
wedges is presented and the implications for kinematic feasibility, sliding mechanism and stability analysis are 
discussed. A field example from Auckland New Zealand is presented. 
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1. INTRODUCTION

The stability of a tetrahedral wedge exposed in 
a rock slope has been shown to be influenced by its 
shape in both static [1-3] and dynamic [4-6] 
conditions. Wang et al. [7] demonstrated limit-
equilibrium and numerical solutions to wedge 
stability including comparison of symmetric and 
asymmetric examples. In a probabilistic analysis of 
wedge stability it was found that the reliability 
results were very sensitive to variations in the shape 
and therefore symmetry of the wedge [8].  

Large amounts of discontinuity orientation data 
need to be investigated in field-based and synthetic 
rock mass characterization projects [9]. 
Stereographic methods form the initial step in 
wedge stability assessment in many rock 
engineering investigations [10-17]. In a summary of 
conventional stereographic methods, Wyllie and 
Mah [18] indicated that wedge-forming poles are 
restricted to inside the daylighting envelope of the 
slope face plane. However, the limits to wedge-
forming poles has been shown to be more complex 
and defined by limits to the orientations of great 
circles on which wedge-forming pole pairs can lie 
[19]. 

Stereographic methods have also been used to 
distinguish between mechanisms of single-plane 
and two-plane sliding mode of wedges using the 
line of intersection [20] or the poles and daylighting 
envelope [21].  

This paper is focussed on tetrahedral wedges 
defined by two sliding planes and an upper and 
lower slope face. The presence of tension cracks or 
basal sliding planes is not considered.  Asymmetry 
is developed by the relationship between all four 

faces. The typical distributions of planes which can 
form kinematically feasible wedges are considered 
in terms of the shape and symmetry of a tetrahedral 
wedge. The typical shapes of feasible wedges are 
illustrated on a stereograph. Examples of 
applications of the approach are given for data from 
jointed and faulted sedimentary rock in Auckland, 
New Zealand. The feasibility and factor of safety 
are shown to be related to the shapes of the wedges, 
including the off-center asymmetry of some wedges. 

2. TERMINOLOGY

2.1 Angle Between Sliding Planes 

The angle between sliding planes is an 
important geometric parameter of wedges. The term 
dihedral angle can be used to specifically identify 
the angle measured in a plane perpendicular to the 
line of intersection of the planes. The terms thin and 
thick were applied by Hudson and Harrison [3] up 
to a dihedral angle of 90o. They did not extend their 
analysis beyond that value. When higher dihedral 
angles are considered the wedges become thinner 
with respect to the slope face. Therefore, the terms 
narrow (for thin) and open (for thick) are adopted. 
The term very open is applied to wedges where the 
two sliding planes are approaching parallelism with 
each other (Table 1). As wedges become 
increasingly open, they can approach the dip 
direction of the slope face and therefore approach 
the planar sliding case which represents a minimum 
stability for that dip angle. On a stereograph, that 
appears as poles to sliding planes approaching the 
opposite direction to the dip direction of the slope 
face. Lateral limits of planar sliding are typically 
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accepted as +/-20o [18]. These limits are a general 
reference only and do not define a change in failure 
mechanism.  As will be shown below, the change in 
mechanism from single plane to two-plane sliding 
varies according to the degree to which wedges are 
off-center. 

 
2.2 Wedge Symmetry 

 
The symmetry of a tetrahedral wedge must be 

considered in two ways. First, the symmetry of the 
two sliding planes relative to each other. Second, 
the symmetry of the sliding planes relative to the 
slope face also needs to be considered. These 
aspects of symmetry can be considered to be related 
to the sliding plane dip angles and dip directions, 
respectively. If the two sliding planes have the same 
dip angle then a plane halfway between them would 
be vertical. If the two sliding planes have the 
different dip angles then a plane halfway between 
them would be dipping. Hudson and Harrison [3] 
refer to this as upright and inclined, respectively. 
For simplicity, the dip angle of each plane will be 
compared and will be termed equal or unequal. An 
arbitrary 10o difference in angle of dip of the planes 
(irrespective of their dip directions) is applied here 
to separate the two terms.   

Regarding the influence of dip direction, if a 
wedge is oriented such that intersection line of the 
two planes is the same as the dip direction of the 
slope face that will be described here as a centered 
wedge. Other sliding directions will be referred to 
as off-center. Therefore, the symmetry of the 
tetrahedral wedge is a combination of its centered 
or off-center characteristics and its equal versus 
unequal characteristics (Table 1). A symmetrical 
wedge must be both centered and equal.  

A range of examples of cetrered wedges are 
shown on a stereograph and as block diagrams in 
Fig. 1.  Note that the intersection line can be directly 
observed as the pole to the great circle on which the 
wedge-forming poles lie [19].  Therefore, the great 
circle on which the poles of wedge-forming planes 
lie can be used to recognize all the symmetry 
characteristics of the wedge. 

 
2.3 Off-center Wedges 

 
Wedge-forming planes with poles lying in other 

locations of the stereograph other than on a centered 
great circle are also capable of forming a wedge. 
Such poles will typically lie on a great circle which 
has a different strike to the strike of the slope face.  
An off-center wedge great circle example has a pole 
(equivalent to line of intersection of wedges) 
trending northeast (Fig. 2a). For simplicity, a 
southeast trending example is not shown, as the 
principle can be applied in a mirror image for 
comparison. On this basis, a wide range of wedge- 

Table 1 Terminology used to describe features of 
tetrahedral wedges observable on a stereographic 
representation 
 

Application Term Comment/ 
Quantification 

Describes the 
(dihedral) angle 
between two 
sliding planes 
forming a 
wedge 

Narrow <60o (>120o pitch 
on stereograph 
between poles on 
opposite sides of 
the slope face) 

Open 60o-120o (60o-
120o pitch angle 
on stereograph) 

 Very open >120o (<60o pitch 
on stereograph 
between poles on 
opposite sides of 
the slope face) 

Describes the 
overall shape of 
a tetrahedral 
wedge (defined 
by four planes) 

Symmetric Only possible for 
centered, equal 
wedges 

Asymmetric 
or Non-
symmetric 

Asymmetry of a 
tetrahedral wedge 
can be due to off-
centered 
orientation of the 
great circle 
joining the sliding 
plane poles and/or 
unequal dip of 
sliding planes 

Describes the 
direction of the 
sliding plane 
intersection 
relative to the 
slope direction 

Centered Great circle 
joining sliding 
plane poles dips 
180o from slope 
face direction 

Off-center Great circle 
joining sliding 
plane poles dips 
180o +/- <30o 
from slope face 
direction 

 Highly off-
center 

Great circle 
joining sliding 
plane poles dips 
180o +/- >30o 
from slope face 
direction 

Describes the 
difference in 
dip of the 
wedge sliding 
planes  

Equal Difference of dip 
<10o 

Unequal Difference of dip 
>10o 
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Fig.1. a) Stereograph (lower hemisphere, equal angle) of an east-dipping slope face showing the daylight 
envelope (de) and a 35o friction circle (fc).  Radial lines mark a +/-20o lateral limit for planar sliding. Gray 
areas indicate where poles to feasible wedge sliding planes can be located. The dark gray areas indicate that 
the poles represent planes dipping toward the slope face.  A great circle representing centered wedges is shown 
with example pole locations (black stars). All wedges formed by planes with poles on this great circle share an 
intersection line which is the pole to the great circle (red star). (b-e) The example wedge-forming pole 
combinations are illustrated as block diagrams and stereographs with the recommended descriptive 
terminology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig.2. a) Stereograph (lower hemisphere, equal angle) of an east-dipping slope face showing the daylight 
envelope (de) and a 35o friction circle (fc).  Radial lines mark a +/-20o lateral limit for planar sliding. Gray 
areas indicate where poles to feasible wedge sliding planes can be located. The dark gray areas indicate that 
the poles represent planes dipping toward the slope face.  An example off-center great circle is shown with 
example pole locations (stars) along that great circle. (b-k) The wedge-forming pole combinations are 
illustrated as block diagrams and stereographs with the recommended descriptive terminology 
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forming possibilities can be considered for example, 
the eight general locations of poles shown as 
numbered stars on Fig. 1 and Fig. 2.  Note that 
location 1a and 1b represent the approximate 
intersection of the two great circles from Fig. 1 and 
Fig. 2. 

Location 1 (1a and 1b) represents a pole close to 
the lateral limit of planar sliding near where the 
centered and off-center great circles intersect.  
Location 2 is symmetrical to Location 1a.  
Locations 3 and 4 occur nearer the primitive circle 
(outer edge of the stereograph) on the centered great 
circle (Fig. 1). Locations 5 and 6 occur on the 
opposite side of the stereograph from Location 1b, 
between the lateral limit and the primitive circle on 
the off-center great circle (Fig. 2).  Location 7 and 
8 occur on the same side of the stereograph as 
Location 1b nearer the primitive circle on the off-
center great circle. Location 8 is distinguished by 
dipping back into the slope face. The numbering of 
these locations is entirely arbitrary and they have 
been selected for the purpose of illustrating general 
examples of the shapes of kinematically feasible 
wedges according to the position of poles on a 
stereograph.  

Any combination of poles from great circle 
distribution e.g. any pair of poles from Locations 
1a-4 or Locations 1b-8 will form a wedge with the 
same intersection plunge (red star on Fig. 1 and 2). 
The shape of the wedge will differ greatly for each 
pair of planes. For example, the wedge formed by 
poles at Locations 1 and 2 are very open whereas  a 
wedge formed by poles at locations 3 and 4 would 
be narrow. 
 
2.4 Wedge Sliding Mode 

 
The lateral limits of planar sliding are 

recognized as an arbitrary range used for practical 
purposes [18]. The occurrence of single plane 
sliding wedges and two-plane sliding wedges 
depends on other geometric relationships [20,21].  
For centered wedges, the single plane sliding mode 
cannot occur. Even two planes one degree either 
side of the plane perpendicular to the slope face will 
form a two-plane sliding pair, in the centered case.  

Where a pair of planes (poles) are joined by an 
off-center great circle the zone of single plane 
sliding is defined by the difference between the 
strikes of the slope face and the off-center great 
circle. The example in Fig. 2 has a 30o difference in 
strike between these two features and therefore the 
range of the single plane sliding zone is 30o as 
shown on Fig. 2a. A wedge formed by a pair of 
poles with one of those poles being in that zone will 
have the mechanism of single plane sliding on that 
plane. A wedge formed by a pair of poles both of 
which are outside that zone will have the 
mechanism of two plane sliding. 

Identifying the wedge sliding mode requires 
information on the joint orientations (Fig. 3).  The 
sliding mode will influence the actual sliding 
direction and therefore is an important 
consideration in wedge stability analysis. 

Wedges are often of irregular shape and 
orientation which influences their stability (Fig. 4). 
When multiple planes are present in a rock mass 
they can combine in various ways to form wedges. 
For example, a basement wall could have two 
different wedges that share one of the wedge planes 
(Fig. 5).  When viewed on a stereograph it can be 
shown that there is a zone on the stereograph in 
which planes of single-plane sliding occur (Fig.6). 

 
Fig.3 Wedges of various sliding modes 

 

 
 
Fig.4 Wedge in a rock slope at Kicking Horse 
Canyon near Golden, British Columbia (used with 
permission, Brandon Thomas, Greely Rock Ltd) 

 
3. FIELD EXAMPLE: AUCKLAND, NEW 

ZEALAND 
 

The rocks in the field area are interbedded 
sandstone and siltstone of the Miocene age 
Waitemata Group. Weathered rock and soil 
approximately 2 m thick is present at the top of the 
cliff. Coastal retreat in sedimentary rocks north of 
Auckland, New Zealand is controlled by bedding, 
joints and faults [22]. A report on a fatal rockfall at 
Rothesay Bay, in the northern suburbs of Auckland 
New Zealand by Hancox [23] concluded that the 
failure occurred by joint-controlled sandstone block 
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failure related to erosional undercutting of a 
sandstone bed with heavy rain two weeks prior and 
a low to moderate earthquake 16 hours prior was 
likely to have influenced the timing. 
 

 
Fig.5 Wedges sharing one of the planes and also 
having the same intersection line 
 

 
Fig.6 Stereographic representation of the wedges in 
Fig. 5. Large arrow shows intersection line direction. 
Red zone is the critical area for kinematically 
feasible wedge sliding. 

 

4. DISCUSSION 
 

The common practice of assessing wedge 
kinematic stability according to the line of 
intersection of the sliding planes fails to provide 
information on the shape of the wedges.  
 
Table 2 Structural readings from Rothesay Bay, 
Auckland, New Zealand 

 
Dip Dip Dir. Structure Notes 
78 013 Joint set 1 N=41, SD=12.4 
86 100 Joint set 2 N=40, SD=9.5 
81 310 Fault 1a  
54 140 Fault 1b  
79 320 Fault 2a  
69 140 Fault 2b  
68 110 Fault 3  
49 290 Fault 4a  
55 076 Fault 4b  

Slope face orientation 70-063, height 30 m. 
N=number of points, SD=Angular standard 
deviation based on Fischer dispersion 
 

 
Table 3 Potential wedges, Rothesay Bay, Auckland, 
New Zealand 

 

Wedge Wedge 
angle 

(o) 

FoS Slide 
Planes 

Fig. 

W(J1-J2) 95 NW 
 

8a 

W(J1-F1b) 68 1.0524 1&2 8b 
W(J1-F2b) 61 0.9515 1&2 8b 

W(J1-F3) 88 0.386 1&2 8b 
W(J1-F4b) 59 0.4043 slide 

on F4b 
8c 

W(F1b-F4b) 53 0.4043 slide 
on F4b 

8d 

W(J2-F1a) 32 NW 
 

8e 
W(J2-F2a) 43 NW 

 
8e 

W(J2-F4b) 38 2.5318 1&2 8e 
W(F2a-F4b) 95 0.9825 1&2 8g 

W(F3-F4b) 32 0.9316 1&2 8f 
W(F2b-F4b) 59 0.4043 slide 

on F4b 
8c 

W(F1a-F3) 36 2.9526 1&2 8g 
W(F2a-F3) 44 1.966 1&2 8g 
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Fig. 7 Location maps (a-b) and satellite image (c) of the rocky cliffs south of Rothesay Bay, Auckland, New 
Zealand (Google Earth). Star shows approximate location of rockfall reported by Hancox [29]. Dashed line 
shows the strike of bedding on the rock platform. (d) Cliffs approximately 30 m high (person circled for scale) 
and slope of approximately 70o (dashed line). (e) Typical jointing pattern on the surface of a bed (backpack is 
approximately 30 cm wide. (f) Location near top of cliff where a joint-block in a bed has fallen from the cliff 
(arrow). (g) Joint surface dipping out of the slope face. (h) Conjugate faults (dashed lines). (i & j) A sea cave 
formed in the hangingwall of a fault 

Fig. 8 Stereographic representations (equal angle, lower hemisphere) of structural data from the coastal cliff 
south of Rothesay Bay, Auckland. (a) Stereograph with joint sets and faults labelled F1-4 with conjugate pairs 
labelled a and b.  The northeast facing slope is shown as a great circle and its daylight window (pink lines). 
The great circle (black line) between joints does not pass through the daylight window indicating stability. (b) 
Wedges between joint set 1 and east-southeast-dipping faults. (c,d) Single plane sliding on F4b forming a 
wedge with joint set 1 and faults. (e-g) Wedges formed by F4b, joint set 2 and other faults  
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Fig.9 Stability and shape of wedges in Table 3. 
Anomalous low FoS cases are labelled 
 

Bedding dips very gently to the west (into the 
cliff face). Joints are close-spaced and clustered in 
two main sets with vertical to steep easterly dipping 
and northeasterly dipping orientations (Fig. 7, Table 
2). Faults are also present with moderate to steep 
dips. Kinematic analysis shows that wedges can 
form with combinations of joints with faults and 
faults with other faults (Fig.8, Table 3). 

The stability of combinations of joints and faults 
capable of forming wedges have been analyzed 
using the software SWedge (Version 7, Rocscience).  
The factor of safety is closely related to the wedge 
shape as defined by the wedge angle (Fig. 9). For 
most cases, as the wedge angle increases the factor 
of safety decreases.  

Wedges with lower factors of safety than the 
general trend (Fig. 9) were found to be those wedges 
with one or more of the planes close to the planar 
sliding direction. These wedges were highly 
asymmetrical in their orientation.  This situation 
occurs in both single plane and two-plane sliding 
cases. 

The method of assessing kinematic stability 
from the poles of sliding planes allows the shape of 
the wedges to be observed concurrently. This 
approach allows symmetrical and non-symmetrical 
wedges to be distinguished on the stereograph. 
Symmetry of wedges is observable according to the 
two factors: (1) the dip directions of sliding planes 
relative to the slope face and (2) the similarity of the 
dip angle of the sliding planes.  
 
5. CONCLUSIONS 
 

The relationship between wedge sliding 
compared to a rock slope face dip direction is 
described here as centered or off-center.  This 
feature can be observed by the position of the poles 
of the sliding planes along their shared great circle. 
Only off-center wedges can slide with a single plane 
sliding mechanism. 

The shapes of wedges are defined in terms of 
narrow, open and very open. This property can also 
be readily observed on a stereograph using the circle 

method of wedge analysis. The further apart are the 
poles along the great circle, the more narrow is the 
wedge (i.e. lower wedge angle). The closer the 
poles are located to each other the more open the 
wedge is (i.e. higher wedge angle).   

The more open a wedge is, the lower the factor 
of safety tends to be. 
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