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ABSTRACT: This paper deals with the nonlinear bending response of functionally graded beams (FG beams) 
with various boundary conditions using the Ritz method. The displacement components are developed in a 
series of increasing-order polynomials (Pb-Ritz) that satisfy the geometric boundary conditions. The bending 
beam model is built based on a high-order shear deformation beam theory, considering the von Kárman type 
of geometrical nonlinearity strains. First, the potential energies of internal and external forces are determined. 
The system of nonlinear governing equations is then derived using the minimum total potential energy 
principle. The Newton-Raphson iterative algorithm is used to solve this system of nonlinear equations. The 
convergence test and the validated example are conducted by comparing them with the available published 
results to show the accuracy of the obtained results. Parametric studies are also performed to clarify the effect 
of the material properties, geometric parameters, boundary conditions, and nonlinearity on the displacement 
and stress fields of the beam.   
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1. INTRODUCTION 
 

Geometrically nonlinear bending analysis of 
beams is of great interest to researchers worldwide, 
especially those composed of new materials like 
composites or functionally graded materials. In 
2009, Kang et al. [1] studied the bending of an FGM 
cantilever beam subjected to an end force, 
considering the exact neutral surface position and 
the nonlinear stress-strain relationship of the 
Ludwick-type law. This paper used the analytical 
method to study the effect of material parameters 
and nonlinearity on the displacement and stress 
fields of the beam. Therefrom, they concluded that 
the FGM beam might bear a larger applied load than 
the homogeneous one if we choose a reasonable 
volume fraction index for the FGM material and the 
bending tensile stress reaches its maximum at an 
internal point rather than at the surfaces, as in the 
homogeneous beam. These authors, in 2010, 
extended this problem to an FGM cantilever beam 
subjected to an end moment  [2]. In this paper, 
besides the study on the effect of the large 
deformation, the authors also optimized the volume 
fraction index of the FGM material in order to 
obtain a lighter weight and a larger stiffness beam. 
The exact neutral surface position and geometrical 
nonlinearity of the FGM beams were also studied 
by Zhang et al. [3] using high-order shear 
deformation beam theory and the Ritz method. The 
authors indicated that the neutral surface position 
will change with temperature and have to be 
considered in the study. Akbas et al., in 2013, used 
the finite element method to analyze the geometric 

nonlinearity of an FGM edge cracked cantilever 
Timoshenko beam subjected to a transversal point 
load at the free end [4]. In which the cracked beam 
is modeled as an assembly of two sub-beams 
connected through a massless elastic rotational 
spring. This author, in 2020, published one more 
study on the geometrically nonlinear analysis of an 
axially functionally graded beam using the finite 
element method [5]. Wan et al. in [6] paid their 
attention to the geometric nonlinearity of the FGM 
Timoshenko curved beams with variable curvatures, 
in which the axial extension, the transversal shear 
deformation, and the geometric nonlinearity were 
simultaneously considered.  

Many other researchers paid attention to the 
effect of thermal loading on the geometrically 
nonlinear behavior of the FGM beams. For example, 
in 2011, Ma et al. published a further discussion of 
nonlinear mechanical behavior for FGM beams 
under in-plane thermal loading [7]. Based on the 
first-order shear deformation beam theory and 
analytical method, the authors indicated that due to 
the variation of the material properties through the 
thickness, bifurcation buckling cannot occur for 
simply supported beams, and while subjected to in-
plane thermal loading, the FGM beam will exhibit 
some interesting characteristics. An exact solution 
for the same problem was developed by these 
authors in [8]. Ghiasian et al., in their paper [9], 
studied the simultaneous effect of rapid heating and 
geometric nonlinearity on the behavior of FGM 
beams. Abkas et al., one more time, published a 
study on the effect of hygro-thermal loading on the 
nonlinear behavior of FGM cantilever beams [10]. 
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The influence of an elastic foundation was also 
considered in the nonlinear analysis of FGM beams 
[11] or in combination with the effect of the thermal 
environment in [12]. Recently, many investigations 
have been focused on the nonlinear behavior of 
functionally graded porous beams (FGP beams), in 
which the porosity varies continuously through the 
thickness. Among them, it is necessary to mention 
the studies of Chen et al. [13] on the buckling and 
static bending of FGP beams, of Wattanasakulpong 
et al. [14] on the vibration of FGP beams, and of 
Phuong et al. [15] on the bending of FGP beams 
including the effect of neutral surface position and 
elastic foundation. An overview of the modeling 
and analysis of FGM structures was also presented 
by Gupta et al. [16]. 

The above-mentioned studies addressed many 
different problems with various beam models and 
computational methods, in which different types of 
boundary conditions and external loading were 
considered. However, in-depth analysis of the 
effects of geometric nonlinearity, material 
properties, dimensional parameters, and boundary 
conditions has not been fully addressed. This paper 
aims to provide a detailed analysis of the load-
deflection curve and the distribution law of the 
stress components along the thickness of FGM 
beams under the influence of external factors. 
Section 3 presents the model of the nonlinear 
bending FGM beam; the convergence test and 
validation of the obtained results are undertaken in 
Section 4; Section 5 indicates the parametric studies 
of the input parameters on the load-deflection curve 
and the distribution law of the stress components 
along the thickness; and finally, the conclusions are 
presented in Section 6.       

 
2. RESEARCH SIGNIFICANCE 

 
The nonlinear behavior analysis of the structure 

made of new materials, such as FGM or FGP 
material, is essential for its design and application.   
This paper aims to provide a detailed analysis of the 
load-deflection curve and the distribution law of the 
stress components along the thickness of a FGM 
beam under the influence of material properties, 
boundary conditions, length-to-thickness ratio, and 
von Karman nonlinearity. 

 
3. MODEL OF A NONLINEAR BENDING 
FGM BEAM 
 
3.1 Functionally Graded Material (FGM) 
 

Consider a FGM beam of dimension L h b   

and the system of coordinates as in Fig. 1. The FGM 
is composed of metal and ceramic, in which the 
volume fraction varies continuously through the 
thickness according to a law represented by 

function  V z . Therefore, the material properties 

of the FGM at any point within the beam are 
determined by. 

   ( ) m m c cH z V z H V z H   (1) 

where cH  and mH  are the material properties of 

ceramic and metal, respectively,  cV z  and  mV z  

are corresponding volume fractions of each 

component and     1.c mV z V z   In this study, 

the volume fraction function  cV z  is assumed to 

be according to the power law. 

   
1

, 2, 2
2

p

c

z
V z z h h

h

 
    
 

 (2) 

with p  is the volume fraction index of the FGM 

and 0p  . 

 

 
 

Fig. 1 FGM beam composed of ceramic and metal 
 
Fig. 2 shows the variation of the elastic modulus 

of the FGM through the thickness with various 
volume fraction indices. It is obvious that when the 
volume fraction index p  tends to 0, the volume 

fraction of the ceramic tends to 1, and the material 
is purely ceramic. Inversely, when p  tends to be 

infinite, the volume fraction of the ceramic tends to 
0 and the material is purely metal. When 1p  , the 

power law becomes the linear law, the elastic 
modulus linearly varies. 

 

 
 
Fig. 2 Elastic modulus of FGM with various volume 
fraction indices 

 



International Journal of GEOMATE, Sept. 2023, Vol. 25, Issue 109, pp.1-8 

3 
 

3.2 High-Order Shear Deformation Beam 
Theory 

 
The high-order shear deformation theory of 

Reddy [17] is used to build the bending FGM beam 
model. The displacement field of a point within the 
beam is written by. 

0 0,

0

( , ) ( ) ( ) ( )

( , ) ( )

x xu x z u x zw f z x

w x z w x

  


 (3) 

where 0 0,u w are the displacement components of a 

point in the mid-plan in the ,  x z  directions, 

respectively, x  is the slope of the transverse 

normal at 0z   that represents the shear 
deformation about the y  axis, the operator (,) 

denotes the time derivative of a function, and ( )f z  

is the representative function of the theory. 

 
2

4
1

3

z
f z z

h

  
   

   
 (4) 

The strain field from the kinematic equations 
incorporating nonlinear strain components 
according to von Karman's assumptions is stated as 
follow: 

 

 

2
0, 0, , 0,

z ,

1

2
x x xx x x x

x z x

u zw f z w

f z

 

 

   



 (5) 

The stress components in the beam are 
determined by Hooke's law. 

11

66

0

0
xx xx

xz xz

C

C

 

 

    
    
    

 (6) 

where: 

 
 

 
 11 662 2 11 zz

E z E z
C C G z


  


 (7) 

with z  is the Poisson's ratio that is assumed to be 

constant through the thickness. 
The elastic potential energy of the beam is 

determined by. 

 
0

1

2

L

xx xx xz xz

S

U dS dx       (8) 

Introducing (5), (6) and (7) into (8), one obtains. 
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 (9) 

where the stiffness components are determined by. 
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(10) 

The potential energy of external loads V on a 
beam subjected to a uniformly distributed load 0q  

is written as follows: 

0 00

L

V b q w dx    (11) 

The total potential energy of the beam is 
determined by. 

U V    (12) 
 
3.3. Pb-Ritz Method 
 

The Pb-Ritz method is based on the expansion 
of the displacement components into a series of 
algebraic functions that satisfy the boundary 
conditions [18].  

0 0
1 1

1

( ) ; ( )

( )

n n

i i j j
i j

n

x k k
k

u x c w x d

x e

 

 

 



 



 


 (13) 

where , ,i j kc d e  are the unknown coefficients 

that need to be determined, and , ,i j k    are the 

admissible functions in the form of increasing order 
polynomials, and n  is the number of terms in the 
expansion.  

 

1 1 1; ;

, , 1, 2,...,

i j k
i u j w kf x f x f x

i j k n

      


 (14) 

with   **

*

qpf x L x   and * *,p q  are the boundary 

condition representative coefficients as in Table 1   

( * , ,u w  ). 

Apply the principle of minimum total potential 
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energy, the stationary condition of the total 
potential energy yields.   

 

0 ; 0 ; 0

, , 1,...,

i j kc d e

i j k n

  
  

  



  (15) 

The system of nonlinear equations (15) is solved 
using the Newton-Raphson iterative algorithm. 
 
Table 1 Boundary condition representative 
coefficients (Clamped: C; Hinged: H; Free: F) 

 

BCs C-C H-H C-F C-H 

up  1 1 1 1 

uq  1 1 0 1 

wp  2 1 2 2 

wq  2 1 0 1 

p  1 0 1 1 

q  1 0 0 0 

 
4. CONVERGENCE AND VALIDATION 

 
4.1 Input Parameters 

 
Consider an FGM beam with input parameters 

as follows: 
Dimensions: length L , width b , thickness h  ; 
Boundary conditions: Clamped-Clamped (CC), 
Simply supported ends (SS), Clamped - Simply 
supported (CS) and Clamped - Free (CF) ; 
Properties of the metal and ceramic:  

Ceramic (Al2O3): 380 GPa,cE  0.3c  . 

Metal (Al): 70 GPa,mE  0.3m  . 

Uniformly distributed load 0q .  

In the following tests, the dimensionless 
quantities are used :  

+ Dimesionless deflection. 

0 ( /2)w L
w

h
  (16) 

+ Dimesionless stresses: 

 * *

0 0

( ) , ; ( ) 0,
2

x x xz xz

h L h
z z z z

q L q L
   

 
  

 
 (17) 

+ Dimensionless load: 
4

0

4
m

q L
P

E h
  (18) 

 
4.2 Convergence Test 
 

Due to the expansion in a series of increasing 

order polynomials (13), the obtained results reach 
convergence only when the number of terms in the 
expansion n  is sufficiently large. Consider a FGM 

beam with / 20, 5, 30L h p P   , various 

boundary conditions (CC, SS, CF, CS) and the 
various numbers of terms in the expansion 1 9n   . 
The obtained maximum dimensionless deflections 
are listed in Table 2. It is obvious that dimensionless 
deflection rapidly reaches convergence as soon as 

6n  . However, 9n   is used in the following 
tests to obtain exact results. 

     
Table 2: Convergence of the maximum 
dimensionless deflection when the number of terms 

in the expansion increases   / 20 ; 5L h p   

  

n CC SS CF CS 

2 0.4493 0.6252 10.7870 0.5829 

3 0.4528 0.6974 16.4297 0.5966 

4 0.4647 0.7077 24.6656 0.6050 

5 0.4664 0.7047 25.2741 0.6071 

6 0.4694 0.7047 25.2790 0.6087 

7 0.4694 0.7048 25.2799 0.6091 

8 0.4693 0.7048 25.2806 0.6089 

9 0.4693 0.7048 25.2811 0.6089 

 
4.3 Validation 
 

The validation of the obtained results will be 
performed by comparing them with those in [19] 
and [20], in which the analytical and Ritz methods 
were utilised. Consider a homogeneous beam of 
aluminium with input parameters E = 70 GPa, ν = 
0.3, h = 0.1m, and L/h = 20, subjected to a uniformly 
distributed load 0q  and boundary conditions SS, 

CC. Table 3 shows the maximum dimensionless 

deflection 0maxw
w

h
  with various dimensionless 

load levels 
4

0

4

q L
P

Eh
 . 

It can be observed that there is a good agreement 
between the obtained results and those in the 
references for all boundary conditions and all levels 
of load. The maximum error is only 0.79% for the 
case P = 120 and the boundary condition CC. This 
justifies the accuracy of the obtained results.  
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Table 3 Nonlinear bending of a homogeneous beam 
with various boundary conditions 
  

  
P  

1 8 30 80 

S
S 

[20] 0.1474 0.5980 1.0530 1.5150 

[19] 0.1474 0.5979 1.0532 1.5142 

This 
paper 

0.1474 0.5979 1.0531 1.5142 

C
C 

[20] 0.0321 0.2460 0.7042 1.2210 

[19] 0.0322 0.2467 0.7067 1.2273 

This 
paper 

0.0321 0.2463 0.7054 1.2240 

 
5. PARAMETRIC STUDIES 

 
5.1. Distribution of The Stress Components 
Through The Beam's Thickness 
 

The distributions of the dimensionless stress 
components through the thickness of a FGM beam 
(SS, L/h = 20, P = 30) with various volume fraction 
indices ( 0.0, 0.5, 1.0, 5.0p  ) are shown in Fig. 3 

and Fig. 4. When p = 0, the FGM is purely ceramic 
and hence the normal stress distribution is linear 
and the shear stress one is parabolic through the 
thickness. However, the normal stress distribution 
is not symmetric via the mid-plane. The value of the 
tension stress is higher than that of the compression 
stress.  

The equations (5), (6), and (7) show that the 

normal stress depends on 
3z , while the shear stress 

is solely determined by 
2z . Thus, it seems that the 

distribution law of shear stress is reasonable, but 
that of normal stress is not. This indicates that the 

contribution of the term   ,x xf z   in equation (5) is 

not significant. On the other hand, the term 2
0,

1

2
xw  

in equation (5) is always positive and constant 
through the thickness, which hence moves the 
diagram of normal stress to the right so that it is not 

still symmetric. Moreover, due to this term 2
0,

1

2
xw , 

an axial force appears in the beam that causes an 
arch effect, which makes the deflection in the 
nonlinear analysis less than that in the linear one. 

The distribution law of the normal stress of the 
pure ceramic beam (p = 0) indicates that the axial 
strain x is linear through the thickness. When the 

volume fraction index is not equal to zero, the 
volume fractions of constituent materials vary 

according to the power law (2); thus, stress 
components distribute nonlinearly through the 
height direction of the beams, and their forms 
depend on the value of the volume fraction index. 
Normal stress does not reach the extreme values on 
the top and bottom surfaces of the beams like a 
homogeneous beam’s behavior (p = 0.5). 

        

 
 

Fig. 3 Distribution of the dimensionless normal 
stress through the beam's thickness 

 

 
 

Fig. 4 Distribution of the dimensionless shear stress 
through the beam's thickness 

 
5.2. Effect of Boundary Conditions 
 
A FGM beam with input parameters L/h = 20,  p = 
5, subjected to various levels of dimensionless 
uniformly distributed load 0 50P   and with 
various boundary conditions (CC, SS, CF and CS). 
The dimensionless deflection test results are listed 
in Table 4 and graphically presented in Fig. 5. 

It can be seen that while the load-deflection 
curves of the CC, SS and CS boundary conditions 
are nonlinear, the CF one seems not to be. It 
separates from the others and its values are much 

z/
h
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higher than the others' corresponding ones (Table 
4). This phenomenon indicates that there is no 
nonlinear effect in the CF beam.  

One knows that the nonlinear effect is due to the 

apparition of the axial strain 2
0,

1

2
xw , but the free end 

of the CF beam does not prevent this deformation, 
so there is no stretching of mid-plane and therefore 
the axial force is zero.  

 
Table 4 Maximum dimensionless deflection of a 
FGM beam with various boundary conditions and 
load levels 
  

P 
Boundary conditions 

CC SS CF CS 

0 0.0000 0.0000 0.0000 0.0000 

10 0.1774 0.3903 8.4271 0.2886 

20 0.3355 0.5752 16.8541 0.4738 

30 0.4693 0.7048 25.2811 0.6089 

40 0.5825 0.8072 33.7080 0.7165 

50 0.6798 0.8932 42.1349 0.8068 

 
The load-deflection curves have different levels 

of nonlinearity that increase in the order CC, CS and 
SS, in which the CC curve seems approximatively 
linear. Moreover, in the same order, the values of 
deflection also increase. So, the nonlinearity level 
augments with the deflection of the beam. This 
shows good agreement with the logical analysis that 
indicates that the CC boundary conditions make the 
beam stiffer than the CS one, which is stiffer than 
the SS one. 

 

 
 

Fig. 5 Load-deflection curve of a FGM beam with 
various boundary conditions 

5.3. Effect of Volume Fraction Index 
 

A FGM beam with input parameters L/h = 20, 
0.0, 0.5, 1.0, 5.0p   and boundary condition SS, 

subjected to uniformly distributed load 0 50P   . 
The corresponding maximun dimensionless 
deflections of the beam are presented in Table 5 and 
on Fig. 6. 

 
Table 5 Maximum dimensionless deflections of the 
FGM beam with various volume fraction indices 

 

P 

Volume fraction index p  

0 0.5 1 5 

0 0.0000 0.0000 0.0000 0.0000 

10 0.2448 0.2805 0.3024 0.3903 

20 0.3930 0.4280 0.4546 0.5752 

30 0.4952 0.5310 0.5616 0.7048 

40 0.5743 0.6121 0.6462 0.8072 

50 0.6396 0.6798 0.7171 0.8932 

 
According to Fig. 6, it can be observed that as 

the volume fraction index increases, both the 
deflection and the level of nonlinearity also 
increase. We know that when 0p   the beam is 

purely ceramic that is much stiffer than the metal. 
The volume fraction of the metal increases with the 
volume fraction index. Therefore, the augmentation 
of the volume fraction index makes the beam 
softener. As a result, the deflection and the 
nonlinearity level increase. 

 

 
 

Fig. 6 Load-deflection curves of the FGM beam 
with various volume fraction indices 
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5.4. Effect of Length-to-Thickness Ratio 
 
A FGM beam (SS, p = 5) subjected to a 

uniformly distributed load 0 0 20q    (MPa) with 

various length-to-thickness ratios 5;10;20;30
L

h
 . 

The maximum dimensionless deflections of the 
beam are listed in Table 6 and the load-deflection 
curves are presented in Fig. 7. It is obvious that the 
longer the beam, the larger the deflection. For the 
short beams ( / 5; 10L h  ), the obtained 

deflections are too small, thus the nonlinearity level 
seems to be zero. The load-deflection curves are 
approximately linear. The nonlinearity only appears 
in the case of long beams / 20; 30L h  , in which 

the deflections are large enough. It also indicated 
that the larger the deflection, the stronger the 
nonlinearity. This clarifies that the geometric 
nonlinearity is due to the large deformation. 

        
Table 6  Maximum  dimensionless deflection of the 
FGM beam with various length-to-thickness ratios  

 

0q

(MPa) 

Length-to-thickness ratio /L h  

5 10 20 30 

0 0.0000 0.0000 0.0000 0.0000 

4 0.0030 0.0407 0.3696 0.8618 

8 0.0059 0.0771 0.5488 1.1620 

12 0.0088 0.1099 0.6747 1.3693 

16 0.0117 0.1397 0.7744 1.5326 

20 0.0146 0.1669 0.8580 1.6697 

 

 
 

Fig. 7 Load-deflection curves of the FGM beam 
with various length-to-thickness ratios 

6. CONCLUSIONS 
 
The geometric nonlinear analysis of a FGM 

beam with various boundary conditions subjected to 
a uniformly distributed load is studied. The effects 
of the input parameters on the deflection and the 
stress components are analyzed in detail. The von 
Karman nonlinear strain component causes the 
stretching of the mid-plane. Once the boundary 
conditions prevent this stretching, an axial force 
will appear and cause an arch effect, which makes 
the deflection in the nonlinear analysis smaller than 
that in the linear one. Therefore, the von Karman 
nonlinear type does not appear in the cantilever 
beams. It is found that the larger the deflection, the 
stronger the nonlinearity level. When the stiffness 
of the beam is too high or the applied load is too 
small, the large deformation theory approximates 
the small deformation theory. The distribution laws 
of stress components depend on the deformation 
and material property distributions and become 
nonlinear. In the extremum case, when the FGM is 
pure ceramic, the normal stress is linear through the 
thickness and asymmetric via the mid-plane, while 
the shear stress is parabolic. It is the nonlinear effect 
that moves the normal stress diagram to the right 
and causes its asymmetric form.  
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