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ABSTRACT: The paper presents the new application of two classical nonlinear estimators, which are the 
multi layer perceptron and the neuro-fuzzy networks, to approximate the workability parameters of fresh self-
compacting concrete based on the amount of input ingredients like cement, fly ash, water, additives or 
admixtures. The estimation of workability parameters is much needed to determine the quality of the fresh self-
compacting concrete before starting the production. A total of 360 real field tests of 30 types of self-compacting 
concrete were conducted and seven basic parameters were measured for each test. These samples will form the 
training and testing data sets for the nonlinear models. The numerical results showed that the MLP network 
could estimate the workability parameters with relative errors less than 3.6% and the TSK could estimate with 
te relative errors less than 2.7%. These results proved the ability to create high accuracy approximation models 
of the proposed solutions, where the neuro-fuzzy model would show a little better performance than the 
multilayer perceptron. Both of the models required only relatively simple structures, making them more 
promising to be used in practical applications.  
 
Keywords: Self-compacting concrete; Nonlinear approximation; Neuro-fuzzy network; Multilayer perceptron  
 
1. INTRODUCTION 
 

Self-compacting concrete (SCC) is a fresh 
concrete mixture with high flexibility, self-flowing 
under the weight to completely fill all edges of the 
form without vibration, passing through complex 
geometry without being segregated. The 
performance of self-compacting concrete is affected 
by climatic conditions (temperature and humidity), 
its workability will decrease over time, especially 
under high temperature and low humidity 
conditions, so the advantages of self-compacting 
concrete will no longer the same. The decrease of 
workability not only affects the difficulty of 
construction but also affects the quality and strength 
of self-compacting concrete [1, 2].  

Vietnam has a tropical monsoon climate, and 
many unfavorable weather cycles have negative 
impacts on the workability of self-compacting 
concrete such as hot weather, dry. Therefore, the is 
an urgent need to study and develop a model to 
predict the variation of SCC parameters in 
Vietnamese climate. In practice, computational 
models for estimating the workability parameters of 
the SCC based on the input components are highly 
expected. Currently, SCCs are created using  
predefined fixed mixes of input components, so any 
change to SCC parameters requires retesting a 
number of scenarios of mixed input components, 
which is time consuming and expensive. High-
precision calculation models help to quickly 

estimate the outcomes of the workability 
parameters, thereby significantly reducing the time 
to find new mix ratios and the cost of actual field 
trials and tests.  

In this paper, we introduce and compare two 
methods using artificial neural network (ANN) and 
neuro-fuzzy network to predict SCC parameters [3, 
4] depending on the amount of main components 
such as cement, fly ash, water, super ductile 
additive (SD) and viscosity modifying admixtures 
(VMA). The SCC parameters considered in this 
paper are the 7 most popular ones namely slump 
flow (SF), t500, Vfunel, Lbox, Jring, segration ratio (SR) 
and R28 [5, 6, 7].  

There have been various studies and resulting 
models to estimate the parameters of SCC, among 
which the compressive strength R28 is the most 
commonly considered parameter. Various models 
based on different input sets have been proposed 
just to predict the R28. For example, R28 was 
predicted in [8] based on 4 inputs: the water/binder 
(W/B) ratio, the control compressive strength, the 
percentage of plastic replacement and the plastic 
type. But in [9], R28 is predicted from on the W/B 
ratio and 6 other  inputs, and in [10] the number of 
inputs is increased to 15. The work of [7] used 7 
inputs such as cement, blast furnace slag, fly ash, 
water, superplasticizer, coarse aggregate, and fine 
aggregate to predict R28. A distinct approach is 
proposed in [11], where R28 is predicted from some 
of the workability parameters themselves, such as 
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SF, Vfunel, Lbox. The proposed model in this paper 
achieves a correlation coefficient of 0.976.  

When the R28 is the most popular parameter that 
is under consideration for many studies, we found 
that not much models were investigated for the 
other six parameters. Additionally, the studies have 
highlighted that the workability parameters' 
dependencies on the inputs undergo changes when 
the production technique is altered or new 
admixtures are introduced, leading to the need for 
models update or re-training with new data.  

For the purpose of this article, we 
experimentally mixed 360 SCC samples to create a 
data sample set using the required standard 
procedures and measuring gages. As nonlinear 
estimators, the neural network and the neuro-fuzzy 
network were used and tested. Two networks were 
trained to generate all 7 workability parameters of 
SCC from the input amounts of the selected 
components listed above. These models are classic 
and have achieved good success on various 
technical problems [3, 4, 7, 12, 13, 14]. Both models 
are adaptive, meaning their parameters can be 
adapted to fit a given data samples. Numerical 
results showed that both neural networks and  
neuro-fuzzy networks can be used as good 
nonlinear estimators for the workability parameters 
of SCC, with neuro-fuzzy network performing 
slightly better. 

 
2. THE WORKABILITY PARAMETERS OF 
SELF-COMPACTING CONCRETE 

 
The SCC parameters selected in this paper to be 

estimated by the computational models, are defined 
in EN 12350 [5], and the 7 most popular parameters 
were listed in the Introduction section. They are 
described in more detail below. 

The SF (Slump flow) and t500 time are 
determined in the tests described in EN 12350-2 to 
assess the fillability of SCC in the absence of 
obstruction. A simplified scheme is presented in Fig. 
1, where the SCC is released from the collar and 
allowed to spread out and expand. The t500 is the 
time (rounded to 0.1s) required for the SCC to first 
reach a 500-mm diameter circle, for example at 
point A in Fig. 1. The t500 time indicates also the 
relative viscosity of the SCC. Thereafter, the SCC 
continued to spread, and when it stopped, the 
diameters of the SCC are measured. 

The SF parameter is defined as: 
 

1 2

2
d dSF +

=  (1)  

 
where d1 is the SCC area diameter and d2 is the 

dimension perpendicular to d1 as shown in Fig. 1. 
 
 

 
 
Fig.1  The description of the parameters used in 

the SF test  
 

The Vfunnel parameter is the time needed by the 
SCC to flow out completely from a fully filled V-
shaped funnel. An example of V-shapped funnel is 
shown in Fig. 2. The Vfunnel time is also rounded to 
0.1s. 
 

 

 
 
Fig. 2.  The design of the V-shaped funnel and an 

example of its use in practical [5] 
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Fig. 3.  The design of the L-shapped box and an 
example of its use in practice 

 
The Lbox parameter is the ratio of the heights of 

the concrete at both ends after letting the concrete 
to spread inside an L-shape box. This parameter 
indicates the ability of the SCC to pass through 
narrow openings such as spaces between the 
reinforcement bars in the building structure. 

The resistance of the SCC to segregation is 
tested in the sieve segregation test. In this test, fresh 
SCC is allowed to stand for approximately 15 
minutes, then the top portion of the sample is taken 
and poured into a 5mm sieve. The ratio between the 
material passing through the grid and the poured 
mass is called the segregation ratio: 
 

( ) 100ps p

c

m m
SR

m
− ⋅

=   (2) 

 
where: mps is the mass of the SFC passed (including 
the sieve receiver, measured in grams), mp is the 
mass of the sieve receiver itself, and mc is the input 
mass of SFC.  

The Jring test is used to test the SCC’s ability to 
pass when obstruction occurs. Fresh SCC is pured 
in to a slump cone standing on a stiff, square base 
plate. A Jring device as shown on Fig. 4 is used to 

simulate the obstructions. The Jring device is placed 
in the center with the slump cone inside. Once the 
SCC is placed inside the cone, the cone is raised 
vertically to allow the concrete to flow out through 
the ring. 

 

 
      

 
 

Fig. 4.  The use of a Jring in practical test and its 
design with marked characteristic points 
and values 

 
The 5 distances from the level of the top of the 

ring to the top of the spreaded SCC were measured: 
• The gap distance at the center of the Jring 

device 0h∆  
• The two distances at just outside of the west 

and east farmost points of the Jring device 
(along horizontal axis) 1xh∆  and 2.xh∆  

• The two distances right outside of the north 
and south farmost points of the Jring device 
(along vertical axis) 1yh∆  and 2.yh∆  
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Table 1  Examples of measured parameters of SCC 
 

Type Cement 
(kg) 

Fly ash 
(kg) 

Water 
(kg) 

SD 
(kg) 

VMA 
(kg) 

SF 
(mm) 

t500 
(s) 

Vfunel 
(s) 

SR Lbox Jring 
(mm) 

R28 
(Mpa) 

CP1 600.0 52.9 197.0 6.53 0.23 600 5 12.4 4.6 0.8 10.7 67.9 

CP2 576.8 50.8 189.0 6.28 0.22 605 4.2 11.6 7.8 0.8 10.5 64.7 

CP3 546.0 48.1 187.1 5.94 0.21 630 3.1 10.2 8.9 0.81 10 63.8 

CP4 518.3 45.7 197.4 5.64 0.20 672 2.87 9.7 11.7 0.82 10 52.6 

CP5 500.9 44.1 203.8 5.45 0.19 685 2.34 9.34 12.8 0.83 9.9 49.8 

CP6 548,7 96,8 199,0 6,45 0,22 635 4,95 11,7 5,9 0,81 10 60,6 

CP7 527,7 93,1 192,0 6,21 0,21 640 4,9 11,8 6,5 0,82 10 60,3 

CP8 499,8 88,2 185,2 5,88 0,20 660 4,8 11,2 7,3 0,87 9,9 56,9 

CP9 474,7 83,8 195,5 5,58 0,19 680 3,9 9,7 8,6 0,82 9,8 55,4 

CP10 458,9 81,0 201,9 5,40 0,19 710 1,74 8,1 17 0,92 9,5 48,5 

CP11 476,3 158,8 201,0 6,35 0,22 655 4,7 9,45 7,2 0,94 9,3 59,5 

CP12 458,3 152,8 194,0 6,11 0,21 660 4,67 9,34 7,2 0,95 9,1 57,2 

CP13 434,4 144,8 182,5 5,79 0,20 690 4,8 9,87 6,9 0,82 9,4 52,1 

CP14 412,9 137,6 192,7 5,51 0,19 705 4,65 9,3 9,1 0,84 9,1 50,1 

CP15 399,4 133,1 199,2 5,33 0,18 720 1,6 7,5 19,5 0,94 9 47,8 

CP16 406,2 218,7 205,0 6,25 0,22 690 3,15 9,15 8,5 0,88 9,5 46,9 

CP17 391,1 210,6 196,0 6,02 0,21 695 3,1 9,2 8,6 0,87 9,6 46 

CP18 371,0 199,8 179,8 5,71 0,20 700 2,78 8,9 8,7 0,89 9,5 46,3 

CP19 352,9 190,0 190,0 5,43 0,19 730 1,67 7,3 15,7 0,92 9,1 44,9 

CP20 341,5 183,9 196,5 5,25 0,18 740 1,42 6,8 18 0,957 8,9 41,5 

CP21 359,8 258,4 205,0 6,18 0,21 750 3 8,9 7 0,91 9,2 44,1 

CP22 346,6 248,9 198,0 5,95 0,21 768 3,1 9 7,2 0,91 9,3 44,5 

CP23 329,0 236,3 188,0 5,65 0,20 770 3,2 9,1 7,3 0,92 9,4 44,9 

CP24 313,0 224,8 188,3 5,38 0,19 805 1,5 7 19 0,92 7,9 43,7 

CP25 303,0 217,6 194,7 5,21 0,18 810 1,52 6,7 19,7 0,98 7,8 42,3 

CP26 409.3 140.0 197.0 5.49 0.19 710 4.56 9.2 8.7 0.85 9 49.4 

CP27 399.9 133.0 211.0 5.33 0.18 715 1.56 7.6 20 0.947 9.5 47.7 

CP28 444.9 147.4 185.9 5.92 0.20 650 4.79 9.7 7.56 0.957 9.2 58.1 

CP29 328.8 236.4 189.0 5.65 0.20 795 2.44 8.79 5.1 1 9.2 45.1 

CP30 323.9 216.0 192.0 5.40 0.19 800 1.54 7.7 20 0.9 8 44.8 
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With these 5 distances, the Jring value is 
calculated as: 

 
1 2 1 2

04
x x y y

ring
h h h h

J h
∆ + ∆ + ∆ + ∆

= − ∆  (3)  

 
This value should be less than 10mm for the 

SCC to be accepted. 
The last parameter, the R28, is used to evaluate 

the effect of the storage time of the concrete mixture 
on the compression resistance rate of the concrete. 
Samples of concrete mixture were collected every 
30 minutes. These samples were kept under 
standard conditions and tested on a spindle 
compressor after 28 days. 

The working parameters of self-compacting 
concrete mixture depend on the amounts of input 
components, where we tested with the variations of 
5 main components: cement, fly ash, water, SD and 
VMA. All the tests had 770kg of rocks and 808kg 
of sands. We tested 30 main types of SCC, whose 
examples ingredients are given in Tab. 1. For each 
type, we repeated the tests with small variations in 
the input ingedients to created a total of 360 data 
samples. 

As it can be deducted from the measurement 
results, the parameters of SCC strongly depend 
nonlinearly on the input components [3, 6]. The 
need of a mathematical model predicting the 
parameters from the input ingredients is very high 
because thanks to the generalization ability of the 
model, we can predict the parameters for the input 
conditions, which were not presented in the learning 
data samples [15]. In this paper, we proposed to use 
the classic MultiLayer Perceptron (MLP) and the 
neuro-fuzzy Takaga – Sugeno – Kang (TSK) 
network as the non-linear estimators. 

 
3. THE  NEURAL NETWORK AND 
NEURO-FUZZY NETWORK AS 
NONLINEAR ESTIMATORS 

 
In a typical approach of using machine learning 

algorithms to create new models for approximation, 
estimation or classification of objects of unknown 
transfer functions mapping from inputs to the output, 
the models are adapted in the supervised mode, 
based on two data sets, the learning and testing set. 
If we denoted the learning data samples set 
containing p pairs of input-output { },i ix d  where 

1,..., ;i p=  ;N
i ∈x   K

i ∈d   then the parameters 
of an estimating function f() are adapted to 
minimize the error function: 

 

( ) 2

1

1 min
2

p

learn i i
i

E f
=

= − →∑ x d  (4)  

 

After that, the function is tested with new set of 
q pairs of data { },test test

i ix d  where 1,..., :i q=  

 

( ) 2

1

1
2

p
test test

test i i
i

E f
=

= −∑ x d  (5)  

 
If there are different candidates for the estimator, 

the one with lowest testing error will be selected as 
the winner.  

The MLP (MultiLayer Perceptron) is a 
feedforward structure with cascaded layers [15, 16]. 
The network with 1 input layer, 1 output layer and 
1 hidden layer is the most popular in applications. 
In Fig. 5 an example of MLP network with only 1 
hidden layer is presented with N inputs (and one 
contanst input “1”), M neurons in the hidden layer 
and K outputs; the connections between the inputs 
and the hidden neurons are denoted by ijW  

( )1,2, , ;  0,1, 2, ,i M j N= =   the connections 
between the hidden neurons and the outputs are 
denoted by ijV  ( 1, 2, , ;  0,1, 2,i K j M= =  ). the 
transfer function of hidden neurons is f1 and the 
transfer function of output neurons is f2.  
 

 
 
Fig. 5.  An example of MLP with one hidden layer  

 
The output of the MLP is calculated as a 

feedforward network for an input vector 
[ ]1 2, , , N

Nx x x= ∈x   as follow:  
• Outputs of hidden layer’s neurons vi for 

1, ,i M=  : 
 

0

1
0

0
M

i j ij
j

v

v f x W
=

=


  =    
 
∑

 (6)  

• Outputs of the MLP network yi for 
1, ,i K=  : 

 



International Journal of GEOMATE, June 2023, Vol. 24, Issue 106, pp.120-129 

125 
 

2
0

M

i j ij
j

y f v V
=

 
=   

 
∑  (7)  

 
or in a simplified form as: 

 

2 1
0 0

N N

i k jk ij
j k

y f f x W V
= =

   
=         

∑ ∑  (8)  

 
This network is widely used for nonlinear 

mapping problems [3, 4, 13]. When a structure with 
a given number of hidden neurons is trained to fit a 
set of learning data samples, the weights Wij and Vij 
are adjusted. The classic Levenberg – Marquadrt 
algorithm was used to train the MLPs [15, 16]. The 
number of hidden neurons was chosen by the trial 
and error method, i.e. a number of networks were 
randomly generated, then trained on the same set of 
samples and tested with another set of samples. The 
network with lowest test error would be selected for 
further application. We started testing from a 
network with only 1 hidden neuron and 
successively increased the number of hidden 
neurons since simple networks correspond to lower 
VC dimensions and better performance in testing 
[15]. 

The second nonlinear estimator that is used for 
testing in this paper is the well-known model of 
neuro-fuzzy TSK network, whose structure is given 
in Fig. 6 with N inputs, M reasoning rules and 1 
output (for simplification since the model can be 
defined for any outputs number). 

The output of the TSK for an input vector 
[ ]1 2, , , N

Nx x x= ∈x   is determined as follow: 
• The output of each elementary fuzzifier 

( )i jxµ  realizing the fuzzy value of 

j ijx A≈  for 1, , ,i M=   1, , :j N=   
 

( ) 2
1

1
iji j b

j ij

ij

x
x A

µ

σ

=
 −

+   
 

 (9) 

 
• The output of the fuzzifiers denoted as 

( )iµ x  for 1, , :i M=   
 

( ) ( ) 2
1 1

1

1
ij

N N

i i j b
j j j ij

ij

x
x A

µ µ

σ
= =

= =
 −

+   
 

∏ ∏x  (10)  

 
where Aij, σij and bij are nonlinear 
parameters to be trained. 

 
 

 
 
Fig. 6.  An example of TSK network with one 

output 
 

• The output of linear TSK function denoted 
as ( )if x  for 1, , :i M=   

 

0
1

( )
N

i i ij j
j

f q q x
=

= +∑x  (11)  

 
where qij are linear parameters to be trained. 

• The output of the TSK network: 
 

( )

( )
11

2

1

( )
M

i i
i

M

i
i

f
Fy
F

µ

µ

=

=

⋅
= =

∑

∑

x x

x
  (12)  

 
For the TSK network, similar to the MLP 

network, the number of inputs and outputs are 
defined by the data samples. During the training it’s 
needed to find the number of rules that could allow 
the network to achieve satisfactory low level of 
testing errors. We used the similar “trial and test” 
approach, starting with network with only 1 rule and 
increase the number of rules during the trials. To 
train the TSK networks, the hybrid algorithm 
described in [16] was used.  
 
4. NUMERICAL EXPERIMENTS AND 
RESULTS  
 

Experimentally 360 SCC samples (12 variants 
of each of 30 types of SCC as listed in Tab. 1) were 
mixed and tested. For each type of SCC, 10 variants 
were randomly selected to the training set, the 
remaining 2 were assigned to the testing set. The 
goal of the training is to build a model that replicates 
the nonlinear mapping between the inputs (the 
amount of each components) and the outputs (the 
workability parameters of the mixed SCC).  
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Totally, the training set had 300 samples, the 
testing set had 60 samples. As measures of accuracy, 
we used following indicators calculated for the 
testing data set (as mentioned in previous section, 
the error on the testing data set is more important): 

• MAE (Mean Absolute Error): 
 

1
1 q test test

i iiMAE
q =

= −∑ y d  (13)  

 
• MRE (Mean Relative Error): 
 

1
1

test test
i iq

i test
i

MRE
q =

−
= ∑

y d

d
 (14)  

 
• Max AE (Max Absolute Error): 
 

1
 max test test

i ii q
Max AE

= →
= −y d  (15)  

 
For the purpose of estimating 7 parameters of 

the self-compacting concrete (i.e. the SF, t500, Vfunel, 
Lbox, Jring, SR and R28), the MLP and TSK networks 
will have 7 outputs corresponding to the parameters, 
5 inputs corresponding to the input parameters of 5 
main components (cement, fly ash, water, SD, 
VMA). 

 
4.1. Results for the MLP network 

 
For an MLP network with known number of 

inputs and outputs, the remaining main task is to 
find the number of hidden neurons that allow the 
network to learn the samples with low value of 
testing error function as in (5). Using the trial and 
error method described in previous section, the 
MLP with 10 hidden neurons was chosen as the one 
with both learning and testing errors being low. 

The results obtained for each parameter using 
the MLP network are shown above. In Fig. 7 the test 
results for the SF (upper) and t500 (lower) 
parameters are shown for 60 testing cases. We can 
see that the generated MLP network responses 
followed the target values for all test cases. The 
numerical error measures are presented in Tab. 2. 
In Fig. 8 there were the results for Vfunel (top) and 
Lbox (bottom) parameters of the 60 testing cases. We 
can also see that the generated MLP network 
responses followed the destination values for all the 
test cases. The numerical error measures are shown 
in Tab. 2. 

In Fig. 9 there were the results for the 
parameters Jring (upper), SR (middle) and R28 
(bottom), each obtained using the MLP network 
respectively. The selected errors of the 
approximations are collected in the Tab. 2 below. 

 

 
 
Fig. 7.  The approximation results using MLP 

network for SF and t500 parameters 
 

 

 
 
Fig. 8.  The approximation results using MLP 

network for Vfunel and Lbox parameters 
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Fig. 9.  The approximation results using MLP 

network for Jring, SR and R28 parameters 
 
Table 2  Approximation errors of MLP for the 

parameters  
 

Parameters MAE MRE (%) MaxAE 
SF 5.792 0.816 25.392 
t500 0.0831 2.991 0.535 

Vfunel 0.162 1.819 0.485 
Lbox 0.0117 1.295 0.0542 
Jring 0.097 1.022 0.415 
SR 0.321 3.572 1.268 
R28 0.742 1.462 1.875 

 
4.2. Results for the TSK network 

 
 

In a similar way as the MLP network was trained 
and selected, for the TSK network with known 
number of inputs and outputs, the remaining main 
task is to find the number of reasoning rules that 
allow the network to learn the samples with low 
value of testing error function as in (5). With the 
trial and error method described in previous section, 
the TSK with 15 rules was selected as the one with 
both learning and testing errors being low. The 
achieved results for each parameters using the TSK 
network are shown below. 

 

 

 
 
Fig. 10.  The approximation results using TSK 

network for SF and t500 parameters 
 

Figure 10 presented the testing results for the SF 
(top) and t500 (bottom) parameters. Similar to the 
results achieved with the application of MLP 
network, we can see that the generated responses 
from the TSK network closely followed the 
destination values for all the 60 test cases. The 
numerical error measures are presented in Tab. 3. 

Figure 11 presented the testing results for Vfunel 
and Lbox parameters of the 60 testing cases. Similar 
to the results achieved with the MLP network 
shown in Fig. 8, we can see that the generated 
responses from the TSK network closely followed 
the destination values for all the 60 test cases. The 
detailed numerical errors are presented in Tab. 3. 
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Fig. 11.  The approximation results using TSK 

network for Vfunel and Lbox parameters 
 

 

 

 
 
Fig. 12.  The approximation results using TSK 

network for Jring, SR and R28 parameters 
 

Finally, Fig. 12 presented the testing results for 
Jring (top), SR (middle) and R28 (bottom) parameters 
achieved by using the TSK network respectively. 
The selected errors of the approximations are 
collected in the Tab. 3. 
 
Table 3  Approximation errors of TSK for the 

parameters  
 

Parameters MAE MRE (%) MaxAE 
SF 5.198 0.741 29.142 
t500 0.0744 2.684 0.366 

Vfunel 0.0882 0.983 0.273 
Lbox 0.0099 1.101 0.0311 
Jring 0.073 0.779 0.242 
SR 0.269 2.678 1.417 
R28 0.466 0.896 2.059 

 
Comparing the results in Tab. 2 and Tab.3 it can 

be concluded that the TSK achieved a better 
performance than the MLP but both of the models’ 
results are very satisfactory for us.  

 

 
 
Fig. 13.  The comparison of estimation MRE for 

using MLP and TSK networks  
 

The comparison of the MRE for both proposed 
networks is shown in Fig. 13, where it can be seen 
that both networks achieved MRE smaller than 
3.6% for all the estimated parameters, however the 
TSK network’s performance was better for each of 
the parameters. 

 
5. CONCLUSIONS 
 

The application of MLP and TSK networks was 
proposed to estimate the working parameters of the 
selft-compacting concrete based on the input 
components such as cement, fly ash, water, SD and 
VMA, and tested with actual real concrete mixtures. 
Numerical results showed that a high accuracy can 
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be achieved for all 7 parameters of the SCC by both 
of the networks, however TSK network showed a 
better performance than MLP for the data sets used. 

The method can be extended for estimation 
using different concrete components and it can form 
the base for the inverse problem, where we can find 
the input mixture components to achieve a given 
working set of SCC parameters. In practice, these 
models can help users quickly estimate the expected 
SCC parameters for a given set of input mixtures, or 
conversly, determine the input mixtures required to 
obtain SCC products with certain desired 
workability parameters. 

It should be noted that the proposed models, as 
for trained models in supervised mode, would need 
to be re-trained when the data sets expands with 
new cases that were not similar to the previous ones.  
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