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ABSTRACT: In this paper, we study the mathematical Heat and Mass transfer  model, Apple shipments from 
Australia to England began to decline several decades ago. Due to a disorder known as "brown heart," which 
developed due to insufficient cooling. When placed on deck, the apples are normally warm and must be 
refrigerated to keep them fresh. Storing in the cold Breathing generates heat as well. This heat was thought to 
be the cause. The generation successfully counteracted the apple's cooling, resulting in dark fruit. ''Brown Heart 
".This was the issue that resulted in the Awberry. To investigate how heat is distributed within a room. The 
location where heat is produced. At first, Awberry assumed the apple was in the beginning.at a constant 
temperature In the suitable value, we can assume that this temperature is zero. Select a temperature scale from 
the drop-down menu. 𝑡𝑡 =  0 is the current time. It must be concluded that the generation of heat inside the 
apple is not ''Brown Heart "cause. We now know that the brown core is caused by an excessive concentration 
of carbon dioxide and an insufficient amount of oxygen in the stockpile. It affects the metabolic activities that 
occur in apples and leads to a decrease in temperature separation. We have solved the heat equation for cooling 
apples using the method of separating variables in addition to numerical methods and clarification of the results 
obtained, including comparing the exact solution with the numerical solution. In terms of discovering analytical 
and numerical solutions, the approach is quite effective and useful.   
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1. INTRODUCTION 
 

Due to inadequate preservation facilities, over 
30% of the perishable goods in India end up in 
garbage. Furthermore, due to a lack of equipment 
and infrastructure, only a small amount of fruits and 
vegetables are grown in developing nations for local 
markets or export. Various strategies must be used 
to reduce losses throughout the harvest, handling, 
storage, packaging, and processing of fresh fruits 
and vegetables into products that are suited for 
storage and have enhanced storage qualities. Fruits, 
vegetables, and other food products with flesh are 
best preserved using the cold preservation method 
since it preserves their flavor, aroma, and texture. 
Refrigeration regulates microbial, biochemical, and 
physical processes Food goods are processed, 
which stops deterioration and lengthens storage life. 
To enhance the economic performance along the 
entire cold chain, the producer must remove the 
field heat from the cultivated fruits and vegetables 
[1].This guarantees that the produce is handled 
properly and lowers losses. Once the fruit is in the 
hands of the final consumer who is purchasing for 
his consumption, the need for low temperature must 
be maintained throughout the remainder of the 
voyage. Produce must have a longer shelf life since 
it cannot be eaten immediately after it is produced; 
consumption takes time. Preservation works to 
extend the shelf life of some fruits from two days to 

ten days. Therefore, it's crucial to extend the 
produce's shelf life. Since the quality of perishable 
goods declines over time, it is now required to 
preserve those features [2]. Precooling after harvest 
to eliminate field heat is essential for maintaining 
quality. Precooling aids in slowing down enzymatic 
and respirational activity. Additionally, it slows 
down microbial expansion, which prevents food 
from deteriorating [3]. Precooling reduces moisture 
loss and permits a decrease in ethylene production, 
which postpones ripening and ultimately improves 
quality and shelf life. There are essentially two pre-
cooling methods. They are water cooling and forced 
air precooling. Each technique has benefits and 
drawbacks of its own. Precooling is the cooling 
process utilized in forced air systems. A specific 
speed of cold air is flown over the product in this 
situation. An external refrigeration cycle that uses a 
refrigerant to cool the air maintains the air's 
temperature. In the forced air cooling method, a 
centrifugal fan is used to push air onto the fruit, 
whereas water is used in place of air in the water 
cooling method. Since there is a surplus of air and a 
shortage of water, air cooling is favored to water 
cooling. Additionally, air cooling has lower chilling 
losses than water cooling. Therefore, forced air pre 
cooling is most frequently used [4]  .  
To reduce post-harvest deterioration, agricultural 
goods should be chilled from ambient temperatures 
to their optimal storage temperatures [5]. After 
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harvest, there is a significant loss of fresh fruits due 
to rot and shriveling as a result of inappropriate 
storage and handling conditions [6].  
In practice, storage facility managers frequently 
define and apply storage conditions based on past 
experience, allowing for certain product losses due 
to non-optimal storage conditions. Local heat and 
mass transfer intensities are usually overlooked 
while assuming global heat and mass transfer rates 
through product layers. As a result, the complex 
interactions between products in the same layer as 
well as between layers are ignored. Computer 
modeling and computational fluid dynamics have 
been used to investigate challenges in the 
agriculture and food industries [5-10] . 
 For decades, numerical and experimental methods 
have been used to study conjugate heat transfer and 
fluid flow in a channel containing heated 
components [10-13]. Despite the fact that such 
issues were primarily focused on the cooling of 
electronic components, several post-harvest 
processing processes make use of the same problem 
configuration. The conjugate heat transfer problem 
for laminar flow over a three-heated obstacle array. 

[14] used a control volume model to tackle the 
problem. A similar correlation was utilized to 
explore the same topic in reference [15], but this 
time with experimental data rather than numerical 
simulations. Young and Vafai [16] looked into the 
cooling of heated blocks, focusing on the heat 
transfer process's conjugate behavior. Fruit cooling 
is a conjugate heat transfer phenomenon, and a 
thorough understanding of the problem requires 
modeling and simulation, in which the local air 
velocity fields, as well as the mutual heat transfer 
between each fruit and the surrounding cooling 
agent, are analyzed. Fuji apples are often stored and 
chilled in rectangular crates with lateral holes to 
allow cool air to enter. The temperature is normally 
controlled at or below freezing. 

Two consecutive apples will be separated by 
around one diameter. As a result, the heat emitted 
by the leading apple will almost surely delay the 
cooling of the following lining apples during the 
chilling process. The influence of the leading apple 
on the following apple as a function of the coolant 
air flow can be used to investigate the overall 
cooling performance of two apples. 

 
2. RESEARCH SIGNIFICANCE 

 
Perishable goods, particularly fruits and 

vegetables, benefit greatly from cold storage. By 
controlling the marketing window and supplies, it 
stabilizes prices and aids in the scientific 
preservation of perishables. Additionally, it protects 
the primary producer from distress sales and 
motivates farmers to increase their output. It has 
become necessary to build cold storage facilities in 

the producing and consuming centers to handle the 
current and projected production of fruits and 
vegetables due to the drop in prices of fruits and 
vegetables right after harvest and to prevent 
spoilage of fruits and vegetables worth crores of 
rupees. India is the world's second-biggest producer 
of veggies and the world's greatest producer of 
fruits. Despite this, there aren't many fruits and 
vegetables available per person because post-
harvest losses account for between 25% and 30% of 
production.  

A significant amount of product also loses 
quality before it is consumed, which is another 
factor. This is primarily due to the perishable nature 
of the produce, which needs a cold chain structure 
to preserve the quality and prolong the shelf-life if 
consumption is not intended right away after 
harvest. Farmers are forced to sell their produce 
right away after harvest due to a lack of cold storage 
and related cold chain infrastructure, which leads to 
surplus situations and low price realization. Farmers 
occasionally do not even receive their harvesting 
and shipping charges, let alone the cost of produce 
or profit. As a result, our production is not 
stabilizing, and the farmers switch to a different 
crop the following year after burning their fingers 
on one crop, perpetuating the vicious cycle. 

Despite taking the risk of growing high-value 
fruits and vegetables year after year, our farmers 
continue to live in poverty. Accessible cold storage 
will go a long way toward lowering the possibility 
of a distressed sale and ensuring higher returns. This 
article makes an effort to teach readers about a 
variety of broad technical and financial features of 
a cold storage unit in order to assist lenders and 
project developers. Due to the uneven distribution 
of airflow in industrial cooling rooms, it is difficult 
to maintain uniform cooling and cold storage of 
fresh produce. Computational fluid dynamics 
(CFD) is a simulation tool that uses a powerful 
computer and applied mathematics to model fluid 
flow situations for the prediction of heat, mass, and 
momentum transfer as well as for the best design in 
industrial processes. CFD has recently been used in 
the food production sector. the use of CFD in the 
food processing sectors, including mixing, drying, 
and sterilizing. These localities have experienced 
significant development in recent years. 

 

3. THE HEAT EQUATION'S DERIVATION  
 

Consider a heat-conducting homogeneous rod 
that extends down the 𝑥𝑥 −axis from 𝑥𝑥 =  0 to 𝑥𝑥 =
 𝐿𝐿 in order to derive the heat equation (see Figure 1). 
The rod is insulated laterally such that heat only 
travels in the 𝑥𝑥 − direction, has a uniform cross 
section 𝐴𝐴, and a constant density. Let 𝑐𝑐 stand for the 
rod's specific heat, and let 𝑢𝑢(𝑥𝑥, 𝑡𝑡)  represent the 
temperature of the cross section at the position 𝑥𝑥 at 
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any instant in time 𝑡𝑡. (the amount of heat required 
to raise the temperature of a unit mass of the rod by 
a degree). The amount of heat is in the portion of 
the rod that lies between the cross sections at 𝑥𝑥 and 
𝑥𝑥 +  ∆𝑥𝑥. 

 

 
Fig.1 Heat conduction in a thin bar. 

 
𝑄𝑄(𝑡𝑡) = ∫ 𝑐𝑐𝑐𝑐𝑥𝑥 + ∆𝑥𝑥

𝑥𝑥 𝐴𝐴𝑢𝑢(𝑠𝑠, 𝑡𝑡)𝑑𝑑𝑠𝑠.                             (1) 
 
On the other hand, according to Fourier's rule of 

heat conduction, the rate at which heat moves into 
the segment across the cross section at 𝑥𝑥  is 
proportional to the cross section and the gradient of 
the temperature at the cross section: 

 
−𝑘𝑘𝐴𝐴 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
,                                                          (2) 

 
where stands for the rod's thermal conductivity. 

Heat moves in the direction of lowering temperature, 
as seen by the sign in Equation 2 Similar to this, the 
rate of heat flow through the segment's cross section 
at 𝑥𝑥 +  ∆𝑥𝑥 equals 

 
−𝑘𝑘𝐴𝐴 𝜕𝜕𝜕𝜕(𝑥𝑥 + ∆𝑥𝑥,𝑡𝑡)

𝜕𝜕𝑥𝑥
,                                                   (3) 

 
The change in the heat content of the segment 

𝑥𝑥 ≤ 𝑠𝑠 ≤ 𝑥𝑥 +  ∆𝑥𝑥   must match the difference 
between the amount of heat that flows in through 
the cross section at 𝑥𝑥 and the amount of heat that 
flows out through the cross section at 𝑥𝑥 +  ∆𝑥𝑥 . 
Therefore, by removing Equation (3) by deriving 
the result from Equation (2) and converting it to the 
time derivative of Equation (1). It is thin enough to 
maintain a consistent temperature across the entire 
cross section. 

 

𝜕𝜕𝑄𝑄
𝜕𝜕𝑡𝑡 = � 𝑐𝑐𝑐𝑐

𝑥𝑥 + ∆𝑥𝑥

𝑥𝑥

𝐴𝐴
𝜕𝜕𝑢𝑢(𝑠𝑠, 𝑡𝑡)
𝜕𝜕𝑡𝑡 𝑑𝑑𝑠𝑠 

= 𝑘𝑘𝐴𝐴 �𝜕𝜕𝜕𝜕(𝑥𝑥 + ∆𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− 𝜕𝜕𝜕𝜕(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑥𝑥

�                                 (4) 
 

According to the mean value theorem for integrals, 
if the integrand in Equation 4 is a continuous 
function of s, 
 

� 𝑐𝑐𝑐𝑐
𝑥𝑥 + ∆𝑥𝑥

𝑥𝑥

𝐴𝐴
𝜕𝜕𝑢𝑢(𝑠𝑠, 𝑡𝑡)
𝜕𝜕𝑡𝑡 𝑑𝑑𝑠𝑠 =

𝜕𝜕𝑢𝑢(𝜉𝜉, 𝑡𝑡)
𝜕𝜕𝑡𝑡 ∆𝑥𝑥, 

 𝑥𝑥 < 𝜉𝜉 < 𝑥𝑥 + Δ𝑥𝑥,                                                (5) 

so that Equation (4) becomes 
 

𝑐𝑐𝑐𝑐Δ𝑥𝑥 𝜕𝜕𝜕𝜕(𝜉𝜉,𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝑘𝑘 �𝜕𝜕𝜕𝜕(𝑥𝑥 + ∆𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

− 𝜕𝜕𝜕𝜕(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑥𝑥

�               (6) 
 

Equation 6 two sides are divided by 𝑐𝑐𝑥𝑥, and the 
limit is assumed to be ∆𝑥𝑥 →. 
 
𝜕𝜕𝜕𝜕(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑥𝑥

= 𝛼𝛼2 𝜕𝜕
2𝜕𝜕(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑥𝑥2

                                            (7) 
 

using  𝛼𝛼2 = 𝑘𝑘
𝑐𝑐𝑐𝑐

. The one-dimensional heat 
equation is also known as equation(7). The 
diffusivity inside the solid is measured 𝛼𝛼2.We must 
include the phrase ∫ 𝑓𝑓(𝑠𝑠, 𝑡𝑡)𝑥𝑥 + ∆𝑥𝑥

𝑥𝑥 𝑑𝑑𝑠𝑠  if the rod 
receives heat from an outside source at a rate of 
𝑓𝑓(𝑥𝑥, 𝑡𝑡) per unit volume per unit time. Equation 4 
time derivative term is denoted by 𝑓𝑓(𝑠𝑠, 𝑡𝑡). As a 
result, in the lim

∆𝑥𝑥→0
, 

 
𝜕𝜕𝜕𝜕(𝑥𝑥 ,𝑡𝑡)

𝜕𝜕𝑡𝑡
− 𝛼𝛼2 𝜕𝜕

2𝜕𝜕(𝑥𝑥 ,𝑡𝑡)
𝜕𝜕𝑥𝑥2

= 𝐹𝐹(𝑥𝑥, 𝑡𝑡)                            (8) 
 
where 𝐹𝐹(𝑥𝑥, 𝑡𝑡)  =  𝑓𝑓(𝑥𝑥, 𝑡𝑡)/(𝑐𝑐𝑐𝑐)  is the source 
density. This equation is called the 
nonhomogeneous heat equation. 
 
4. HEAT EQUATION OF SEPERATION OF 
VARIABLES 

 
   we show how the axisymmetric heat equation 
may be solved in an endlessly long cylinder by 
using the separation of variables.  
The heat equation is in circular coordinates and is 
 
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

= 𝜶𝜶𝟐𝟐 � 𝝏𝝏
𝟐𝟐

𝝏𝝏𝒓𝒓𝟐𝟐
+ 𝟏𝟏

𝒓𝒓
𝝏𝝏𝝏𝝏
𝝏𝝏𝒓𝒓
�         ,𝟎𝟎 ≤ 𝒓𝒓 < 𝒃𝒃,   𝟎𝟎 < 𝝏𝝏,    (9) 

 
where 𝒂𝒂𝟐𝟐represents the thermal diffusivity and 

𝒓𝒓  represents the radial distance. Assume that we 
heated this cylinder's temperature to uniform T0 and 
then allowed it to cool.  
To cool by maintaining the surface's temperature at 
zero beginning at time t = 0. Assuming the answer 
is of the form 𝝏𝝏(𝒓𝒓, 𝝏𝝏)  =  𝑹𝑹(𝒓𝒓)𝑻𝑻(𝝏𝝏), we can start by 
assuming that 

 
1
𝑅𝑅
�𝑑𝑑

2𝑅𝑅
𝑑𝑑𝑟𝑟2

+ 1
𝑟𝑟
𝑑𝑑𝑅𝑅
𝑑𝑑𝑟𝑟
� = 1

𝛼𝛼2𝑇𝑇
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

= −𝑘𝑘2

𝑏𝑏2
                         (10) 

 
Only negative values of the separation constant 

produce nontrivial solutions.   
𝑅𝑅(𝑟𝑟)  = 𝐽𝐽0(𝑘𝑘𝑟𝑟

𝑏𝑏
) , where 𝐽𝐽0 is the Bessel function 

of the first kind and zeroth order, is the nontrivial 
solution. When the separation constant is zero, 
𝑅𝑅(𝑟𝑟)  =  𝑙𝑙𝑙𝑙(𝑟𝑟), which is infinite, is produced. At 
the start. The modified Bessel function 𝐼𝐼0(𝑘𝑘𝑟𝑟

𝑏𝑏
)  is 

produced by positive separation constants. The 
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boundary requirement that  
𝑢𝑢(𝑏𝑏, 𝑡𝑡)  =  𝑅𝑅(𝑏𝑏)𝑇𝑇(𝑡𝑡)  =  0 𝑜𝑜𝑟𝑟 𝑅𝑅(𝑏𝑏)  =  0  cannot 
be satisfied by this function, despite the fact that it 
is finite at the origin. 𝐽𝐽0(𝑘𝑘) must equal 0 in order to 
satisfy the boundary condition 𝑅𝑅(𝑏𝑏)  =  0 . There 
are  𝑘𝑘𝑛𝑛  constants, which are infinite, according to 
this transcendental equation. The temporal portion 
of the solution solves the differential equation for 
each  𝑘𝑘𝑛𝑛. 
 
𝑑𝑑𝑇𝑇𝑛𝑛
𝑑𝑑𝑡𝑡

+  𝑘𝑘𝑛𝑛
2𝑎𝑎2

𝑏𝑏2
𝑇𝑇𝑛𝑛 = 0,                                             (11) 

 
which has the answer 
 

𝑢𝑢𝑛𝑛(𝑟𝑟, 𝑡𝑡) = 𝐴𝐴𝑛𝑛 𝐽𝐽0(𝑘𝑘𝑛𝑛
𝑟𝑟
𝑏𝑏

)e
−𝑘𝑘𝑛𝑛2𝑎𝑎2

𝑏𝑏2 𝑡𝑡                           (13) 
 

All of the specific answers are superimposed 
linearly to produce the overall solution. 
 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) = 2𝑇𝑇0 ∑
1

𝑘𝑘𝑛𝑛𝐽𝐽1(𝑘𝑘𝑛𝑛)
 𝐽𝐽0(𝑘𝑘𝑛𝑛

𝑟𝑟
𝑏𝑏

)e
−𝑘𝑘𝑛𝑛2𝑎𝑎2

𝑏𝑏2 𝑡𝑡∞
𝑛𝑛=1     (14) 

 
Finding An is the last thing we need to do. 
Considering the initial condition of 𝑢𝑢(𝑟𝑟, 0) = 𝑇𝑇0 

 

𝑢𝑢(𝑟𝑟, 0) = 𝑇𝑇0 ∑ 𝐴𝐴𝑛𝑛𝐽𝐽0∞
𝑛𝑛=1 �𝑘𝑘𝑛𝑛𝑟𝑟

𝑏𝑏
�                          (15) 

 
𝐴𝐴𝑘𝑘 = 1

𝑐𝑐𝑘𝑘
∫ 𝑥𝑥 𝑓𝑓(𝑥𝑥)𝐽𝐽𝑛𝑛
𝐿𝐿
0 (𝜇𝜇𝑥𝑥)𝑑𝑑𝑥𝑥,                            (16) 

  
𝑐𝑐𝑘𝑘 = 1

2
𝐿𝐿2𝐽𝐽𝑛𝑛+12  (𝜇𝜇𝑥𝑥)                                           (17) 

𝑇𝑇𝑛𝑛(𝑡𝑡) = 𝐴𝐴𝑛𝑛e
−𝑘𝑘𝑛𝑛2𝑎𝑎2

𝑏𝑏2 𝑡𝑡                                             (12) 
  

As a result, the product solutions 
 
 

Equations 8 and 9 provide 

𝐴𝐴𝑛𝑛 =
2𝑇𝑇0

𝐽𝐽12(𝑘𝑘𝑛𝑛)𝑏𝑏2
� 𝑟𝑟
𝑏𝑏

0

𝐽𝐽0 �𝑘𝑘𝑛𝑛
𝑟𝑟
𝑏𝑏� 𝑑𝑑𝑟𝑟 

=
2𝑇𝑇0

𝑘𝑘𝑛𝑛2𝐽𝐽12(𝑘𝑘𝑛𝑛)𝑏𝑏2
�
𝑘𝑘𝑛𝑛𝑟𝑟
𝑏𝑏 � 𝐽𝐽1 �

𝑘𝑘𝑛𝑛𝑟𝑟
𝑏𝑏 ��

0

𝑏𝑏

 

= 2𝑇𝑇0
𝑘𝑘𝑛𝑛𝐽𝐽1(𝑘𝑘𝑛𝑛)

                                                           (18) 
 

from the equation 

𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑥𝑥𝑛𝑛𝐽𝐽𝑛𝑛(𝑥𝑥)] = 𝑥𝑥𝑛𝑛𝐽𝐽𝑛𝑛−1(𝑥𝑥)                                (19) 
 
 Consequently, the whole response is 

𝑢𝑢(𝑟𝑟, 𝑡𝑡) = 2𝑇𝑇0 ∑
1

𝑘𝑘𝑛𝑛𝐽𝐽1(𝑘𝑘𝑛𝑛)
 𝐽𝐽0(𝑘𝑘𝑛𝑛

𝑟𝑟
𝑏𝑏

)e
−𝑘𝑘𝑛𝑛2𝑎𝑎2

𝑏𝑏2 𝑡𝑡∞
𝑛𝑛=1     (20) 

 
 
Fig.2 The temperature 𝑢𝑢(𝑥𝑥, 𝑡𝑡) within a thin bar as a 
function of position 𝑥𝑥  and time α2𝑡𝑡 when we 
maintain both ends at zero and the initial 
temperature equals 𝑥𝑥(𝜋𝜋 –  𝑥𝑥). 

 
 

5. HEAT EQUATION OF REFRIGERATION 
OF APPLE  
 
   The nonhomogeneous heat equation becomes 
spherical because of the spherical geometry. 
 
1
𝛼𝛼2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
�+ 𝐹𝐹

𝜅𝜅
, 0 ≤ 𝑟𝑟 < 𝑏𝑏,   0 < 𝑡𝑡,    (21) 

 
where 𝛼𝛼2  represents the thermal diffusivity, 
𝑏𝑏 represents the apple's radius, 𝜅𝜅  is the thermal 
conductivity, and 𝐹𝐹 is the heating rate (per unit time 
per unit volume).When we try to employ variable 
separation on Equation (21), we find that the 𝐹𝐹

𝜅𝜅
 It 

prevents us from doing so. To get around this 
problem, we ask the more straightforward issue of 
what occurs after a very long time. 
We expect a balance to be reached eventually, in 
which conduction takes the heat generated within 
the apple to the surface, where the environment 
absorbs it. We hope for a steady-state solution 𝑤𝑤(𝑟𝑟) 
where heat conduction removes the heat generated 
within the apples. The differential equation in its 
most basic form 
 
1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟
�𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡
� = −𝐹𝐹

𝜅𝜅
,                                            (22) 

 
Provides the steady-state value. In addition, just as 
we added a transient solution to allow our solution 
to satisfy the starting condition, we must have one 
here as well, and the governing Equation  
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝑎𝑎2

𝑟𝑟2
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟
�.                                             (23) 

 
First, solve Equation (23). 
 
𝑤𝑤(𝑟𝑟) = 𝐶𝐶 + 𝐷𝐷

𝑟𝑟
− 𝐹𝐹𝑟𝑟2

6𝜅𝜅
                                          (24) 
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Because the answer must be finite at r = 0, the 
constant D equals zero. 
 Therefore, the steady-state solution must satisfy the 
boundary condition w(b) = 𝜃𝜃. 
 
𝐶𝐶 = 𝜃𝜃 + 𝐹𝐹𝑏𝑏2

6𝜅𝜅
                                                        (25) 

 
We introduce a new dependent variable 𝑦𝑦(𝑟𝑟, 𝑡𝑡)  =
 𝑅𝑅𝑅𝑅 in the transient issue (𝑟𝑟, 𝑡𝑡). Equation 3 can be 
replaced with Equation 22 thanks to the new 
dependent variable. 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 𝑎𝑎2 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑟𝑟2
,                                                        (26) 

 
We can resolve The 𝑅𝑅(𝑟𝑟)  equation to become 
𝑅𝑅(𝑟𝑟)𝑇𝑇(𝑡𝑡)  if we assume 𝑦𝑦(𝑟𝑟, 𝑡𝑡)  =  𝑅𝑅(𝑟𝑟)𝑇𝑇(𝑡𝑡)  and 
only have a negative separation constant. 
 
𝑑𝑑2𝑅𝑅
𝑑𝑑𝑟𝑟2

+ 𝑘𝑘2𝑅𝑅 = 0,                                                   (27) 
 

which has the answer 
 
𝑅𝑅(𝑟𝑟) = 𝐴𝐴𝑐𝑐𝑜𝑜𝑠𝑠(𝑘𝑘𝑟𝑟) + 𝐵𝐵𝑠𝑠𝐵𝐵𝑙𝑙(𝑘𝑘𝑟𝑟)                         (28) 

 
Because the solution, Equation (28), must disappear 
at r = 0 in order for v(0, t) to stay finite, the constant 
A equals zero. However, because for every time = 
𝑤𝑤(𝑏𝑏)  +  𝑣𝑣(𝑏𝑏, 𝑡𝑡)  and 𝑣𝑣(𝑏𝑏, 𝑡𝑡)  =  𝑅𝑅(𝑏𝑏)𝑇𝑇(𝑡𝑡)/𝑏𝑏 =
 0,𝑅𝑅(𝑏𝑏)  =  0. As a result,  𝑘𝑘𝑛𝑛 =  𝑙𝑙/𝑏𝑏, and 
 
𝑢𝑢𝑛𝑛(𝑟𝑟, 𝑡𝑡) = 𝐵𝐵𝑛𝑛

𝑟𝑟
sin(𝑛𝑛𝑛𝑛𝑟𝑟

𝑏𝑏
) exp �−𝑛𝑛2𝑛𝑛2𝑎𝑎2𝑡𝑡

𝑏𝑏2
�              (29) 

 
The entire solution is obtained via superposition, 
which equals 
 
𝑢𝑢(𝑟𝑟, 𝑡𝑡) = 𝜃𝜃 + 𝐹𝐹

6𝜅𝜅
(𝑏𝑏2 − 𝑟𝑟2) +

∑ 𝐵𝐵𝑛𝑛
𝑟𝑟

∞
𝑛𝑛=1 sin(𝑛𝑛𝑛𝑛𝑟𝑟

𝑏𝑏
) exp �−𝑛𝑛2𝑛𝑛2𝑎𝑎2𝑡𝑡

𝑏𝑏2
�                      (30) 

 
Finally, we use the initial condition u(r, 0) = 0 

to calculate the coefficients 𝐵𝐵𝑛𝑛.Therefore, 
 

𝐵𝐵𝑛𝑛 = −2
𝑏𝑏 ∫ 𝑟𝑟 �𝜃𝜃 + 𝐹𝐹

6𝜅𝜅
(𝑏𝑏2 − 𝑟𝑟2)�𝑏𝑏

0 sin(𝑛𝑛𝑛𝑛𝑟𝑟
𝑏𝑏

)𝑑𝑑𝑟𝑟 =
2𝜃𝜃𝑏𝑏
𝑛𝑛𝑛𝑛

(−1)𝑛𝑛 + 𝐹𝐹
𝜅𝜅
� 𝑏𝑏
𝑛𝑛𝑛𝑛
�
3

 (−1)𝑛𝑛                                 (31) 
 
The entire package is 
 
𝑢𝑢(𝑟𝑟, 𝑡𝑡)
= 𝜃𝜃

+
2𝜃𝜃𝑏𝑏
𝑟𝑟𝜋𝜋 �

(−1)𝑛𝑛

𝑙𝑙

∞

𝑛𝑛=1

sin �
𝑙𝑙𝜋𝜋𝑟𝑟
𝑏𝑏 �exp �−

𝑙𝑙2𝜋𝜋2𝑎𝑎2𝑡𝑡
𝑏𝑏2 � 

+ 𝐹𝐹
6𝜅𝜅

(𝑏𝑏2 − 𝑟𝑟2) +

2𝐹𝐹𝑏𝑏3

𝑟𝑟𝑘𝑘𝑛𝑛3
∑ (−1)𝑛𝑛

𝑛𝑛3
∞
𝑛𝑛=1 sin(𝑛𝑛𝑛𝑛𝑟𝑟

𝑏𝑏
) exp �−𝑛𝑛2𝑛𝑛2𝑎𝑎2𝑡𝑡

𝑏𝑏2
�           (32) 

 
The temperature distribution due to the imposition 
of the temperature on the apple's surface is given by 
the first line of Equation (24). In contrast, the 
second line raises the temperature due to interior 
heating. 

 
Fig.3 The temperature 𝑢𝑢(𝑟𝑟, 𝑡𝑡)/𝑇𝑇0  within an 
infinitely long cylinder at various points 𝑟𝑟/𝑏𝑏 and 
times 𝑎𝑎2𝑡𝑡/𝑏𝑏2  that we heated to the beginning 
temperature𝑇𝑇0  temperature uniformity After that, 
the surface was forced to cool. 

 
Returning to our original question of whether 

the inside heating is powerful enough to offset the 
cooling caused by refrigeration, we apply the 
second line of Equation (32) to determine how 
much the temperature deviates from what we 
predict. Because of this, the maximum temperature 
is found in the center of each apple, and it is the only 
one of its kind. This problem has piqued your 
curiosity. Assuming that the radius of the apple is b 
= 4 cm, a1 G/ = 1.33105C/s, as well as a 2.55 103 = 
2.55 103 = 2.55 103 = 2.55 103 = 2.55 103 =The 
temperature effect of heat generation is particularly 
high at cm2/s. 
When the temperatures within the apples reach 
0.0232 C after around 2 hours, the temperature 
inside the apples is small, only 0.0232 C. 
Equilibrium. As a result, we must conclude that heat 
generation within the apples is not the cause of the 
problem. brown heart's cause .Brown heart is now 
known to be caused by an excess of carbon dioxide 
in the storage hold and an insufficient amount of 
oxygen. This environment, it's assumed, impacts 
the apple's metabolic activities, leading to low-
temperature disintegration. 
 
6. TRANSIENT CONDUCTION WITH A 
HEAT SOURCE 
 

The following equation governs one-
dimensional transient conduction (21).By 
introducing the following nondimensional 
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quantities, we may reduce this equation to a 
dimensionless form 

 

𝜉𝜉 =
𝑥𝑥
𝐿𝐿                 𝜏𝜏 =

𝛼𝛼𝑡𝑡
𝐿𝐿2                 𝐵𝐵𝐵𝐵 =

ℎ𝐿𝐿
𝑘𝑘  

𝜃𝜃 =
𝑇𝑇 − 𝑇𝑇∞
𝑇𝑇𝑖𝑖 − 𝑇𝑇∞

           � =
𝐿𝐿2𝐹𝐹

𝑘𝑘(𝑇𝑇𝑖𝑖 − 𝑇𝑇∞)    

  𝜒𝜒 =
−𝐹𝐹′′𝐿𝐿

𝑘𝑘(𝑇𝑇𝑖𝑖 − 𝑇𝑇∞) 

 
Where𝜃𝜃 = 𝜃𝜃(𝜉𝜉, 𝜏𝜏), 𝐿𝐿, is the domain length,𝑇𝑇𝑖𝑖 is 

an arbitrary temperature that usually represents the 
beginning temperature,𝐹𝐹′′ is the heat flux, and 

for 𝑇𝑇∞   a convective boundary is the fluid 
temperature. When a convective boundary 
condition is not employed, is an arbitrary 
temperature that must deviate from. The governing 
equation changes when these variables are included 

 
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝜃𝜃
𝜕𝜕𝜉𝜉2

+ ∑                                            (33) 

 
Fixed Temperature 
 

    𝜃𝜃 = 𝜃𝜃𝜕𝜕 
Specified Flux 
 

𝜕𝜕𝜃𝜃
𝜕𝜕𝜉𝜉 = 𝜒𝜒𝜕𝜕 

Convective 
 

𝜕𝜕𝜃𝜃
𝜕𝜕𝜉𝜉 = −𝐵𝐵𝐵𝐵𝑜𝑜𝜃𝜃𝜕𝜕 

 

 
 
Fig.4 Source geometry for a one-dimensional 
transient heat transfer. 
 

The boundary at is represented by the negative 
sign in the convective boundary condition, while 
the values at the wall are represented by the 
subscript. Equation (33) is a parabolic partial 
differential equation with one spatial dimension. 
Separation of variables is one approach of solution 
that is applicable to a limited number of boundary 
conditions. This is an example of a solution of this 
type. 

due to the equal spacing of the curves at The 
temperature at which convection occurs is 
represented by the upper curve in Figure 5. The 
temperature drops quickly at tiny levels of due to 

convection and conduction. As the steady-state 
temperature profile determined by the energy 
source approaches, the temperature of the surface 
begins to climb. The profile at the moment of lowest 
temperature is displayed as a dotted line in Figure 6. 
Running pdepe for a long time yielded the steady-
state solution. The steady-state curve depicted in 
Figure 6 was generated using bvp4c to corroborate 
that finding. 
 
Table 1 Input Values 

 
Parameter Value 

BC � = 1 

𝜉𝜉 = 0 𝐵𝐵𝐵𝐵 = 0.1 

𝜉𝜉 = 1 𝜃𝜃(1, 𝜏𝜏) = 𝜃𝜃𝜕𝜕
= 0.55 

IC 𝜃𝜃(1, 𝜏𝜏)
= 1 − 0.55𝜉𝜉 

0 < 𝜉𝜉 < 1 41 

0 < 𝜏𝜏 < 1 101 

 
Fig.5 For the same data plotted against the spatial 
coordinate with time as a parameter, one-
dimensional heat conduction using the data in Table 
1.

 
Fig.6 Heat conduction in one dimension using data 
from Table 1. Figure 3 shows the same data 
displayed versus time with location as a parameter. 
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7. CONCLUSION 
 

The development and performance of a 
computer algorithm that calculates latent and 
sensible heat loads, as well as moisture loss and 
temperature distribution in the environment, are 
presented in this work. Apples should be 
refrigerated in quantity. This algorithm was created 
as a helper for both the is a refrigeration facility 
designer and operator who can simulate a wide 
range of commodities. In addition, the 
thermophysical properties of commodities and flow 
field parameters were discussed in this paper.which 
regulates heat and mass transmission in fresh apple. 
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