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ABSTRACT: Ultimate bearing capacity formulae for foundations are specified in the guideline published by the 
Architectural Institute of Japan for the design of building foundations. The rigid plastic finite element method was 
developed by Tamura and Ohtsuka to estimate the ultimate bearing capacity of footing. Unlike deformation 
analysis, this method employs limited soil constants; it uses only the strength parameters of cohesion c and friction 
angle φ as it considers the limit state directly and disregards the deformation of the building and ground. A series 
of rigid plastic finite element analyses were conducted to compare the ultimate vertical and inclined bearing 
capacities of spread foundations between the simulation results and the theoretical formula for a two-layered clayey 
soil system. The change in the failure mode of the ground was discussed using the geometrical ratio between the 
width of the footing and the height of the surface layer. The strength ratio of the surface and second ground layer 
was clearly shown to affect the formation of failure mode. The applicability of the rigid plastic finite element 
method for the assessment of the ultimate bearing capacity of a two-layered clayey soil system was successfully 
demonstrated.  
 
Keywords: Two-layered clayey soil, Ultimate bearing capacity, Rigid plastic finite element method, Vertical and 
inclined load 
 
 
1. INTRODUCTION 
 

The calculation of the ultimate bearing capacity of 
the soil is important when designing a building [1]. 
The ultimate bearing capacity formulae for building 
foundations are specified in the guideline published 
by the Architectural Institute of Japan [2]. These 
formulae were based on experiments as well as 
theoretical considerations with regard to risk 
avoidance. However, the vertical bearing capacity of 
two-layered clayey soil has not been adequately 
investigated. In this research, the vertical bearing 
capacity of two-layered clayey soil was analyzed 
using numerical simulations. The bearing capacity 
under squeeze breakdown of clayey soils was last 
discussed at GEOMATE2017 [3]. In this case, while 
the soil was assumed to be two-layered, the lower 
clay layer was very stiff compared to its upper 
counterpart. Thus, shear failure occurs in the upper 
clay layer. In this research, it is assumed that the 
strengths of the upper and lower clay layers are 
relatively similar. Shear failure in both the upper and 
lower clay layers was considered. Moreover, the 
inclined bearing capacity was investigated in specific 
cases. First, the bearing capacity of the two-layered 
clayey soil was simulated [4, 5], and subsequently, 
the associated inclined bearing capacity was 
discussed. The analysis uses the rigid plastic finite 
element method (RPFEM), which was developed 

separately by Tamura and Ohtsuka [6, 7]. This 
method was employed to estimate the ultimate 
bearing capacity of footing. The Drucker–Prager 
yield function was adopted as the soil constitutive 
equation, and associate and non-associate flow rules 
were introduced to establish the configuration 
relationship of the ultimate state. Hoshina et. al. [8-
10] applied a higher order soil constitutive equation. 
Using this method, the structural safety assessment or 
calculation of soil bearing capacity was evaluated. A 
characteristic of this method is that, in contrast with 
deformation analysis, it applies limited soil constants; 
it uses only strength parameters such as cohesion and 
friction angle because it addresses the limit state 
directly by disregarding the deformation of the 
building and ground. Since the RPFEM uses the 
upper bound theorem of plastic theory, the end result 
is slightly larger than the true value. 

 
2. THE CONSTITUTIVE EQUATION FOR 
RIGID PLASTIC FINITE ELEMENT METHOD  
 
2.1 Outline of RPFEM 
 

Tamura [6] developed the rigid plastic 
constitutive equation for frictional material. The 
Drucker-Prager’s type yield function is expressed as 
follows.  
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𝑓𝑓(𝝈𝝈) = 𝛼𝛼Ι1 + �𝐽𝐽2 − k = 0 (1) 
 

where I1 is the first invariant of stress σij  and𝐼𝐼1 =
𝑡𝑡𝑡𝑡�𝜎𝜎𝑖𝑖𝑖𝑖� in which extension stress is defined positive. 
 

J2 is the second invariant of deviator stress Sij and 
J2 = 1

2
 Sij Sij and the coefficients, 

 α = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
�9+12𝑡𝑡𝑡𝑡𝑡𝑡2𝜙𝜙

 and 𝑘𝑘 = 3𝑐𝑐
�9+12𝑡𝑡𝑡𝑡𝑡𝑡2𝜙𝜙

  and the 
material constants corresponding to shear resistanthe 
ce angle and cohesion under the plane strain condition. 
The volumetric strain rate is expressed as follows: 
 

𝜀𝜀𝜈̇𝜈 = 𝑡𝑡𝑡𝑡(𝜺̇𝜺) = tr �𝜆𝜆 𝜕𝜕𝜕𝜕(𝝈𝝈)
𝜕𝜕𝝈𝝈

� = 𝑡𝑡𝑡𝑡 �𝜆𝜆 �𝛼𝛼𝑰𝑰+ 𝒔𝒔
2�𝐽𝐽2

�� =
3𝛼𝛼

�3𝛼𝛼2+12

𝑒̇𝑒 (2) 

 
where λ is an indeterminate multiplier and I is the unit 
tensor. The strain rate 𝜀𝜀̇  which is pa urely plastic 
component should satisfy the volumetric constraint 
condition as follow: 

 
ℎ(𝜺̇𝜺) = 𝜀𝜀𝜈̇𝜈 −

3𝛼𝛼

�3𝛼𝛼2+12

𝑒̇𝑒 = 𝜀𝜀𝜈̇𝜈 − η𝑒̇𝑒 = 0  (3) 

 
in which 𝜀𝜀𝜈̇𝜈 and 𝑒̇𝑒 indicate the volumetric strain rate 
and the norm of strain rate, respectively. The 
parameter 𝜂𝜂  is defined in Eq. (3). The rigid plastic 
constitutive equation is expressed by Lagrangian 
method after Tamura as follows: 
 
𝝈𝝈 = 𝑘𝑘

�3𝛼𝛼2+12

𝜺̇𝜺
𝑒̇𝑒

+ 𝛽𝛽 �𝑰𝑰 − 𝜂𝜂 𝜀̇𝜀
𝑒̇𝑒
� (4) 

 
where 𝛽𝛽  represents a Lagragian multiplier which 
indicates the equilibrating stress satisfying the yield 
function expressed by Eq. (1). Moreover, the 
constraint condition on sthe train rate is introduced 
into the constitutive equation directly with the use of 
pthe enalty method [8-9], [11]. The stress-strain rate 
relation for the Drucker-Prager’s yield function is 
expressed as follow: 
 
𝝈𝝈 = 𝑘𝑘

�3𝛼𝛼2+12

𝜀̇𝜀
𝑒̇𝑒

+ 𝜅𝜅(𝜀𝜀𝜈̇𝜈 − 𝜂𝜂𝑒̇𝑒) �𝑰𝑰 − 𝜂𝜂 𝜀̇𝜀
𝑒̇𝑒
�  (5) 

 
where κ is a penalty constant. FEM with this 
constitutive equation provides the equivalent 
equation of the upper bound theorem in plasticity so 
that this method is called as RPFEM in this study. It 
is noted property of this constitutive equation that the 
relationship between stress and strain rate is specified. 
The norm of strain rate is substantially indeterminate 
since the limit state of the structure is focused. Stress 
is determined for the normalized strain rate using its 
norm. In order to determine the limit load coefficient 

for the prescribed load, Hoshina et al. [9] introduced 
the constraint condition on external work into the 
equilibrium equation by using the penalty method. It 
reported the rational result was obtained by the 
developed method in comparison with the previous 
works. The use of the penalty method was profited 
computation time efficiency and obtaining a stable 
computational result.  
 
2.2 Outline of high-order yield function 
 
The high-order yield function can be expressed as e 
follows: 
 

0)()( 21 =−+= bJaIf nσ   (6) 
 
where a, b, and n are material parameters. When n = 
0.5, Eq. (6) corresponds to the DP model function. 
Assuming an associated flow rule, the strain rate and 
volumetric strain can be obtained by the Eqs. (6) and 
(7). 
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where λ  is the plastic multiplier? Based on Eqs. (6) - 
(8), the first stress invariant is expressed as follows: 
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Finally, the rigid plastic equation was given as 
follows: 
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3. SIMULATIONS OF VERTICAL BEARING 
CAPACITY OF TWO-LAYERED CLAYEY 
SOIL  
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3.1 Review of the bearing capacity of two-layered 
clayey soil  

This research considers two key parameters. The 
first is B/H, where B is the foundation width and H is 
the height of the upper clayey soil. The other is 
cu2/cu1, where cu1 and cu2 are the shear strength of 
the upper and lower clayey soil, respectively. The 
vertical bearing capacity of two-layered clayey soil 
was reported by Vesic [12] as follows. 

1. cu1 > cu2: Calculate the vertical bearing
capacity by applying the distributed fracture
mode.

2. cu1 << cu2: Calculate the vertical bearing
capacity by squeeze breakdown of clayey soils.

3. cu1 < cu2: Calculate the vertical bearing
capacity by interpolation between the results
from the above two methods.

In the case of cu1 < cu2 < ∞, the vertical bearing 
capacity is calculated as follows. 

𝑞𝑞𝑓𝑓 = 𝑐𝑐𝑢𝑢1𝑁𝑁𝑚𝑚 + 𝛾𝛾𝑡𝑡𝐷𝐷 (11) 

qf (kPa) is the vertical bearing capacity, 𝛾𝛾𝑡𝑡 
(kN/m3) is the unit weight, and Nm is as seen in Fig. 
1. D (m) is the penetration depth.

Fig. 1 Bearing capacity of two-layered clayey soils 
(after Yamaguchi [13]) 

3.2 Numerical conditions 

Figure 2 shows the numerical meshes for a plain 
strain condition. Fig. 2(a) shows that the mesh is 200 
m wide, and the depth of the upper layer is 15 m while 
that of its lower layer is 35 m. The foundation width 
was set to 30 m (B/H = 2). Fig. 2(b) shows that the 
mesh is 390 m wide, and the depths of the upper and 
lower layers are 5 m and 95 m, respectively. The 
foundations widths were thus set to 18, 30, 42, 50, 
78, and 102 m (B/H = 3.6–20.4).  

    In the RPFEM, the numerical mesh only needs to 
be set within the failure mode. The required 
conditions for the numerical meshes are satisfied 
with Fig. 2. The strength of the upper clay layer 
was set to cu1 = 10 kPa, while that of the lower clay 
layer was set to cu2 = 12, 15, 20, 30, 50, 75, and 100 
kPa. The strength of the foundation was set to c = 
100,000 (kPa), assuming a rigid foundation. 

(a) B/H = 2 

(b) B/H = 3.6–20.4 

Fig. 2 Numerical meshes 

3.3 Numerical results 

Numerical simulations were conducted for cu1 < 
cu2 < ∞. Table 1 shows the results of cu2/cu1 for 
different values of B/H. Figure 3 shows the 
relationship between Nm and B/H as per Fig. 1. In Fig. 
1, Nm increases as B/H increases. Moreover, the 
larger the value of cu2/cu1, the larger the slope of B/H 
with respect to Nm. Figure 3 shows that as B/H 
increases, Nm also increases. However, for small 
values of cu2/cu1, the increase in Nm is not observed, 
and Nm approaches a constant value. This tendency 
becomes increasingly prominent as cu2/cu1 decreases. 

Table 1 Variation in Nm as per cu2/cu1 and B/H 

0 2 4 8 12 16 20
5

10

15

B/H

N
m

数値はcu2 /cu1

2 1

帯基礎

円基礎

5

10
∞

Value
Zone foundation
Circle foundation

200 m

50 m
lower clayey layer （cu2）

Upper clayey layer （cu1）

30 m （B）

15 m （H)

35 m

00 

390 m

100 m

B:18 m (b), 30 m (c), 42 m (d), 50 m (e), 78 m (f), 102 m (g)
5 m （H)

95 m

Upper clayey layer （cu1）

lowerclayey layer （cu2）

B/H 1.2 1.5 2.0 3.0 5.0 7.5 10.0
2.00 5.55 5.48 5.40 5.39 5.39 5.39 5.39
3.60 5.94 6.49 6.45 6.35 6.34 6.34 6.34
6.00 6.12 7.09 8.05 7.81 7.74 7.74 7.74
8.40 6.28 7.36 8.84 9.50 9.27 9.20 9.20

10.00 6.25 7.46 9.25 10.88 10.23 10.20 10.19
15.60 6.33 7.69 9.74 12.94 14.12 13.86 13.83
20.40 6.27 7.66 9.84 13.55 18.15 17.06 16.87

c u 2/c u 1



International Journal of GEOMATE, Aug. 2019, Vol.17, Issue 60, pp.144-150 

147 
 

 
 
Fig. 3 The relationship between Nm and B/H 

 
Figure 4 shows the shear strain contours at failure 

for B/H = 3.6 and 15.6, and cu2/cu1 = 3. The red line 
marks the boundary between the upper and lower 
clayey soil layer. When B/H = 3.6, the squeeze 
breakdown mode of clayey soils was observed. On 
the other hand, when B/H = 15.6, the whole failure 
mode, including the lower clayey layer, was 
observed. When B/H is relatively small, the squeeze 
breakdown of clayey soils occurs because the strength 
of the lower clayey layer is higher than that of the 
upper layer. On the other hand, when B/H is larger, 
the whole failure occurs. In the case of squeeze 
breakdown of clayey soils as B/H increases, Nm 
increases linearly, as shown in Fig. 1. Conversely, it 
is clear that when the whole failure occurs, even if 
B/H increases, the increase in Nm will cease. 

 

 
 

(a) B/H = 3.6, cu2/cu1 = 3 
 

 
 

(b) B/H = 15.6, cu2/cu1 = 3 
 
Fig. 4 Shear strain contours 

 
Figure 5 shows the shear strain contours at failure 

for B/H =10.0 and 15.6, and cu2/cu1 = 7.5 and 10.0. 
All failure modes show a squeeze breakdown of 
clayey soils, and the vertical bearing capacity was 
calculated using the following Eq. (12). 

 

H
Bccq u

uf 2
14.4 +=  (12) 

 
where qf, cu, B, and H are the ultimate bearing 
capacity of squeeze breakdown (kN/m2), undrained 
strength (kN/m2), foundation width (m), and height of 
the clay layer (m), respectively. The bearing capacity 
during squeeze breakdown of clayey soils is a 
function of cu (cu1: the strength of the upper clayey 
layer) and B/H, as seen in Eq. (12). When the strength 
of the clay was constant, the bearing capacity of 
squeeze breakdown in clayey soils follows a linear 
relationship with B/H.  

 

 
 

(a) B/H = 10.0, cu2/cu1 = 7.5 
 

 
 

(b) B/H = 10.0, cu2/cu1 = 10.0 
 

 
 

(c)  B/H = 15.6, cu2/cu1 = 7.5 
 

 
 

(d) B/H = 15.6, cu2/cu1 = 10.0 
 
Fig. 5 Shear strain contours 
 
3.4 Remarks 

 
Vesic [12] concluded the following. When the 

strength of the lower clayey soil reaches ∞, squeeze 
breakdown occurs, and the vertical bearing capacity 
increases lineally in relation to B/H. When the ratio 
between the upper and lower clayey soil strength 
(cu2/cu1) exceeds 10.0, whole failure (including the 
lower clayey layer) takes place. However, using the 
RPFEM, the threshold for the squeeze breakdown of 
clayey soils and whole failure, including that of the 
lower clayey layer, is 3 (cu2/cu1 > 3.0). Comparing Fig. 
1 and 3 with regard to the slope between Nm and B/H, 
the formula proposed by Vesic [12] provides a 
different result, that is, lower than the numerical 
results of this study. This can be attributed to the 
factor of safety in design. However, when cu2/cu1 > 

0
2
4
6
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3.0, the vertical bearing capacity corresponds to the 
upper limit for B/H, and thus, it is clear that the 
method proposed by Vesic [12] for bearing capacity 
calculations may result in a dangerous design. 

 
4. SIMULATIONS OF THE VERTICAL 
BEARING CAPACITY OF TWO-LAYERED 
CLAYEY SOIL WITH AN INCLINED LOAD 

 
The simulations for bearing capacity were also 

performed with an inclined load. They were 
conducted for three inclined angles (10, 20, and 30°) 
at B/H = 2.0 and 20.0, and cu2/cu1 = 1.2 and 10.0. The 
numerical mesh and conditions are the same as those 
in Fig. 2. 

 
4.1 Numerical results 

 
Figure 6 shows the relationship between the 

inclined angle and Nm at B/H = 2.0 and cu2/cu1 = 1.2 
and 10.0. The theoretical bearing capacity (Th) was 
calculated following Eq. (3), as proposed by AIJ [2] 
for cu = 1.0 (upper clayey layer strength) and 1.2 
(lower clayey layer strength).  

 
𝑞𝑞𝑓𝑓 = 𝑐𝑐 × 𝑖𝑖𝑐𝑐 × α × 𝑁𝑁𝑐𝑐   (13) 
 
where qf, ic, α, and Nc are the ultimate bearing 
capacity (kN/m2), a correction factor of the inclined 
load ( 𝑖𝑖𝑐𝑐 = (1 − 𝜃𝜃/90)2 ),( θ : inclined angle (°)), 
shape coefficient (= 1.0),  and coefficient of bearing 
capacity (= 5.1 at φ = 30°), respectively. 

Figure 7 shows the shear strain contours at failure 
for B/H = 2.0, cu2/cu1 = 1.2 and 10.0, and angle = 0 
and 30°. At cu2/cu1 = 1.2 and inclined angle = 0°, the 
simulation provides values for Nm between those for 
cu = 1.0 (Th) and cu = 1.2 (Th). As the inclined angle 
increases, the simulated value of Nm approaches the 
theoretical value of Nm at cu = 1.0 (Th). At cu2/cu1 = 
10.0 and inclined angle = 0°, the effect of cu2/cu1 is 
not evident as B/H is small. Therefore, shear failure 
of the upper clayey soil layer occurs (shown Fig. 7(a, 
c)). However, as the inclined angle increases, the 
failure mode changes from total wedge failure to slip 
failure for the upper clayey soil layer (shown Fig. 7(b, 
d)). Therefore, for larger inclined loads, the simulated 
bearing capacity approaches the bearing capacity 
calculated using the strength of the upper clayey layer 
of soil. 

Figure 8 shows the relationship between the 
inclined angle and Nm at B/H = 20.0 and cu2/cu1 = 1.2 
and 10.0. Figure 9 shows the shear strain contours at 
failure for B/H = 20.0, cu2/cu1 =1.2 and 10.0, and 
inclined angle = 0 and 30°. At cu2/cu1 = 1.2 and 
inclined angle = 0°, the simulated value of Nm lies 
between the Nm at cu = 1.2 (Th). The failure mode in 
Fig. 9(a) indicates that the strength of the lower 
clayey layer plays a dominant role in bearing capacity. 

As the inclined load increases, the simulated values 
of Nm approach the theoretical values of Nm at cu = 
1.0 (Th) because of the slip failure mode of the upper 
clayey soil layer (shown in Fig. 9(b)). At cu2/cu1 = 
10.0 and inclined angle = 0°, the simulated value of 
Nm is 16.9. From Eq. (2), the vertical bearing capacity 
during squeeze breakdown is 14.1, and thus, the 
numerical result is slightly larger than the theoretical 
value. As the inclined load increases, the simulated 
value of Nm approaches the theoretical value of Nm at 
cu = 1.0 (Th). This is due to the slip failure of the 
upper clayey soil layer, in a manner similar to that 
described above (shown in Fig. 9 (d)). 

  

 
 

(a) B/H = 2.0, cu2/cu1 = 1.2 
 

 
 

(b) B/H = 2.0, cu2/cu1 = 10.0 
 

Fig. 6 Relationship between inclined angle and Nm 
 
 

 
 

(a) B/H = 2.0, cu2/cu1 = 1.2, angle = 0 
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(b) B/H = 2.0, cu2/cu1 = 1.2, angle = 30 
 

 
 

(c) B/H = 2.0, cu2/cu1 = 10.0, angle = 0 
 

 
 

(d) B/H = 2.0, cu2/cu1 = 10.0, angle = 30 
 

Fig 7. Shear strain contours 
 

 
 

(a) B/H = 20.0, cu2/cu1 = 1.2 
 

 
 

(b) B/H = 20.0, cu2/cu1 = 10.0 
 

Fig. 8 Relationship between inclined angle and Nm 
 

 
 

(a) B/H = 20.0, cu2/cu1 = 1.2, angle = 0 
 

 
 

(b) B/H =20.0, cu2/cu1 = 1.2, angle = 30 
 

 
 

(c) B/H = 20.0, cu2/cu1 = 10.0, angle = 0 
 

 
 

(d) B/H = 20.0, cu2/cu1 = 1.0, angle = 30 
 

Fig 9. Shear strain contours 
 

5. CONCLUSION 
 
Numerical simulations of the vertical bearing 

capacity of a footing in a two-layered clayey soil 
system were conducted using the RPFEM. When cu1 
(strength of the lower clayey layer) < cu2 (strength of 
the upper clayey layer) < ∞, failure occurs across 
both soil layers. The greater the values of B/H (B: 
foundation width, H: height of the upper clayey soil) 
and cu2/cu1, the greater the bearing capacity. When 
squeeze breakdown failure occurs, the bearing 
capacity increases linearly with respect to B/H. On the 
other hand, when cu2/cu1 is small, the increase in 
bearing capacity levels off, reaching a constant value 
despite the increase in B/H. The result shows that this 
tendency is more prominent as cu2/cu1 becomes 
smaller, and the bearing capacity becomes constant 
with a smaller B/H. In the case of cu2/cu1 > 3.0, the 
whole failure mode with upper and lower clayey soil 
layer occurred from the squeeze breakdown failure 
mode. Thus, the findings proved that the bearing 
capacity calculation method proposed by Vesic [12] 
is inadequate and can result in an unsafe design. In 
the case of inclined loads, when the inclined load was 
larger, the simulated bearing capacity approached the 
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value of the bearing capacity calculated for the upper 
layer of clayey soil; for large inclined angles, the slip 
failure mode occurs in the upper layer of the clayey 
soil. Thus, the applicability of the RPFEM for the 
assessment of the ultimate bearing capacity of a two-
layered clayey soil system is successfully 
demonstrated. 
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