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ABSTRACT: The Upper Citarum River is Indonesia's most strategic river since it provides fresh water to 

West Java and DKI Jakarta, the capital of Indonesia. Flooding is a significant issue in the upstream Citarum 

River, particularly in the Bandung Basin. Flood problems have not been solved despite many implementations 

of structural improvements. As a result, further efforts must be made to mitigate the impact of any potential 

floods. In particular, a more advanced early warning system with a longer forecasting lead time is required. 

Data-driven models which take into account a variety of historical data inputs are an option for predicting 

discharge analysis. The Long Short Term Memory Recurrent Neural Network (LSTM RNN) model is utilized 

in this study to predict discharge at the Dayeuhkolot hydrological station in the Upper Citarum River, West 

Java, Indonesia. This study considers input data of hourly rainfall from 13 gauging stations and flows data from 

the relevant stations. Discharge predictions are generated for the following 2, 4, 6, 8, 10, 12, and 24 hours. 

Model performance is calculated using Nash–Sutcliffe efficiency (NSE), Root Mean Square Error (RMSE), 

Coefficient determination (R2), and Relative Error (RE). The findings of the study indicate that the suggested 

LSTM-RNN model can precisely forecast the discharge for the next two and four hours with NSE and R2 more 

than 0.9. Prediction of discharge in a longer period (4 to 24 hours ahead) shows a satisfactory prediction result 

(NSE and R2 > 0.5).   
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1. INTRODUCTION 

 

The upper Citarum River serves as the 

freshwater supply not only for West Java but also 

for Jakarta City, the Capital of Indonesia. It has 

become the most strategic river in Indonesia where 

three cascade reservoirs have been developed since 

1972 to meet the water management requirement 

[1–4]. These three cascade reservoirs, Jatiluhur, 

Saguling, and Cirata, were developed to balance the 

requirement of flood resiliency and the need for 

water supply. This balance applies not only to the 

downstream part of the Citarum River but also to 

Jakarta City [1–7]. The flood-prone area of the 

upper part of the Citarum River is a natural 

floodplain (lowland) area named Bandung Basin. 

That basin is located at the confluence of 13 

tributaries of the Upstream Citarum River. Due to 

the regional development, increasing economic 

activity, and population growth in the Bandung 

Basin many areas are being converted into housing, 

commercial, and other business activities [1,2,5,8]. 

Several previous studies of the Upstream Citarum 

River have reported an increasing problem of 

sedimentation, water quality, and increased solid 

waste. Also, an increasing trend of peak discharge 

and flash flooding during the rainy season and a 

decreasing trend of dependable flow during the dry 

season has been reported [1–3,5,8]. All these 

phenomena obviously change the hydrologic, 

hydraulic, and flood characteristics of the upper part 

of the Citarum River. These problems are 

commonly found in the critical river catchment area 

of Indonesia where extreme land use change has 

occurred due to mining activity or uncontrolled 

urban area development [3,5,9–13].  

Structural and non-structural mitigation is 

proposed by the most previous study as a 

compulsory measure to decrease the flood risk not 

only in Bandung Basin Area but also in three 

Cascades Reservoirs [1–4]. The increasing flood 

risk in Cascade Reservoir Area will increase the risk 

of its dam break which would potentially increase 

water-related disasters to the downstream part of the 

Citarum River [1-5,7,9–12,14]. Several structural 

flood mitigations such as river normalization, river 
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dredging, and tunneling river cut-off are applied in 

the Upper Citarum River but the flood risk in 

Bandung Basin reminds the same [1–3,5]. 

Meanwhile, as one of the nonstructural measures, 

the flood early warning system is not yet well 

developed due to the lack of reliable data for 

supporting flood prediction models based on merely 

physical hydrologic-hydraulic parameters. Several 

previous studies concluded that Neural Network is 

one of the promising analytical tools to yield a good 

and or reasonable prediction of not only extreme 

discharges but also dependable flow, sedimentation 

rate, and other hydrologic-hydraulic parameters of 

a catchment area with fewer observation data [1–

3][15–19].  

Numerical modeling is used to construct a flood 

database system using hypothetical data, as well as 

a pattern recognition learning process for a neural 

network that will increase the speed and accuracy of 

flood prediction. The produced flood database has 

limitations in terms of the numerical model, 

particularly a DEM grid that is too large, hence 

more research must be conducted using a smaller 

DEM grid to build a more accurate flood database 

[19]. Hence, in this study, the prediction of flood 

discharge is conducted using a data-driven model 

technique by using real-time rainfall measurement 

data from rainfall stations dispersed across the 

Upstream Citarum watershed, as well as discharge 

data from the same measurement period. 

The data-driven models seek to construct a 

mathematical model tying input factors to an output 

variable that might be utilized to estimate flood 

extent [20]. The Artificial Neural Network (ANN) 

model is one of the popular data-driven approaches. 

Artificial neural network (ANN) models are 

information processing systems that imitate the 

human brain's structure and function. It can 

simulate non-linear and complicated systems 

lacking specific physical justifications. In this 

system, ANNs are the major flow predicting 

technique [21]. 

Recurrent Neural Networks (RNN) are 

commonly used to build hydrological models. The 

Long Short Term Memory (LSTM) network, 

derived from RNN, is commonly utilized in flood 

prediction because it can handle lengthy length 

sequence data and has advantages in capturing long-

term dependence and modeling nonlinear processes  

[22]. The capacity to analyze and forecast time 

series sequences without losing unnecessary 

information distinguishes LSTM from other typical 

Recurrent Neural Networks (RNNs) [23]. Simple 

RNN processes numerous recurrent data in a single-

flow process, while LSTM-RNN processes them in 

a directed graph along the temporal sequence. 

LSTM RNN has "memory cells”, which Simple 

RNN doesn't. [16].  

The LSTM model has been widely applied to 

various water resource analyses including for 

discharge and water level prediction [16,24,25]. and 

rainfall-runoff modeling [26,27].  

This study aims to construct a discharge forecast 

model using the LSTM model at the Dayeuhkolot 

station on the Citarum River. Using input data from 

thirteen rainfall stations and discharge data from the 

Dayeuhkolot station, the LSTM model was 

developed to predict discharge 2, 4, 6, 8, 12, and 24 

hours into the future. This discharge prediction 

model was developed to aid in the early warning of 

flooding. This methodology is expected to increase 

the lead time so that the government has sufficient 

time to issue flood warnings to the public. 

 

2. RESEARCH SIGNIFICANCE 

 

This study focused on the use of data-driven 

methods to flood prediction models based on real-

time rainfall data as an input, and discharge as an 

output. This method can be considered for 

forecasting discharge on watersheds with limited 

physical data and has advantages in terms of faster 

computation. The LSTM RNN, one of the most 

recent data-driven models utilized in this research, 

can predict discharge accurately. Furthermore, the 

development of a flood model prediction based on 

LSTM RNN could be a part of a non-structural 

flood risk reduction in the Bandung Basin which is 

a flood-prone area. 

 

3. METHODOLOGY 

 

3.1 Study Area 

 

The study area is in Bandung Basin, the natural 

floodplain area of the Upper Citarum River, West 

Java, Indonesia, as described in the above 

discussion. The Upper Citarum River has ± 37 Km 

length and approximately 1771 km2 watershed area 

(Fig. 1). The Dayeuhkolot Automatic Water Level 

Recorder (AWLR) station is one of the discharge 

measurement locations on the Citarum River 

located in the Dayeuhkolot District. Dayeuhkolot 

and the surrounding area are sub-districts that 

frequently experience flooding.  

As with other tropical Indonesian areas, the 

Upper Citarum river basin has only a rainy season 

from October to April and a dry season from May 

to September with the average annual rainfall and 

annual maximum daily rainfall in the Upper 

Citarum river basin is about 2071 mm/year and 81 

mm/day, respectively. However, the recorded data 

in the last three decades have shown an increasing 

trend of maximum daily rainfall during the rainy 

season and a decreasing trend of minimum daily 

rainfall during the dry season [1–3,28]. 
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Fig.1 Location of the study area and hydro-meteorological station 

  

3.2 Data Description 

 

In this study, hourly rainfall data from 13 rain 

gauge stations in the Upper Citarum river basin and 

hourly discharge at the Dayeuhkolot hydrology 

station were utilized. The location of the rainfall 

station and water level station is shown in Fig. 1.  

Data on rainfall and water levels are derived from 

BBWS Citarum, which can be reached at 

http://103.110.9.91/ [29]. 

 

3.3 LSTM Model 

 

The LSTM is an artificial RNN presented by 

Sepp Hochreiter et al. in 1997. The RNN with an 

internal hidden state ('memory') enabling data to 

sequence over the network is more efficient and 

reliable in dealing with non-linear long-range time-

varying issues than traditional methods. The LSTM 

is composed of a cell memory that stores a summary 

of the preceding input sequence and a gating 

mechanism that regulates the flow of information 

between the input, output, and cell memory [30]. An 

LSTM network has three layers: input, memory, 

and output. The schematic model of LSTM utilized 

in this study is shown in Fig.2. 

The number of explanatory variables equals the 

number of input layer neurons. The hidden layer of 

LSTM networks contains memory cells, which are 

its distinguishing feature. Forget gate (ft), input gate 

(it), and output gate (ot) are the three gates that each 

memory cell possesses to maintain and change its 

cell state [23]. The formula for the sequential update 

is as follows: 

Input node:    

𝑔(𝑡) = tanh(𝑊𝑔𝑥𝑋
(𝑡) +𝑊𝑔ℎℎ

(𝑡−1) + 𝑏𝑔)      (1) 

Input gate:    

𝑖(𝑡) = σ(𝑊𝑖𝑥𝑋
(𝑡) +𝑊𝑖ℎℎ

(𝑡−1) + 𝑏𝑖)                   (2) 

Forget gate:       

𝑓(𝑡) = σ(𝑊𝑓𝑥𝑋
(𝑡) +𝑊𝑓ℎℎ

(𝑡−1) + 𝑏𝑓)                 (3) 

Output gate:        

𝑜(𝑡) = σ(𝑊𝑜𝑥𝑋
(𝑡) +𝑊𝑜ℎℎ

(𝑡−1) + 𝑏𝑜)                 (4) 

Cell state:    

𝑠(𝑡) = 𝑔𝑡 +⊙ 𝑖𝑡 + 𝑠(𝑡−1) ⊙𝑜(𝑡)                    (5) 

Hidden gate:  

ℎ(𝑡) = tanh(𝑠(𝑡)) ⊙ 𝑜(𝑡)                                     (6) 

Output layer:      

𝑦(𝑡) = (𝑊ℎ𝑦ℎ
(𝑡) + 𝑏𝑦)                                        (7) 

Where X (t) is the input vector (forcing and 

static characteristics) at the time step t, Ws is the 

network weights, bs is bias parameters, y is the 

output to be compared to observations, h is the 

hidden state, σ is the sigmoid function, ⊙ is 

element-wise multiplication, and s is the cell state 

of memory cells, which is specific to LSTM.  

 

3.4 Model Design 

 

In the neural network technique, screening 

relevant data for model inputs is a crucial step in 

determining the best model architecture. 

Precipitation, evaporation, and temperature are 

some of the causative factors in the rainfall-runoff 

connection. The number of various variables is 

determined by the availability of data and the 

study's purpose [31].  According to other studies, 

using potential evapotranspiration estimates in the 

inputs did not improve computation results, but did 

result in a modest degradation when compared to 

utilizing just precipitation data [32]. In this study, a 

discharge prediction model was created for flood 

early warning purposes, therefore it must be able to 

analyze data fast and have a limited number of input 

data variables. Therefore, observed rainfall and 

previous flow variables were selected as input data.

http://103.110.9.91/


International Journal of GEOMATE, Oct., 2022, Vol.23, Issue 98, pp.147-154 

150 

 

 

Fig.2 Schematic model LSTM [16]

  

After selecting relevant input variables, the 

following step is to determine the proper parameter 

for each variable to build model inputs. Table 1 

summarizes the parameter settings utilized in this 

study. 

 

Table 1 Parameter setting 

 

Recurrent time (hours) 6 8  12 24 

Epoch 15, 20, 25 

 

As mentioned above, hourly rainfall data from 

thirteen rain gauge stations and previous flow data 

at Dayeuhkolot hydrology station as input data, the 

target output is discharge at time interval level t+1. 

The input and output data are normalized to the 

range [0-1] prior to further processing. The data 

normalization process uses the Min Max scalar 

method. Then the next step is to restructure the 

existing dataset. The existing dataset will be shifted 

backward for input data and forward for output data 

(in the “to supervised” function's code).  

The following step is to split the dataset into 

training and testing sets while learning a 

dependency from the data. The previous study 

demonstrates that using 20-30% of data for testing 

and 70-80% for training produces the greatest 

outcomes [33]. In this study, the dataset was 

performed by splitting the training and testing data 

by 75% and 25%, respectively. While the loss in the 

training phase was calculated using the MSE 

function. 

The programming language used in this study is  

Python. Several python packages are used in 

modeling including NumPy which is used as the 

main package for performing numerical 

calculations, Matplotlib for visualization and 

plotting work, Pandas for tabular data manipulation, 

and a deep learning framework that makes use of 

the keras framework's built-in LSTM layer 

components. 

Model performance was analyzed by the 

statistical parameter approach. NSE, RMSE, and R2 

are statistical approaches that are frequently used to 

compare projected and actual values in domains 

connected to hydrology to calculate the 

effectiveness of predicting models. The NSE 

calculates the fraction of the initial variance 

accounted for by the model and examines its ability 

to predict variables other than the mean. Based on 

the relative range of the data, the RMSE is typically 

used to assess how well the predicted values match 

the observed values [34]. 

 

4. RESULT AND DISCUSSION 

 

4.1 Modeling Parameter Optimization in Hourly 

Predicted Discharge  

 

As indicated in Table 1, a selection of LSTM 

modeling with distinct parameters (recurrent time, 

and maximum epoch number) has been constructed. 

Table 2 shows the model performance for various 

parameters used in the LSTM model. Meanwhile, 

hourly hydrographs and scatter plots at 

Dayeuhkolot hydrology station in one-hour ahead 

prediction utilizing optimum parameters are shown 

in Fig.3.  

In all instances, the NSE values indicate a very 

excellent performance (NSE > 0.9) in estimating the 

discharge over the following hour. According to the 

NSE and RMSE values, the best performance is 

achieved with a recurrent time of 24 hours and a 

maximum epoch of 20. The values of NSE and R2 

indicate a slightly increasing trend as the maximum 

epoch number rises. In contrast, the RMSE value 

drops as the maximum epoch number increases.

t-n t-2 t-1 t-0

LSTM

Dense layer 1

Dense layer 2

t+0

Input

Output
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Table 2  Model performance of parameter optimization based on NSE, RMSE, and R2 value 

 

Recurrent time NSE RMSE R2 

(hours) Epoch 

15 

Epoch 

20 

Epoch 

25 

Epoch 

15 

Epoch 

20 

Epoch 

25 

Epoch 

15 

Epoch 

20 

Epoch 

25 

6 0.992 0.993 0.993 2.817 2.678 2.591 0.995 0.996 0.996 

8 0.993 0.993 0.993 2.653 2.673 2.611 0.995 0.995 0.996 

12 0.994 0.994 0.993 2.539 2.503 2.615 0.995 0.996 0.996 

24 0.993 0.994 0.994 2.640 2.414 2.456 0.995 0.996 0.996 

 

 
Fig.3 Comparison of forecasting and observed hourly discharge using the optimal parameter 

 

It denotes that the maximum epoch number can 

improve model performance. According to Fig.3, it 

should be noticed that the predicted flow agrees 

well with the observed flow. The scatter plot 

provides performance data as pairs of data. Closer 

data pairings near the 45 line indicate more accurate 

prediction findings. The scatter plot for one-hour 

flow forecasting in the testing phase shows that 

predicted and observed discharge is comparable. 

 

4.2 Multi-Hour-a Head Discharge Prediction 

 

For a more efficient and practical flood warning 

system, it is important to determine the discharge 

with a lead time of more than one hour ahead. In 

this study, the optimum parameter was evaluated 

for 2, 4, 6, 8, 12, and 24 hours ahead of forecasting 

discharge. By comparing observed and predicted 

flow created throughout the testing process, the 

NSE, R2, and RMSE values are used to evaluate the 

model's performance. The model performance of 

the testing process is summarized in Table. 3. 

In general, the developed LSTM model has the 

ability to predict discharge for the next 2 to 24 hours 

quite well. This can be seen from the RMSE, NSE, 

and R2 values which are in the range of 18.918-

4.533; 0.642-0.979, and 0.643-0.984, respectively. 

The best performance was obtained for 2 and 4-hour 

discharge predictions with NSE values of 0.979 and 

0.926, respectively. As the prediction time 

increases, the model performance decreases, with 

an average decrease in the NSE and R2 value of 6% 

for the 2-hour prediction time interval. While the 

change in the NSE value for 12-hour to 24-hour 

discharge predictions drop by 12% for NSE and 

15% for R2 value. Similarly, the trend of changes in 

the RMSE value demonstrates a growth in the error 

value of the predicted discharge to the observation. 

The forecast time is added, resulting in a higher 

inaccuracy with an average error rate of 21% for 

each increase in prediction time. 

 

Table 3 The model performance of the testing 

process for discharge prediction   

 

Time forecasting RMSE NSE R2 

  (hours) 

2 4.533 0.979 0.984 

4 8.547 0.927 0.939 

6 11.690 0.863 0.879 

8 13.441 0.819 0.830 

10 15.325 0.765 0.776 

12 16.691 0.721 0.741 

24 18.918 0.642 0.643 

 

The hydrographs for various discharge time 

forecasts are shown in Fig.4 and 5. Overall, the 

hydrograph shows a good agreement between the 

predicted and measurement discharge for the next 

2, 4, 6, 8, 10, 12, and 24 hours of forecasting. In 

addition, the effect of forecast time on low and high 

flows can be illustrated in the Flow Duration Curve 

(FDC) (Fig.6). For all prediction periods, the high 

flow with a probability of less than 30% (Q30), the 

resulting predicted discharge is smaller than the 

measured flow (underestimate). On the other hand, 
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at low flow (discharge with a probability of more 

than 30%), the estimated discharge is greater than 

the actual discharge (overestimated). The 

developed LSTM model predicts high flow better 

than low flow (Fig.7). 

 

 

Fig.4 Comparison of the observed and forecasted 

hourly discharge for the next 2, 4, and 6 hour 

 

 

Fig.5 Comparison of the observed and forecasted 

hourly discharge for the next 8, 10, 12, and 24 hour 

 

Fig.6 Flow duration curve for observed and 

predicted discharge across a range of time forecasts 

 

 

Fig.7 Relative error for high flow and low flow 

prediction 

4.3 Peak Discharge Prediction 

 

For flood forecasting purposes, the next step is 

to compare the predicted peak discharge with 

measurement data from test data. The peak 

discharge from the observations is 322.3 m3/s on 

18th December 2019. Predicted peak discharge for 

2, 4, 6, 8, 10, 12, and 24 ahead and Relative Error 

(RE) as shown in Table 4. Predicted peak discharge 

for various forecasting times (2 to 24 hours ahead) 

as shown in Table 4 is found underestimate 

compared to the observed discharge.  

 

Table 4 Peak discharge error for varied time 

forecasting 

 

Time forecasting Peak Discharge (m3/s) RE 

(hours) Observed Predicted % 

    
2  

 

 

322.3 

301.3 -6 

4 285.9 -11 

6 280.2 -13 

8 274.4 -15 

10 264.1 -18 

12 241.4 -25 

24 271.2 -16 

 

According to the RE parameter, the 

performance of the model can be classified as “Very 

good” when the difference between observed and 

simulated values is less than 10%, “Good” is 

between 10% and 15%, and “satisfactory” is 

between 15% and 25% [34]. The magnitude of RE 

for the prediction discharge for the next 2 hours 

indicates a “Very good” performance in peak 

discharge prediction. Meanwhile, the RE indicates 

“Good” for 4, 6, and 8 hours-ahead forecastings, 

and the next 10 to 24-hour peak discharge 

prediction indicate satisfaction.   

As the forecasting time lengthens, several 

factors lead to less accurate discharge estimates. 

Due to a lack of study data, for instance. The data 

used in this study comes from two years of 

observations (2018-2019). The chosen model 

parameters are also a consideration. More 

parameters in the machine learning model's design 

are required to perform deeper "abstraction" of data 

features or to improve the present LSTM layer. 

 

5. CONCLUSION 

 

The LSTM model was used in this study to 

forecast the discharge 2, 4, 6, 8, 10, 12, and 24 hours 

ahead at the Dayeuhkolot hydrological station. 

Hourly rainfall data from 13 rainfall stations and 

river flow data at the interest station are used as 

inputs. The most optimal parameters obtained based 

on the performance of the model for predicting 
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discharge for the next 1 hour is a time lag of 24 

hours and a maximum epoch of 20.   

The research findings indicate that based on 

model performance criteria such as NSE, R2, and 

RMSE values, the LSTM model can accurately 

forecast Dayeuhkolot discharge in the following 

two and four hours with the NSE and R2 values 

higher than 0.9 which indicates "Excellent" 

performance. Meanwhile, for the predicted 

discharge for time forecasting exceeds four hours, 

the LSTM model is quite accurately forecasting the 

discharge according to the NSE, R2, and RMSE 

values (NSE and R2 > 0.5). The model becomes less 

accurate in expected discharge when the forecast 

time is increased from 2 to 24 hours. This is because, 

even if the software "understands" the trend 

extremely well, a model that forecasts further into 

the future is more uncertain. The longer the duration 

of the prediction, the less accurate the resulting 

prediction will be. Future development of a more 

accurate prediction model with a longer lead time 

than 24 hours and a higher level of precision will be 

a challenge. 
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