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ABSTRACT: Drought, due to climate change, has in recent years become more severe. Capability to monitor 
drought conditions and to assess drought risk is essential to the development of an effective drought adaptation 
plan, especially for an agricultural country like Thailand. Current drought monitoring is provided by separate 
indices such as Standardized Precipitation Index (SPI), Soil Moisture Index (SMI) and Moisture Available 
Index (MAI), calculated from weather station datasets which are not easily comprehensible to users. This 
research develops a countrywide integrated satellite-based drought model consisting of three parameters: 
accumulated estimated rainfall generated from FY-2E satellite data, the difference in Land Surface 
Temperature (LST) and Normalized Difference Vegetation Index (NDVI) generated from MODIS. A simple 
drought hazard is introduced as a multiple linear regression model (R2=0.795) of these satellite products, 
calibrated with daily soil moisture measurements in 2015. Consequently, drought conditions are represented 
by the Drought Hazard Index (DHI) whose assigned integer values are from –3 (extremely dry) to +3 
(extremely wet), according to the defined thresholds (presently at 0.05, 0.15, 0.30, 0.70, 0.80, and 0.95) of the 
cumulative distribution function (CDF) of drought hazard values. The model is validated with 426 countrywide 
drought situations announced by the Department of Disaster Prevention and Mitigation (DDPM), during the 
drought season of 2016, yielding a 0.96 probability of detection. Subsequently, the model outputs are processed 
with relevant GIS data, which are agricultural and irrigation areas to represent drought exposure and 
vulnerability respectively, to generate a drought risk map for further analysis and planning. This platform can 
benefit not only policymakers but also the farmers themselves. 
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1. INTRODUCTION 
 

Drought is a major recurring natural disaster that 
poses a threat to water and food security [1], 
environmental problems as well as economic risks, 
especially for the agricultural sector. Based on their 
impact, droughts are classified into four types and 
usually occur in a particular order, which is 
meteorological drought, agricultural drought, 
hydrological drought and socioeconomic drought. 
Meteorological drought is caused by a deficit in 
precipitation, which subsequently impacts on soil 
water content, leading to the agricultural drought 
that results in plant water stress and reduced 
biomass and yield. Due to low recharge from the 
soil to water features, hydrological drought occurs 
when stream flow, reservoir storage and 
groundwater levels are in shortage. Eventually, the 
socioeconomic drought will take place if the 
phenomena are prolonged until water demand 
increases and water stress is intensified by human 
activities [2-4].   

Drought monitoring and early warning are 
crucial components for mitigation and adaptation 
plans [4]. Drought management typically responds 
to crisis after impacts have occurred. Moreover, 
drought relief provided to those affected decreases 

socioeconomic capabilities of adaptation to drought 
disasters [5]. Thus, practical drought monitoring 
and risk assessment are essential to developing an 
effective drought early warning and adaptation plan 
in which potential victims are able to get involved, 
leading to proactive and effective drought 
management which can actually reduce damaging 
impacts. 

Traditional drought monitoring utilizes several 
indices such as the Standardized Precipitation Index 
(SPI), Soil Moisture Index (SMI), and Moisture 
Available Index (MAI). Each represents various 
aspects of drought and has been widely used. The 
SPI presents a rainfall anomaly as a normalized 
variable by probabilistically comparing 
accumulated rainfall over a time period with a 
historical rainfall period. The SMI indicates soil 
water content, while the MAI determines the 
influence of water adequacy on yields.  However, 
the indices derived from weather stations are point-
based and insufficient to monitor drought on a 
regional scale [6]. Consequently, remote sensing 
satellite data has become a valuable tool and 
assumed a significant role in drought monitoring 
due to its grid-based feature providing spatial 
information on drought even at a global scale. 
Satellite-based data has an additional advantage 
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compared to ground-based observation in that 
various types of data records and products can be 
utilized in developing advanced drought monitoring 
with multiple data sources. 

Various satellite-based drought indices have 
been developed to monitor drought and can be 
categorized into three main perspectives. The first 
one provides precipitation information, of which 
SPI is the most widely used. Its computation 
requires data from infrared (IR) sensors of a 
geostationary (GEO) satellite (for higher temporal 
resolution) and from passive microwave (PWM) 
sensors of a low earth orbit (LEO) satellite, (for 
more accurate rainfall estimate). Currently, there 
are several satellite-based precipitation products 
available including Precipitation Estimation from 
Remotely Sensed Information using Artificial 
Neural Networks (PERSIANN) [7], Tropical 
Rainfall Measuring Mission (TRMM) [8], CPC 
Morphing Technique (CMORPH) [9] and Global 
Satellite Mapping of Precipitation (GSMaP) [10]. 
However, these products have a relatively short 
length of records, which impose a limitation on SPI 
calculation. 

The second category of satellite-based indices is 
based on Land Surface Temperature (LST) which is 
related to soil water content, such as the 
Temperature Condition Index (TCI) and 
Normalized Difference Temperature Index (NDTI) 
[11,12]. The last category assesses drought based on 
observed changes in vegetation conditions with 
indices typically derived from the Normalized 
Difference Vegetation Index (NDVI), such as the 
Transformed Vegetation Index (TVI), the 
Standardized Vegetation Index (SVI), and the 
Vegetation Condition Index (VCI) [13-15]. The 
combination of LST and NDVI has been 
investigated in several works to provide more 
robust characteristics of a drought phenomenon 
[16]. LST-NDVI based indices have been applied 
over different landscapes with varying degrees of 
success, e.g., Temperature Vegetation Dryness 
Index (TVDI) and Vegetation Temperature 
Condition Index, (VTCI) [17,18]. 

Drought risk is composed of a disaster forming 
environment and disaster bearing body [19,20]. 
Drought damage can be lessened or magnified by 
the degree of drought vulnerability [21]. Drought 
exposure is defined as its livelihoods and assets in 
an area in which drought hazard events may occur 
while drought vulnerability is defined as the 
propensity of exposed elements to suffer adverse 
effects when impacted by a drought event. As a 
result, drought risk is assessed based on the product 
of hazard, exposure and vulnerability, indicating the 
probability of harmful consequences [22].  

This work introduces a simple satellite-based 
drought hazard model that combines all drought-
related aspects including rainfall, soil moisture and 

vegetation condition. The model inputs are derived 
from satellite products. Drought hazard values 
obtained from the model were collected to generate 
a probabilistic function. The function was defined 
to indicate levels of Drought Hazard Index (DHI) 
that can be shown on a map for easy interpretation. 
By combining DHI with relevant GIS data, which 
are agricultural areas from Land Development 
Department (LDD) to represent drought exposure 
factor and irrigation areas from Royal Irrigation 
Department (RID) to represent a factor inversely 
proportional to drought vulnerability, our platform 
can automatically generate and publish a drought 
risk map at http://csrs.ku.ac.th/wegis/product/kurdi. 
In addition, interest users can download the map in 
GeoTIFF format for their customized processing. 
The satellite-based products and drought risk map 
are updated every 10 days. 

 
2. METHODOLOGY  
 

The satellite-based drought hazard model 
consists of three dekadal (10 days) satellite data 
products which are accumulated rain estimate, 
difference LST, and NDVI values. The relationship 
between these input parameters and the drought 
hazard values was investigated using a multiple 
linear regression technique. Ground-based and 
reference datasets were collected to be used for 
model calibration and comparison analysis.  
 
2.1 The Study Region 
 

Thailand is located in Southeast Asia on a 
latitude of 5o N to 21o N and a longitude of 97o E to 
106o E. Climatologically, the country is classified 
as a tropical monsoon and tropical savanna with 18-
34o C average temperature and over 1,500 mm. 
average rainfall. The drought season ranges from 
November to January (winter) and February to 
April (summer). The study region covers the whole 
country.  
 

2.2 Satellite Datasets   
 
Satellite images were received from the 

Chulabhorn Satellite Receiving Station (CSRS). 
The FY-2E data is received hourly through the 
Digital Video Broadcast via Satellite (DVB-S) 
system from National Satellite Meteorological 
Center (NSMC) in Beijing while the Terra/Aqua 
MODIS data is received from the MODIS direct 
broadcast receiving the station at CSRS. In total, 
there are 1000*1600 pixels for each image, 
covering Thailand’s entire territory, at 1 km/pixel 
spatial resolution. 

 

http://csrs.ku.ac.th/wegis/product/kurdi
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2.2.1 FY-2E Dekadal rain estimate   
Satellite data received through the DVB-S 

system is in a VSR file format. Upon received, these 
data are automatically transformed, using Equal-
Lat-Long projection, to numerical data (16-bit 
PNG). Only a data point within the country region 
is retrieved and stored as a zip file every hour. 
Hourly satellite rain estimate is calculated from IR1 
data using the Infrared Threshold Rainfall with 
Probability Matching (ITRPM) model [23]. The 
model was adjusted to provide dekadal rainfall by 
calibrating the satellite rain estimates accumulated 
in 10 days with co-located rain gauges accumulated 
rainfall from Thaiwater.net using a dataset in 2016. 
Fig. 1 (left) shows an example of an IR1 image from 
the FY-2E satellite that is used to calculate the 
dekadal rain estimate shown in Fig. 1 (right). 

 

 
 
Fig. 1 Example of (left) an IR1 image from FY-

2E satellite (right) corresponding FY-2E 
dekadal rain estimate 

 

 
 

Fig. 2 Example of MODIS L2 products (left) 
LST (right) NDVI 

 

2.2.2 MODIS difference Land Surface Temperature  
Land Surface Temperature (LST), a MODIS L2 

product with 1 km spatial resolution, is retrieved 
twice a day during the day- and night-time. The 
difference between the day and night LST values 
relates to the water content in the soil and can, 
therefore, indicate drought conditions. Fig. 2 (left) 
shows an example of the MODIS LST product. 
Both day and night LST data are filtered by the 

cloud mask product. Every 10 days, the maxima of 
day and night LST are selected. This method is 
adopted from the Maximum Value Composite 
(MVC) technique, which is widely employed to 
improve analysis and reduce errors from the 
environment and atmosphere [24,25]. The 
difference between those maxima is then computed, 
becoming a dekadal deltaT to be used as an input 
parameter of the drought hazard model. 
 

2.2.3 MODIS Normalized Difference Vegetation 
Index   

The Normalized Difference Vegetation Index 
(NDVI) is also a MODIS L2 product representing 
the wellness of vegetation as shown in Fig. 2 (right). 
The NDVI product is additionally processed by 
cloud masking and the MVC technique, as shown in 
Fig. 3, to compute the dekadal NDVI to be used as 
the last input parameter of the drought hazard model. 
 

Terra/Aqua MODIS data

Cloud mask

Maximum value composite (MVC)
(10 days)

NDVI
(10 days)

LST_day
(10 days)

LST_night
(10 days)

deltaT
(10 days)

+ -

 
 

Fig. 3 Processing of Terra/Aqua MODIS data in 
providing dekadal NDVI and deltaT 

 

2.3 Drought Hazard Model 
 

In this work, drought hazard is defined as a 
composite drought assessment capturing three 
indicators that are not fully correlated with each 
other, including dekadal rain estimate from FY-2E 
satellite, dekadal deltaT and NDVI from MODIS 
sensors. These datasets were used as inputs of our 
drought hazard model. Daily soil moisture in-situ 
measurements collected in 2016 were obtained 
from the University of Phayao experimental site. 
Ten days-averaged soil moisture was used as a 
target for drought hazard model development by 
means of multiple linear regression approach, 
yielding R2 = 0.795. Figure 4 shows the structure of 
the drought hazard model development. The 
drought hazard model is obtained as 
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𝐷𝐷𝐷𝐷 = 11.643 + 0.356 ∗ 𝑅𝑅 −  0.297 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
             6.868 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁                                     (1) 

 
where 𝑅𝑅  is the FY-2E dekadal rain estimate, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the decadal difference LST and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is 
the dekadal NDVI, both from MODIS. A lower DH 
value implies worse drought conditions. This model 
works well during the dry season. However, in the 
rainy season, MODIS satellite data may not be 
available due to thick cloud cover. In this case, the 
drought hazard model is simplified as 
 
𝐷𝐷𝐷𝐷 = 12.445 + 0.135 ∗ 𝑅𝑅                        (2) 
 
Since this model uses only dekadal estimated 
rainfall, the output of multiple linear regression 
yields lower R2 = 0.371.  
 

Terra/Aqua MODIS data FY-2E IR1 data

NDVI
(10 days)

deltaT
(10 days)

Rain
(10 days)

Multiple linear regression

Drought hazard

Soil moisture
(10 days)

Input
Target

Output

Input

Drought hazard 
index

Gauge 
accumulated 

rainfall

In-situ soil 
moisture 

measurement

 
 
Fig. 4 Development of the drought hazard model 
 

 
 
Fig. 5 Mapping between Drought Hazard CDF 

thresholds and DHI 
 
2.4 Drought Hazard Index 
 

The cumulative distribution function (CDF) of 
drought hazard is generated using sample values 
computed from satellite datasets observed in 2016. 
The CDF is grouped into seven threshold levels 
(presently at 0.05, 0.15, 0.30, 0.70, 0.80, and 0.95) 
to define the drought hazard index (DHI), which is 

represented by integer values ranging from –3 
(extreme drought) to +3 (extreme wet). The 
thresholds corresponding to each DHI value are 
shown in Table 1. Drought hazard values are 
mapped to each DHI, representing the severity of 
drought conditions, based on the drought hazard 
CDF as shown in Fig. 5. 
 
Table 1 Thresholds for the Drought Hazard Index 
 

DH Percentile DHI 
≤ 9.08 0 – 5 −3 

9.08 − 12.23 5 – 15 −2 
12.23 − 12.98 15 – 30 −1 
12.98 − 19.69  30 – 70 0 
19.67 − 23.57 70 – 85 1 
23.57 − 29.14 85 – 95 2 

 > 29.14 95 – 100 3 
 
2.5 Drought Risk Index 

 
DHI is combined with a drought exposure index 

(EI) and drought vulnerability index (VI) to define 
drought risk for each province as 
 
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = 𝑫𝑫𝑫𝑫𝑫𝑫 ∗ 𝑬𝑬𝑬𝑬 ∗ 𝑽𝑽𝑽𝑽    (3) 
 
where 𝑬𝑬𝑬𝑬 is defined as the ratio of agricultural (crop 
and livestock) area to the total area of each province 
and  𝑽𝑽𝑽𝑽 = 𝟏𝟏 − the fraction of irrigation area in each 
province. Examples of EI and VI for Bangkok, 
Chiang Mai, Ayutthaya, and Phuket provinces in 
2016 are shown in Table 2 and 3, respectively. 
 

Table 2 Examples of Drought Exposure Index 
 

Province Total 
Area 
(km2) 

Crop 
Area 
(km2) 

Livestock 
Area 
(km2) 

EI 

Bangkok 1,566 267 111 0.24 
Chiang Mai 22,041 5,240 34 0.24 
Ayutthaya 2,547 1,870 45 0.75 
Phuket 549 186 9 0.36 

 
Table 3 Examples of Drought Vulnerability Index 
 

Province Total 
Area 
(km2) 

  Irrigation 
     Area  
     (km2) 

VI 

Bangkok 1,566     749   0.52 
Chiang Mai 22,041     1,214 0.94 
Ayutthaya 2,547     1,976 0.22 
Phuket 549     1 0.99 

 
Similar to DHI, drought risks are mapped, based on 
its CDF, to a seven-level drought risk index 
providing measures of the drought hazard impact in 
each area concerning its exposure to agricultural 
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damage and vulnerability in adaptation to drought 
disaster.  
 
3. RESULTS AND DISCUSSIONS 

 
To generate a drought hazard map every 10 days, 

the DHI for each pixel is calculated from the 
drought hazard model mapping with the CDF 
threshold. The drought hazard map is in a 
georeferenced raster format and can be displayed in 
a geographic information system (GIS) at 1 km 
spatial resolution. The results are qualitatively 
validated by the news about drought events and by 
agrometeorological reports from TMD 
(accumulated rainfall, MAI, and SMI). Quantitative 
validation of the model is performed based on the 
probability of detection (POD) for drought events 
that are officially announced by the Department of 
Disaster Prevention and Mitigation (DDPM), 
Ministry of Interior. 

 
3.1 Comparison of Drought Hazard Map with 
Agrometeorological Reports 

 
Result validation was qualitatively performed 

by comparison of the drought hazard map with the 
TMD agrometeorological reports in accordance 
with drought event news. All TMD reports are 
calculated from gauge station measurements and 
displayed in a portable document format (pdf) on 
the TMD website. A severe drought event was 
posted in the news at the beginning of January 2016 
when there was a drought crisis, with extremely low 
water levels in the Bhumibol and Chaophraya dams 
located in the central region of Thailand. This event 
is clearly seen in the drought hazard map, Fig. 6 (a), 
showing severe to extreme drought in the central 
part of Thailand. This is confirmed by the 
accumulated rainfall, Fig. 6 (b), which exhibits light 
rainfall in the area. 

Note that there are inconsistencies among TMD 
indices. For example, MAI map in Fig. 6 (c) 
indicates extreme drought almost throughout 
Thailand, whereas accumulated rainfall map shows 
a fair amount of rainfall in the southern part. 
However, the drought hazard map shows near 
normal to moderate drought conditions in that area, 
which is consistent with both accumulated rainfall 
and SMI maps, in Fig. 6 (a) and (d). Another 
example is the report for the eastern part that shows 
slightly less than normal rainfall, with moderate 
drought in the MAI map but severe drought in the 
SMI map. All this information was correctly 
accounted for in the drought hazard map with 
normal to moderate drought in the eastern area. 
Evidently, the drought hazard map is useful to 
monitor drought conditions coping with all three 
aspects including rainfall, vegetation and soil 
conditions. More importantly, it is much easier to 

interpret and to be comprehensible to the people in 
the area prone to drought risk, thus effectively 
supporting proactive drought management.  

 

          
(a) (b) 

       
      (c)                   (d) 
 

Fig. 6 Comparison of (a) drought hazard map, (b) 
accumulated rainfall, (c) moisture 
available index (MAI), and (d) soil 
moisture index (SMI) maps, during 
January 1−10, 2016 

 
3.2 Probability of Detection (POD) Analysis  

 
During the dry season (January to April) of 2016, 

the DDPM had announced 426 drought situations 
countrywide. Based on this information, the 
probability of detection (POD) of drought hazard 
for a drought event is calculated. Since the drought 
situation announcement is at the district level, the 
DHI values (with 1-km resolution) at the time of 
announcement were averaged over the relevant 
district area. For each announcement, a hit event 
occurs if the average DHI is less than −0.5. The 
probability of detection is computed by 
 
𝑃𝑃𝑃𝑃𝑃𝑃 = total number of hit events

total number of drought annoucement 
               (4) 

 
The result was compared with the POD computed 
from the TMD report on MAI and SMI. The 
threshold for declaring drought by the MAI and 
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SMI is 2.5. Based on the level of MAI (0 − 4) and 
SMI (0 − 3), the average value over the district area 
was computed. If this value is less than 2.5, the hit 
event occurs.  The results are shown in Table 4. The 
POD of DHI is 0.96, which is higher than the POD 
of MAI (0.91) but less than that of SMI (1.00).  
 
Table 4 The probability of detection for drought 

hazard index (DHI), Moisture available 
index (MAI), and Soil moisture index 
(SMI).   

 
Drought hit 
Thresholds  

Number of hit 
events POD 

DHI < − 0.5 
MAI < 2.5 
SMI < 2.5 

411 
388 
426 

0.96 
0.91 
1.00 

 
3.3 Comparison of Drought Hazard Map and 
Drought Risk Map 
 

Derived from the drought hazard map, the 
drought risk map displays the corresponding 
regions affected by drought. However, the severity 
of drought is lessened where EI and/or VI are low 
and magnified where EI and/or VI are high. Shown 
in Figure 7 with a red circle, the drought risk index 
is slightly reduced compared with the drought 
hazard index in the northern forest region because 
of sparse agricultural areas. On the contrary, 
drought risk is magnified from drought hazard in 
the northeastern region where most areas are rain-
fed agriculture with minor irrigation, shown as a 
blue circle in Fig. 7.     
 

 
 
 Fig. 7 Comparison of (a) drought hazard map and 

(b) drought risk map during January 1−10, 
2016 

 
3.4 Drought Risk Analysis Platform 
 

To support practical drought monitoring and 
risk assessment and promote proactive drought 
management, a drought risk analysis platform is 
implemented. Shown in Figure 8, satellite inputs 
from TERRA/AQUA MODIS and FY-2 VISSR are 
received, processed and archived at the Chulabhorn 
Satellite Receiving Station (CSRS). Hourly Rainfall 
and daily LST products are kept in network storage 
to be processed as decadal products for the drought 
hazard and drought risk models. The output, stored 
in the Geoserver database, is ready to publish on the 
web server. Fig. 9 depicts user querying information 
from the platform via web service by selecting an 
area of interest, product types, and time. 
 

 
 
Fig. 8 Drought Risk Analysis Platform 
 

 
 
Fig. 9 User information query from the platform 
 
4. CONCLUSIONS 
 

This work presents a simple yet effective 
drought hazard model, integrating FY-2E and 
Terra/Aqua satellite data, for drought monitoring. 
Multiple linear regression is applied to develop the 
model with input parameters including accumulated 
rainfall estimate from FY-2E IR1 data and different 
LST and NDVI derived from Terra/Aqua MODIS 
data. These input parameters represent precipitation 
information, soil water content, and vegetation 
condition, respectively. Drought hazard can be 
calculated every 10 days at 1 km spatial resolution. 
The CDF of the drought hazard was then generated 
and used to assign the drought hazard index (DHI) 
with the thresholding method.  
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The results were qualitatively validated with 
drought crisis news. In comparison with the TMD 
agrometeorological reports, it is shown that a 
drought hazard index is a useful tool for drought 
monitoring in that it integrates all three drought 
aspects into one easy-to-understand index with 
consistent interpretation. Quantitatively, the results 
were validated against the DPM's drought situation 
announcement with a POD equals to 0.96.  

The DHI is combined with drought exposure 
index (EI), represented by the agricultural areas, 
and drought vulnerability index (VI), calculated 
from the irrigation areas, to generate the drought 
risk values which are mapped to the drought risk 
index in a similar approach as DHI and posted as 
the drought risk map. As a result, drought risk 
assessment can be analyzed and represented by a 
seven-level drought risk index, which is illustrated 
by a drought risk map indicating the impact of 
drought hazard on agricultural areas based on its 
exposure and vulnerability. Both the drought hazard 
map and the drought risk map are automatically 
generated and published on the web at 
http://csrs.ku.ac.th/wegis/Product/KURDI (every 
10 days). This information is beneficial to both the 
government and farmers, leading to proactive 
drought management. 
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