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ABSTRACT: This paper is mainly concerned with the motion of an incompressible fluid in a slowly rotating 
spherical basin using the fractional step method. The algorithm is applied by splitting the three-dimensional 
shallow water equations into three problems each of one dimension in every direction using the Riemann 
invariant. The next step is the successive integration in all directions along the characteristics associated with 
cubic spline interpolation. It has the advantage of reducing the three-dimensional matrix problem into an 
equivalent one-dimensional problem, the simplicity of this algorithm makes it very suitable for parallel 
computers. Numerical results are represented in three-dimensional for the velocity components at different 
times with different Coriolis parameters. It is worthy to note that such a study has useful applications in the 
science of oceanography.   
 
Keywords: Rotating spherical surface, Shallow water equations, Fractional step method, Riemann invariants, 
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1. INTRODUCTION 
 

Recently, the problem of solving the shallow 
water equations on a sphere has attracted growing 
interest. As one might expect, the fluid mechanics 
of rotating flows is more fully developed in the field 
of geophysics than it is in the field of aerodynamics. 
Rotating fluids in spherical basins simulate many 
natural free surface flow problems like those of 
closed seas and lakes. In astrophysical and 
geophysical fluids, rotation is often playing a main 
part. In these common cases, the Coriolis force is 
the dominant force and so it must be included in the 
mathematical model. 

The numerical treatment for nonlinear systems 
descriptive of fluid motions was firstly given by 
Rayleigh [1] in 1903 who investigated the 
vibrations of a rectangular sheets of rotating liquid. 
Greenspan in 1968 [2] gave a detailed and excellent 
study of rotating fluids in his famous book. A 
uniform flow on an open channel is studied in [3], 
shallow water equations are used as the model by 
involving the bottom topography. The Nonlinear 
shallow water Equation [4] has been applied as the 
fundamental model. The equation has been solved 
analytically and numerically to obtain the run-up 
coefficient.  

The object of this work is to find a complete 
study of the wave motion through the evaluation of 
the wave height and velocity components for the 
rotating liquid inside a spherical basin and suggests 

a mathematical treatment depending on the 
application of a fractional step method. This method 
has the great advantage of solving the shallow water 
equations without iterative steps involved in the 
multidimensional interpolation problems. The 
absence of iterative steps in this technique makes it 
very suitable for problems in which small time steps 
and grid sizes are required. It has been pointed out 
some time ago by Yakimiw and Robert [5] in 1986, 
that the method of fractional step for the numerical 
solution of the shallow water equations has also the 
advantage of reducing the multidimensional matrix 
inversion problem into an equivalent one-
dimensional problem, so the technique becomes 
very simple and very attractive to apply. It has also 
the great advantage of solving the shallow water 
equations without the iterative steps involved in the 
multidimensional interpolation problems so that it 
reduces the numerical diffusion and makes it 
suitable for problems in which small time steps and 
grid sizes are required. In the present paper, we 
apply this technique by splitting the shallow water 
equations and successively integrating in every 
direction along the characteristics of the Riemann 
invariants associated with cubic spline interpolation, 
see Shoucri [6] and [7] who applied the fractional 
step method for the numerical solution of the 
shallow water equations in their simplest form. In 
1980, Simulating Wave Near-shore [8] is a 
numerical wave model for hindcasting or 
forecasting 
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wave parameters in coastal areas. This numerical 
model is chosen because is suitable for shallow 
water.  

In this paper, we used the fractional step 
approach to study the motion of an incompressible 
fluid in a spherically rotating basin. The Riemann 
invariant is used to divide the three-dimensional 
shallow water equations into three one-dimensional 
problems, each with one dimension in every 
direction. The subsequent step is the next 
integration along the properties related to cubic 
spline interpolation in all directions. The numerical 
results are shown for the velocity components at 
various times and for various Coriolis values. 

 
2. RESEARCH SIGNIFICANCE 

 
For the numerical solution of the three-

dimensional nonlinear shallow water problem, we 
use the fractional step approach. By employing the 
Riemann invariants, the three-dimensional shallow 
water equations are divided into three one-
dimensional problems. The method is the best one 
for parallel architecture computers since it is so 
straightforward. Since the approach generates the 
equations without the iterative steps necessary to 
solve the multidimensional interpolation problem, it 
is effective and has less numerical diffusion. 
Without any computer issues and without requiring 
a lot of RAM, we may reduce the time steps and 
grid size to boost accuracy. 

 
3. SHALLOW WATER EQUATIONS ON A 
SPHERE 
 

on the surface of the rotating sphere which has a 
domain occupied by the liquid as  
0 , ,z h R x y R≤ ≤ − ≤ ≤   (1) 

 
Fig.1 Geometry of a rotating sphere with a shallow 
liquid 

 
The relevant hydrodynamic equations consist of 

the 
continuity equation 

0x y zu wυ+ + = ,    (2) 

together with the equations of motion 

1 0t x y z xu uu u wu f pυ υ
ρ

+ + + − + = , (3) 

1 0t x y z yu w f u pυ υ υυ υ
ρ

+ + + + + = , (4) 

1 0t x y z zw uw w ww g pυ
ρ

+ + + + + = , (5) 

where, in the usual notation, f is the Coriolis 
parameter being the rotation rate of the sphere and 
equal to the angular speed of the system (f = 2Ω), 
“u”, “ υ ” and “w” are the components of the 
velocity in the three Cartesian directions (x, y, z). 
The shallow water equations model the propagation 
of disturbances in water and other incompressible 
fluids [9]. The incompressible fluid has density ρ  
and pressure p the first is assumed constant; g 
denotes the acceleration due to gravity. 

The flow is bounded below by the surface of the 
spherical basin ( , )z Z x y=  and above by the free 
surface ( , , )z h x y t= . The boundary conditions, 
therefore, are 

i) At the lower boundary ( , )z Z x y= : 

, on ( , )x yuZ Z w z Z x yυ+ = = .   (6) 
ii) On the free surface ( , , )z h x y t= : 

on ( , , )t x yh uh h w z h x y tυ+ + = =    (7) 

The initial conditions are 0u wυ= = = . 

Also, on the free surface ( , , )z h x y t= , the 
pressure is assumed to be constant on the free 
surface, equal to 0p , say. The hydrostatic pressure 
p is replaced by the uniform gravitational pressure  

0 ( )p p g h zρ= + −  ,     (8) 

Elimination of p from (3)-(5), with the help of (8), 
therefore the governing equations of motion 
become 

0t x y z xu uu u wu f ghυ υ+ + + − + = ,   (9) 
0t x y z yu w f u ghυ υ υυ υ+ + + + + = , (10) 

0t x y zw uw w wwυ+ + + = .   (11) 

For convenience, we recast the system of governing 
equations and auxiliary conditions into a simplified 
form. Redefining the variables as follows: 

( )1, , ( )t x y
z Z w h uh h
h h h

ζ ζ ω ζ υ= = = − + + , 

(12) 

Introducing these new variables into the continuity 
equation (2) and the equations of motion (9)-(11) to 
obtain the problem in the form: 

z  
 

z = 0 
 

h(x,y,t) 

The free surface 
   

 

Z(x,y,t) 

x  
 

R  
 

Ω  
 

y  
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2 21
2

2 21
2

2

( ) ( ) ( ) 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

t x y

t x y

t x y

t x y

h uh h h

uh u h gh u h u h hf

h u h h gh h hf u

h u h h h

ζ

ζ

ζ

ζ

υ ω

υ ω υ

υ υ υ υω

ω ω υω ω

+ + + =

+ + + + =

+ + + + = −

+ + + =

 

(13) 

The shallow water equations can be embedded in 
the system. 

s
s s

v
(v )v 0S

t
α β γ

∂
+ + + + =

∂
,     (14) 

where sv ( , , , )Tu w hυ=  and sv =  

 
1 1 sin cos

cos
1 1 sin

cos
1 1 cos

cos
1 1 tan 0

cos

u u u w
r r r

w u
r r r
w w w u
r r r

h h h
r r

υ θ θ
θ θ λ

υ υ υ θ
θ θ λ

υ θ
θ θ λ

θ
θ λ θ

 ∂ ∂ ∂  − +  ∂ ∂ ∂  
 ∂ ∂ ∂   + −    ∂ ∂ ∂    
 ∂ ∂ ∂   − −    ∂ ∂ ∂    
 ∂ ∂  +  ∂ ∂  

 

(15) 

2 2

0
0

2
0

uα υ

 
 
 
 = +
 
 
 
 

,    (16) 

cos

0

cos
cos

g h
r

g h
r

h u
r

θ λ

θβ

υ θ
θ λ θ

∂ 
 ∂ 

∂ 
 ∂=  
 
 ∂ ∂  +   ∂ ∂  

,  (17) 

and 

0
0

f
f u

υ

γ

− 
 
 =
 
 
 

,    (18) 

cos cos
( cos ) 0

cos

h u h h h u
t r r r

h
r

υ
θ λ θ θ λ

υ θ
θ θ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
∂

+ =
∂

 

cos
tan

cos

u u u u uw
t r r r

g h u uw f
r r r

υ
θ λ θ

υ θ υ
θ λ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
∂

+ = − +
∂

 

( )
2

cos
tan

uw
t r r r

g h u ww f u
r r r

υ υ υ υ υ
θ λ θ

θ υ
θ

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
∂

+ + = − − −
∂

 

0
cos

w w w u ww
t r r r

υ
θ θ λ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 

the boundary conditions (6) and (7) simplify to 

ont x yh uζ ζ υζ ω ζ ζ− + + = =  (19) 
0 on 1ω ζ= =  .   (20) 

 
4. METHOD OF FRACTIONAL STEP 
 
Systems of three-dimensional hyperbolic equations 
are sometimes split into a series of one-dimensional 
operators known as fractional steps, see Yanenko 
[10]. We depend on Strang's fractional step method 
[11,12] which is more accurate in time where it has 
a second-order accurate but not on Godunov's 
fractional step method [13] which in the first order 
accurate in time. The fractional step technique is 
applied to equations (13), to advance the equation 
by a time step, as follows: 
Step 1. Solve for / 2t∆  in the r  direction: 

2 21
2

( ) 0,

( ) ( ) 0,
( ) ( ) 0,
( ) ( ) 0.

t x

t x

t x

t x

h uh

uh u h gh
h u h
h u h

υ υ
ω ω

+ =

+ + =

+ =
+ =

   (21) 

The above equations reduce to 

0,

0,

0,

0.

h h uu h
t x x
u h ug u
t x x

u
t x

u
t x

υ υ

ω ω

∂ ∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂
∂ ∂

+ =
∂ ∂
∂ ∂

+ =
∂ ∂

    (22) 

Equations (22) can be rewritten as 

( ) 0,

0,

0,

x xR R
u gh

t x

u
t x

u
t x

υ υ

ω ω

± ±∂ ∂
+ ± =

∂ ∂
∂ ∂

+ =
∂ ∂
∂ ∂

+ =
∂ ∂

  (23) 

where 2xR u gh± = ±  is the Riemann invariant. 
We apply the classical finite difference scheme to 
Eqs. (23), for example, the first row of Eqs. (23) in 
the positive direction becomes: 
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( , , , / 2) ( , , , )
/ 2

x xR x y t t R x y t
t

ζ ζ+ ++ ∆ −
∆

 

     
( )( , , ) ( , , , )

( , , , ) ( , , , )
0x x

u x y t gh x y t

R x y t R x x y t
x

ζ

ζ ζ+ +

+ +

− − ∆
=

∆

, 

let 2 x u gh
t

∆
= +

∆
, then the above equation 

reduces to: 

( )

( )
, , , / 2

( ) / 2, , ,
x

x

R x y t t

R x u gh t y t

ζ

ζ

+

+

+ ∆

= − + ∆
. 

Therefore, the solutions of Eqs. (23) for any value 
of y and ζ  at / 2t t+ ∆  is 

( ) ( ), , , / 2 , , ,x xR x y t t R x y tζ ζ± ± ±+ ∆ = ,  (24) 

where ( ) / 2x x u gh t± = − ± ∆ . 

 
Equation (24) means that the value xR ±  after the 
time / 2t∆  from time t  is the same value of xR ±  
at the time  t  but after the distance x  is shifted by 

( ) / 2u gh t± ∆ . The shifted values are calculated 

from the values of the function at the grid points 
using a cubic spline interpolation. We use a simple 
cubic spline defined over three grid points, 
calculated by writing the function, and its first and 
second derivatives are continuous at the grid points. 
Details have been given in [14]. Testing this cubic 
spline polynomial against other methods [15] has 
shown that this cubic polynomial has low numerical 
diffusion compared to other polynomials, and; 
 

( ), , , / 2 , , ,
2
tx y t t x u y tυ ζ υ ζ∆ + ∆ = − 

 
,  

(25) 
Also, 
 

( ), , , / 2 , , ,
2
tx y t t x u y tω ζ ω ζ∆ + ∆ = − 

 
, 

     (26) 

i.e., the solution of the problem in system (22) at the 
end of the time ( 1/ 2) ,n t+ ∆  0,1, 2,3,...n =  
reduces to the equality 

( ) ( ), , , ( 1/2) , , ,

x x

x y n t x y n t

R R

ζ ζ

υ υ
ω ω

±

± ±

+ ∆ ∆

   
   =   
   
   

,  

where ( ) / 2x x u gh t± = − ± ∆  for the first row 

and / 2x x u t± = − ∆  for the other rows. 

Step 2. Solve for / 2t∆  in the y  direction: 

2 21
2

( ) 0,

( ) ( ) 0,
( ) ( ) 0,
( ) ( ) 0.

t y

t y

t y

t y

h h

h h gh
uh u h

h h

υ

υ υ

υ

ω υω

+ =

+ + =

+ =

+ =

   (27) 

It is convenient to simplify the above equations to 
the form, 

0,

0,

h h h
t y y

hg
t y y

υυ

υ υυ

∂ ∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

 

0,

0.

u u
t y

t y

υ

ω ωυ

∂ ∂
+ =

∂ ∂
∂ ∂

+ =
∂ ∂

     

(28) 

Equation (28) is rewritten as 

( ) 0,

0,

0,

y yR R
gh

t y
u u
t y

t y

υ

υ

ω ωυ

± ±∂ ∂
+ ± =

∂ ∂
∂ ∂

+ =
∂ ∂
∂ ∂

+ =
∂ ∂

  (29) 

where 2xR ghυ± = ±  is the Riemann invariant. 
The solutions of Eq. (29) for any value of x and ζ  
at / 2t t+ ∆  is 

 
( ) ( ), , , / 2 , , ,y yR x y t t R x y tζ ζ± ± ±+ ∆ = ,  

(30) 
where ( ) / 2y y gh tυ± = − ± ∆ , and, 

( ), , , / 2 , , ,
2
tu x y t t u x y tζ υ ζ∆ + ∆ = − 

 
, 

     (31) 
Also, 

( ), , , / 2 , , ,
2
tx y t t x y tω ζ ω υ ζ∆ + ∆ = − 

 
. 

     (32) 

Again, after the end of time ( 1/ 2)n t+ ∆ ,
0,1, 2,3,...n =  we find, 

( ) ( ), , , ( 1/2) , , ,

y y

x y n t x y n t

R R
u u

ζ ζ
ω ω

±

± ±

+ ∆ ∆

   
   

=   
   
   

, 
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where ( ) / 2y y gh tυ± = − ± ∆  for the first row 

and / 2y y tυ± = − ∆  for the other rows. 

Step 3. Solve for / 2t∆  in the ζ  direction: 

2

( ) 0,
( ) ( ) 0,
( ) ( ) 0,

( ) ( ) 0.

t

t

t

t

h h
uh u h

h h

h h

ζ

ζ

ζ

ζ

ω

ω

υ υω

ω ω

+ =

+ =

+ =

+ =

    

(33) 

Equations (33) are rewritten as 

0,

0,

0,

0.

h h
t
u u
t

t

t

ω
ζ

ω
ζ

υ υω
ζ

ω ωω
ζ

∂ ∂
+ =

∂ ∂
∂ ∂

+ =
∂ ∂
∂ ∂

+ =
∂ ∂
∂ ∂

+ =
∂ ∂

    (34) 

The solutions of Eq. (34) for any value of y at 
/ 2t t+ ∆  is 

( ) ( )

( )

, , , / 2 , , ,

, , , , , ,
2

h x y t t h x y t

tx y t x y h t

ζ ζ

ω ζ ω ζ

+ ∆ =

∆ − + − 
 

 

     (35) 
 

( ), , , / 2 , , ,
2
tu x y t t u x y tζ ζ ω ∆ + ∆ = − 

 
 

     (36) 
 

( ), , , / 2 , , ,
2
tx y t t x y tυ ζ υ ζ ω ∆ + ∆ = − 

 
 

     (37) 
and; 
 

( ), , , / 2 , , ,
2
tx y t t x y tω ζ ω ζ ω ∆ + ∆ = − 

 
. 

     (38) 

Thirdly, after the end of time ( 1/ 2)n t+ ∆ ,
0,1, 2,3,...n =  we find, 

( ) ( ) ( ), , , ( 1/2) , , , , , ,

0
0
0x y n t x y n t x y n t

h h h
u u

ζ ζ ζ

ω

υ υ
ω ω

−+ ∆ ∆ ∆

−     
     
     = +
     
     
     

 

where / 2h tζ ζ− = − ∆  for the first row and 
/ 2tζ ζ ω− = − ∆  for the other rows. 

 
Step 4. Solve for the source term for t∆ : 

,u f f u
t t

υυ∂ ∂
= = −

∂ ∂
.  (39) 

The solution of Equation (39) is calculated as 

 
( ) ( ) { }, , , , , , ( , , , )u x y t t u x y t t f x y tζ ζ υ ζ+ ∆ = + ∆ ,  

     (40) 
and; 
 

( ) ( ) { }, , , , , , ( , , , )x y t t x y t t f u x y tυ ζ υ ζ ζ+ ∆ = + ∆ −
     (41) 

or calculated at ( 1)n t+ ∆ , 0,1, 2,3,...n =  we get, 

( ) ( ), , , ( 1) , , ,x y n t x y n t

u u t f
t f uζ ζ

υ
υ υ

+ ∆ ∆

+ ∆   
=   − ∆   

, 

Step 5. Apply the following equality in the ζ  
direction at time ( 1)n t+ ∆  

( ) ( ) ( ), , , ( 1) , , , ( 1/2) , , , ( 1/2)

0
0
0x y n t x y n t x y n t

h h h
u u

ζ ζ ζ

ω

υ υ
ω ω

− −+ ∆ + ∆ + ∆

−     
     
     = +
     
     
     

 

where / 2h tζ ζ− = − ∆  for the first row and 
/ 2tζ ζ ω− = − ∆  for the other rows. 

Step 6. and the following equality in the y direction 
at time ( 1)n t+ ∆  

( ) ( ), , , ( 1) , , , ( 1/2)

y y

x y n t x y n t

R R
u u

ζ ζ
ω ω

±

± ±

+ ∆ + ∆

   
   

=   
   
   

 

where ( ) / 2y y gh tυ± = − ± ∆  for the first row 

and / 2y y tυ± = − ∆  for the other rows. 

Step 7.  Finally, we can apply the following equality 
in the x- direction at time ( 1)n t+ ∆  

( ) ( ), , , ( 1) , , , ( 1/2)

x x

x y n t x y n t

R R

ζ ζ

υ υ
ω ω

±

± ±

+ ∆ + ∆

   
   =   
   
   

  

where ( ) / 2x x u gh t± = − ± ∆  for the first row 

and / 2x x u t± = − ∆  for the other rows. 

These seven steps will advance the solution of Eqs. 
(13) by one time-step t∆ . 
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5. ALGORITHM FOR THE NUMERICAL 
SOLUTION OF THE ABOVE SYSTEM 
 
1) divide the finite interval (-a < x < a)  into equal 

subintervals ∆x with finite number N equal to 
2a/∆x, 

2)  divide the finite interval (-b < y < b)  into equal 
subintervals ∆y with a finite number M equal to 
2b/∆y, 

3) divide the finite interval (-c < z < c)  into equal 
subintervals ∆z with finite number K equal to 
2c/∆z, 

Fig.2 Modeling of the sphere grids (a) the 
dimension of the regular hexahedral grid (b) the grid 
and departure points. 
4) a mesh of a regular hexahedral grid will be 

generated inside the spherical basin, Fig. (2a), 
5)  insert the discretized boundary and initial 

conditions at each grid point, 
6) Start the entire cycle from step 1 to step 7 will 

advance the solution by one time step. to 
calculate the values of the functions at the point 
of departure, 

7) the values of the functions at the grid points of 
the regular hexahedral can be calculated by 
shifting the values of the function at the 
departure points using a cubic spline 
interpolation, Fig. (2b), 

8) Use the results of (7) as initial conditions to 
solve for the second time step. 

 
6. RESULTS AND DISCUSSIONS 
 

In this section, we give a numerical solution to 
the above problem, for some particular case of a 
spherical basin with radius equal to 1 m, the domain 
of the basin is covered with a uniform mesh of cubic 
grid size 0.01 m 0.01 m 0.01 m× ×  and a time 
step 1t∆ =  sec. These calculations are effected 
with 200 200 200× ×  grid points. The level of 
water inside the basin is at 0.5 m from the bottom 
of the basin. The basin rotates around its z-axis with 
angular velocity Ω, The values of u, υ  and ω  are 
initially stationary but the value of the Coriolis 
parameter (f = 2Ω) is used to start the evaluation of 
the free surface elevation. This is the forcing 
mechanism to make the water level start to flow. 
The shape of free surface elevation has been 
illustrated in Figs. 3 and 6 for different values of the 
Coriolis parameter f. It is found that the effect of the 
Coriolis parameter is decreasing with the elevation 
of the free surface and the velocity with the decrease 
of the value of f. Moreover, it is clear that due to the 
balance between the centrifugal and gravity forces, 
the free surface almost attains a parabolic shape. 

Figures 4 and 5 illustrate the components of 
surface water velocity. In the animation of these 
pictures, we observe that a crown of velocity is 
constructed and moves from the center to 
circumference with the increasing of time. 
Generally, we observe that u (in x-direction), and υ  
(in y-direction) increase with the increase of time. 

Figures 7-9 illustrate the effect of Coriolis 
parameter f on the three components of velocity: ω  
(in ζ -direction), u  and υ , respectively. It is clear 
that the three components of the velocity increase 
with the increase of the parameter f. A typical 
profile of the vertical velocity " ω " against the 
vertical distance ζ , at different calculated Coriolis 
parameters f is illustrated in Fig. (7). It is noticed 
that the vertical velocity increases with the increase 
of the parameter f. 

Figure (8) shows the horizontal velocity u for 
various values of Coriolis parameter f. It is found 
that the maximum point of velocity approaches to 
the center line of the sphere for a small values of f. 
This maximum point increases and moves away 
from the center line with the increasing of the 
Coriolis parameters. 

a 

b 
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Fig.3 free surface elevation 

Fig.4a surface water velocity u (in x-direction) of the sphere which rotated under Coriolis parameter f = 0.2 at 
a time t = 200 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4b Surface water velocity u (in x-direction) of the sphere which rotated under Coriolis parameter f = 0.2 at 
a time t = 400 
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Fig.4c surface water velocity u (in x-direction) of the sphere which rotated under Coriolis parameter f = 0.2 at 
a time t = 800 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5a Surface water velocity υ  (in y-direction) of the sphere which rotated under Coriolis parameter f = 0.2 
at a time t = 200 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5b Surface water velocity υ  (in y-direction) of the sphere which rotated under Coriolis parameter f = 0.2 
at a time t = 400 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5c surface water velocity υ  (in y-direction) of the sphere which rotated under Coriolis parameter f = 0.2 at 
a time t = 800 
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Fig.6 An elevation of the free surface 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 The velocity component in ζ direction with 
different Coriolis parameters at t = 400 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 The velocity component in x direction with 
different Coriolis parameters at t = 400 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 The velocity component in y direction with 
different Coriolis parameters at t = 200 

 
Figure (9) shows the variation of horizontal 

velocity    with distance x for various values of 
Coriolis parameter f. It is clear that   starts from zero 
and overshoots to the maximum near the sphere 
surface and then decreases to zero. 

 
7. CONCLUSION 
 

We applied a fractional step method for the 
numerical solution of the three-dimensional 
nonlinear shallow water equation on a rotating 
spherical surface. The three-dimensional shallow 
water equations are split in three one-dimensional 
problems, each one in each dimension by using the 
Riemann invariants. The simplicity of the method 
makes it the method par excellence for computers 
of parallel architecture. The method is efficient 
[6,7,16] and has little numerical diffusion, since it 
evolves the equations without the iterative steps 
involved in the multidimensional interpolation 
problem. Therefore, the fractional step method has 
the advantage of reducing the multidimensional 
matrix problem into an equivalent one-dimensional 
problem. The absence of iterative steps and because 
the problem becomes one-dimensional in the 
present technique makes it very suitable for 
problems in which small time steps and grid sizes 
are required. We can decrease the time steps and 
grid sizes to increase the accuracy without any 
problem from the computer and without needing 
large ram, for instance, in this problem we want the 
computer occupied in its ram for the three one-
dimensional matrices X, Y, Z as 200 + 200 + 200 = 
600 cells but if we want to consist a three-
dimensional matrices for  X, Y, Z we need 200 × 
200 × 200 = 8000000 cells in the ram. Increasing 
finer grids produces a mesh with too many elements 
and the multidimensional matrices thus becomes 
too large in size. Therefore, we become a need for a 
computer with a special specification, in addition 
there are increasing in the round-off and truncation 
errors. Moreover, the method provides numerical 
algorithms which are more efficient than other 
classical schemes. The velocity components for the 
rotating liquid inside the spherical basin are 
obtained. The numerical results showed that the free 
surface attains a parabolic shape, and this due to the 
balance between the centrifugal force and the 
gravity force. Moreover, it is found that the 
elevation of the free surface and the velocity 
components decrease with the decrease of the 
Coriolis parameter. 
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