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ABSTRACT: The Upper Citarum River is Indonesia's most strategic river since it provides fresh water to
West Java and DKI Jakarta, the capital of Indonesia. Flooding is a significant issue in the upstream Citarum
River, particularly in the Bandung Basin. Flood problems have not been solved despite many implementations
of structural improvements. As a result, further efforts must be made to mitigate the impact of any potential
floods. In particular, a more advanced early warning system with a longer forecasting lead time is required.
Data-driven models which take into account a variety of historical data inputs are an option for predicting
discharge analysis. The Long Short Term Memory Recurrent Neural Network (LSTM RNN) model is utilized
in this study to predict discharge at the Dayeuhkolot hydrological station in the Upper Citarum River, West
Java, Indonesia. This study considers input data of hourly rainfall from 13 gauging stations and flows data from
the relevant stations. Discharge predictions are generated for the following 2, 4, 6, 8, 10, 12, and 24 hours.
Model performance is calculated using Nash—Sutcliffe efficiency (NSE), Root Mean Square Error (RMSE),
Coefficient determination (R?), and Relative Error (RE). The findings of the study indicate that the suggested
LSTM-RNN model can precisely forecast the discharge for the next two and four hours with NSE and R more
than 0.9. Prediction of discharge in a longer period (4 to 24 hours ahead) shows a satisfactory prediction result
(NSE and R? > 0.5).
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1. INTRODUCTION River have reported an increasing problem of
sedimentation, water quality, and increased solid
The upper Citarum River serves as the waste. Also, an increasing trend of peak discharge
freshwater supply not only for West Java but also and flash flooding during the rainy season and a
for Jakarta City, the Capital of Indonesia. It has decreasing trend of dependable flow during the dry
become the most strategic river in Indonesia where season has been reported [1-3,5,8]. All these
three cascade reservoirs have been developed since phenomena obviously change the hydrologic,
1972 to meet the water management requirement hydraulic, and flood characteristics of the upper part
[1-4]. These three cascade reservoirs, Jatiluhur, of the Citarum River. These problems are
Saguling, and Cirata, were developed to balance the commonly found in the critical river catchment area
requirement of flood resiliency and the need for of Indonesia where extreme land use change has
water supply. This balance applies not only to the occurred due to mining activity or uncontrolled
downstream part of the Citarum River but also to urban area development [3,5,9-13].
Jakarta City [1-7]. The flood-prone area of the Structural and non-structural mitigation is
upper part of the Citarum River is a natural proposed by the most previous study as a
floodplain (lowland) area named Bandung Basin. compulsory measure to decrease the flood risk not
That basin is located at the confluence of 13 only in Bandung Basin Area but also in three
tributaries of the Upstream Citarum River. Due to Cascades Reservoirs [1-4]. The increasing flood
the regional development, increasing economic risk in Cascade Reservoir Area will increase the risk
activity, and population growth in the Bandung of its dam break which would potentially increase
Basin many areas are being converted into housing, water-related disasters to the downstream part of the
commercial, and other business activities [1,2,5,8]. Citarum River [1-5,7,9-12,14]. Several structural
Several previous studies of the Upstream Citarum flood mitigations such as river normalization, river
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dredging, and tunneling river cut-off are applied in
the Upper Citarum River but the flood risk in
Bandung Basin reminds the same [1-3,5].
Meanwhile, as one of the nonstructural measures,
the flood early warning system is not yet well
developed due to the lack of reliable data for
supporting flood prediction models based on merely
physical hydrologic-hydraulic parameters. Several
previous studies concluded that Neural Network is
one of the promising analytical tools to yield a good
and or reasonable prediction of not only extreme
discharges but also dependable flow, sedimentation
rate, and other hydrologic-hydraulic parameters of
a catchment area with fewer observation data [1-
3][15-19].

Numerical modeling is used to construct a flood
database system using hypothetical data, as well as
a pattern recognition learning process for a neural
network that will increase the speed and accuracy of
flood prediction. The produced flood database has
limitations in terms of the numerical model,
particularly a DEM grid that is too large, hence
more research must be conducted using a smaller
DEM grid to build a more accurate flood database
[19]. Hence, in this study, the prediction of flood
discharge is conducted using a data-driven model
technique by using real-time rainfall measurement
data from rainfall stations dispersed across the
Upstream Citarum watershed, as well as discharge
data from the same measurement period.

The data-driven models seek to construct a
mathematical model tying input factors to an output
variable that might be utilized to estimate flood
extent [20]. The Artificial Neural Network (ANN)
model is one of the popular data-driven approaches.
Artificial neural network (ANN) models are
information processing systems that imitate the
human brain's structure and function. It can
simulate non-linear and complicated systems
lacking specific physical justifications. In this
system, ANNs are the major flow predicting
technique [21].

Recurrent  Neural Networks (RNN) are
commonly used to build hydrological models. The
Long Short Term Memory (LSTM) network,
derived from RNN, is commonly utilized in flood
prediction because it can handle lengthy length
sequence data and has advantages in capturing long-
term dependence and modeling nonlinear processes
[22]. The capacity to analyze and forecast time
series sequences without losing unnecessary
information distinguishes LSTM from other typical
Recurrent Neural Networks (RNNs) [23]. Simple
RNN processes numerous recurrent data in a single-
flow process, while LSTM-RNN processes them in
a directed graph along the temporal sequence.
LSTM RNN has "memory cells”, which Simple
RNN doesn't. [16].
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The LSTM model has been widely applied to
various water resource analyses including for
discharge and water level prediction [16,24,25]. and
rainfall-runoff modeling [26,27].

This study aims to construct a discharge forecast
model using the LSTM model at the Dayeuhkolot
station on the Citarum River. Using input data from
thirteen rainfall stations and discharge data from the
Dayeuhkolot station, the LSTM model was
developed to predict discharge 2, 4, 6, 8, 12, and 24
hours into the future. This discharge prediction
model was developed to aid in the early warning of
flooding. This methodology is expected to increase
the lead time so that the government has sufficient
time to issue flood warnings to the public.

2. RESEARCH SIGNIFICANCE

This study focused on the use of data-driven
methods to flood prediction models based on real-
time rainfall data as an input, and discharge as an
output. This method can be considered for
forecasting discharge on watersheds with limited
physical data and has advantages in terms of faster
computation. The LSTM RNN, one of the most
recent data-driven models utilized in this research,
can predict discharge accurately. Furthermore, the
development of a flood model prediction based on
LSTM RNN could be a part of a non-structural
flood risk reduction in the Bandung Basin which is
a flood-prone area.

3. METHODOLOGY
3.1 Study Area

The study area is in Bandung Basin, the natural
floodplain area of the Upper Citarum River, West
Java, Indonesia, as described in the above
discussion. The Upper Citarum River has + 37 Km
length and approximately 1771 km? watershed area
(Fig. 1). The Dayeuhkolot Automatic Water Level
Recorder (AWLR) station is one of the discharge
measurement locations on the Citarum River
located in the Dayeuhkolot District. Dayeuhkolot
and the surrounding area are sub-districts that
frequently experience flooding.

As with other tropical Indonesian areas, the
Upper Citarum river basin has only a rainy season
from October to April and a dry season from May
to September with the average annual rainfall and
annual maximum daily rainfall in the Upper
Citarum river basin is about 2071 mm/year and 81
mm/day, respectively. However, the recorded data
in the last three decades have shown an increasing
trend of maximum daily rainfall during the rainy
season and a decreasing trend of minimum daily
rainfall during the dry season [1-3,28].
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Fig.1 Location of the study area and hydro-meteorological station

3.2 Data Description

In this study, hourly rainfall data from 13 rain
gauge stations in the Upper Citarum river basin and
hourly discharge at the Dayeuhkolot hydrology
station were utilized. The location of the rainfall
station and water level station is shown in Fig. 1.
Data on rainfall and water levels are derived from
BBWS Citarum, which can be reached at
http://103.110.9.91/ [29].

3.3 LSTM Model

The LSTM is an artificial RNN presented by
Sepp Hochreiter et al. in 1997. The RNN with an
internal hidden state (‘memory’) enabling data to
sequence over the network is more efficient and
reliable in dealing with non-linear long-range time-
varying issues than traditional methods. The LSTM
is composed of a cell memory that stores a summary
of the preceding input sequence and a gating
mechanism that regulates the flow of information
between the input, output, and cell memory [30]. An
LSTM network has three layers: input, memory,
and output. The schematic model of LSTM utilized
in this study is shown in Fig.2.

The number of explanatory variables equals the
number of input layer neurons. The hidden layer of
LSTM networks contains memory cells, which are
its distinguishing feature. Forget gate (ft), input gate
(it), and output gate (ot) are the three gates that each
memory cell possesses to maintain and change its
cell state [23]. The formula for the sequential update
is as follows:

Input node:

g® = tanh(ngX(t) + Wghh(t‘l) + by) 1)
Input gate:
(O = oWy X® + Wiph®™D + b)) @
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Forget gate:

fO = o(WrX® + W h®D + bp) (3)
Output gate:

0® = 0'([/Vo;ch(t) + Wohh(t_l) + b,) 4
Cell state:

sO=gt+Qit+sEV O o® (5)
Hidden gate:

h® = tanh(s®) © o® (6)
Output layer:

y® = (W, h® +b,) ©)

Where X (t) is the input vector (forcing and
static characteristics) at the time step t, Ws is the
network weights, bs is bias parameters, y is the
output to be compared to observations, h is the
hidden state, ¢ is the sigmoid function, © is
element-wise multiplication, and s is the cell state
of memory cells, which is specific to LSTM.

3.4 Model Design

In the neural network technique, screening
relevant data for model inputs is a crucial step in
determining the best model architecture.
Precipitation, evaporation, and temperature are
some of the causative factors in the rainfall-runoff
connection. The number of various variables is
determined by the availability of data and the
study's purpose [31]. According to other studies,
using potential evapotranspiration estimates in the
inputs did not improve computation results, but did
result in a modest degradation when compared to
utilizing just precipitation data [32]. In this study, a
discharge prediction model was created for flood
early warning purposes, therefore it must be able to
analyze data fast and have a limited number of input
data variables. Therefore, observed rainfall and
previous flow variables were selected as input data.


http://103.110.9.91/

International Journal of GEOMATE, Oct., 2022, VVol.23, Issue 98, pp.147-154

Recurrent data

t-n t-2

Input

t-1 t-0

L Pl L

Dense layer 1

v

Dense layer 2

Output

Fig.2 Schematic model LSTM [16]

After selecting relevant input variables, the
following step is to determine the proper parameter
for each variable to build model inputs. Table 1
summarizes the parameter settings utilized in this
study.

Table 1 Parameter setting

Recurrent time (hours) 6 8 12 24

Epoch 15, 20, 25

As mentioned above, hourly rainfall data from
thirteen rain gauge stations and previous flow data
at Dayeuhkolot hydrology station as input data, the
target output is discharge at time interval level t+1.
The input and output data are normalized to the
range [0-1] prior to further processing. The data
normalization process uses the Min Max scalar
method. Then the next step is to restructure the
existing dataset. The existing dataset will be shifted
backward for input data and forward for output data
(in the “to supervised” function's code).

The following step is to split the dataset into
training and testing sets while learning a
dependency from the data. The previous study
demonstrates that using 20-30% of data for testing
and 70-80% for training produces the greatest
outcomes [33]. In this study, the dataset was
performed by splitting the training and testing data
by 75% and 25%, respectively. While the loss in the
training phase was calculated using the MSE
function.

The programming language used in this study is
Python. Several python packages are used in
modeling including NumPy which is used as the
main  package for performing numerical
calculations, Matplotlib for visualization and
plotting work, Pandas for tabular data manipulation,

v

t+0
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and a deep learning framework that makes use of

the keras framework's built-in LSTM layer
components.
Model performance was analyzed by the

statistical parameter approach. NSE, RMSE, and R?
are statistical approaches that are frequently used to
compare projected and actual values in domains
connected to hydrology to calculate the
effectiveness of predicting models. The NSE
calculates the fraction of the initial variance
accounted for by the model and examines its ability
to predict variables other than the mean. Based on
the relative range of the data, the RMSE is typically
used to assess how well the predicted values match
the observed values [34].

4. RESULT AND DISCUSSION

4.1 Modeling Parameter Optimization in Hourly
Predicted Discharge

As indicated in Table 1, a selection of LSTM
modeling with distinct parameters (recurrent time,
and maximum epoch number) has been constructed.
Table 2 shows the model performance for various
parameters used in the LSTM model. Meanwhile,
hourly hydrographs and scatter plots at
Dayeuhkolot hydrology station in one-hour ahead
prediction utilizing optimum parameters are shown
in Fig.3.

In all instances, the NSE values indicate a very
excellent performance (NSE > 0.9) in estimating the
discharge over the following hour. According to the
NSE and RMSE values, the best performance is
achieved with a recurrent time of 24 hours and a
maximum epoch of 20. The values of NSE and R2
indicate a slightly increasing trend as the maximum
epoch number rises. In contrast, the RMSE value
drops as the maximum epoch number increases.
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Table 2 Model performance of parameter optimization based on NSE, RMSE, and R? value

Recurrent time NSE RMSE R?
(hours) Epoch Epoch Epoch Epoch Epoch Epoch Epoch Epoch  Epoch
15 20 25 15 20 25 15 20 25
6 0992 0993 0993 2817 2,678 2591 0995 0996 0.996
8 0993 0993 0993 2653 2673 2.611 0995 0.995 0.996
12 0994 0994 0993 2539 2503 2.615 0995 0.996 0.996
24 0993 0994 0994 2640 2414 2456 0.995 0.996  0.996
- zgg ——— Observed ~ ------- predicted . 238
E 250 T 20 RO A
@ R
= 200 = 200
5 150 S 150
8 100 @ 100 2
50 “ 5
0
0 1000 2000 3000 4000 5000 0 50 100 150 200 250 300 350

Time (hours)

Observed (m?3/s)

Fig.3 Comparison of forecasting and observed hourly discharge using the optimal parameter

It denotes that the maximum epoch number can
improve model performance. According to Fig.3, it
should be noticed that the predicted flow agrees
well with the observed flow. The scatter plot
provides performance data as pairs of data. Closer
data pairings near the 45 line indicate more accurate
prediction findings. The scatter plot for one-hour
flow forecasting in the testing phase shows that
predicted and observed discharge is comparable.

4.2 Multi-Hour-a Head Discharge Prediction

For a more efficient and practical flood warning
system, it is important to determine the discharge
with a lead time of more than one hour ahead. In
this study, the optimum parameter was evaluated
for 2, 4, 6, 8, 12, and 24 hours ahead of forecasting
discharge. By comparing observed and predicted
flow created throughout the testing process, the
NSE, R?, and RMSE values are used to evaluate the
model's performance. The model performance of
the testing process is summarized in Table. 3.

In general, the developed LSTM model has the
ability to predict discharge for the next 2 to 24 hours
quite well. This can be seen from the RMSE, NSE,
and R? values which are in the range of 18.918-
4.533; 0.642-0.979, and 0.643-0.984, respectively.
The best performance was obtained for 2 and 4-hour
discharge predictions with NSE values of 0.979 and
0.926, respectively. As the prediction time
increases, the model performance decreases, with
an average decrease in the NSE and R? value of 6%
for the 2-hour prediction time interval. While the

151

change in the NSE value for 12-hour to 24-hour
discharge predictions drop by 12% for NSE and
15% for R? value. Similarly, the trend of changes in
the RMSE value demonstrates a growth in the error
value of the predicted discharge to the observation.
The forecast time is added, resulting in a higher
inaccuracy with an average error rate of 21% for
each increase in prediction time.

Table 3 The model performance of the testing
process for discharge prediction

Time forecasting RMSE  NSE R?
(hours)
2 4,533 0.979 0.984
4 8.547 0.927 0.939
6 11.690 0.863 0.879
8 13.441 0.819 0.830
10 15.325 0.765 0.776
12 16.691 0.721 0.741
24 18.918 0.642 0.643

The hydrographs for various discharge time
forecasts are shown in Fig.4 and 5. Overall, the
hydrograph shows a good agreement between the
predicted and measurement discharge for the next
2,4, 6,8, 10, 12, and 24 hours of forecasting. In
addition, the effect of forecast time on low and high
flows can be illustrated in the Flow Duration Curve
(FDC) (Fig.6). For all prediction periods, the high
flow with a probability of less than 30% (Q30), the
resulting predicted discharge is smaller than the
measured flow (underestimate). On the other hand,
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at low flow (discharge with a probability of more
than 30%), the estimated discharge is greater than
the actual discharge (overestimated). The
developed LSTM model predicts high flow better
than low flow (Fig.7).
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4.3 Peak Discharge Prediction

For flood forecasting purposes, the next step is
to compare the predicted peak discharge with
measurement data from test data. The peak
discharge from the observations is 322.3 m3/s on
18" December 2019. Predicted peak discharge for
2,4, 6,8, 10, 12, and 24 ahead and Relative Error
(RE) as shown in Table 4. Predicted peak discharge
for various forecasting times (2 to 24 hours ahead)
as shown in Table 4 is found underestimate
compared to the observed discharge.

Table 4 Peak discharge error for varied time
forecasting

Time forecasting  Peak Discharge (m®/s) RE

(hours) Observed  Predicted %

2 301.3 -6

4 285.9 -11

6 280.2 -13

8 322.3 274.4 -15

10 264.1 -18

12 241.4 -25

24 271.2 -16

According to the RE parameter, the

performance of the model can be classified as “Very
good” when the difference between observed and
simulated values is less than 10%, “Good” is
between 10% and 15%, and “satisfactory” is
between 15% and 25% [34]. The magnitude of RE
for the prediction discharge for the next 2 hours
indicates a “Very good” performance in peak
discharge prediction. Meanwhile, the RE indicates
“Good” for 4, 6, and 8 hours-ahead forecastings,
and the next 10 to 24-hour peak discharge
prediction indicate satisfaction.

As the forecasting time lengthens, several
factors lead to less accurate discharge estimates.
Due to a lack of study data, for instance. The data
used in this study comes from two years of
observations (2018-2019). The chosen model
parameters are also a consideration. More
parameters in the machine learning model's design
are required to perform deeper "abstraction” of data
features or to improve the present LSTM layer.

5. CONCLUSION

The LSTM model was used in this study to
forecast the discharge 2, 4, 6, 8, 10, 12, and 24 hours
ahead at the Dayeuhkolot hydrological station.
Hourly rainfall data from 13 rainfall stations and
river flow data at the interest station are used as
inputs. The most optimal parameters obtained based
on the performance of the model for predicting
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discharge for the next 1 hour is a time lag of 24
hours and a maximum epoch of 20.

The research findings indicate that based on
model performance criteria such as NSE, R?, and
RMSE values, the LSTM model can accurately
forecast Dayeuhkolot discharge in the following
two and four hours with the NSE and R? values
higher than 0.9 which indicates "Excellent"
performance. Meanwhile, for the predicted
discharge for time forecasting exceeds four hours,
the LSTM model is quite accurately forecasting the
discharge according to the NSE, R% and RMSE
values (NSE and R? > 0.5). The model becomes less
accurate in expected discharge when the forecast
time is increased from 2 to 24 hours. This is because,
even if the software "understands" the trend
extremely well, a model that forecasts further into
the future is more uncertain. The longer the duration
of the prediction, the less accurate the resulting
prediction will be. Future development of a more
accurate prediction model with a longer lead time
than 24 hours and a higher level of precision will be
a challenge.
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