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ABSTRACT: Accurate estimation of groundwater flow is crucial in arid regions where permanent surface 

water is absent. In several groundwater simulation models, an important parameter for identifying areas with 

high potential for groundwater resources is the accurate fracture-fault detection. In the present study we propose 

a deep learning approach to detect fracture-fault structures in the Ali Faren sub-catchment of Ambouli Wadi 

in Djibouti. Our deep convolutional neural network (Deep-CNN) model is trained on high-spatial resolution 

multispectral satellite images using wadi streamline as labels. Fracture-fault structures are extracted using 

stepwise elimination based on geological characteristics observed in relief images derived from PALSAR-1/2 

data. Our results demonstrate that the proposed Deep-CNN model accurately detects fracture-fault lines, 

achieving a validation accuracy of 0.9684, precision of 0.9124, recall of 0.9701, and F1 of 0.8997. The 

proposed model has the potential to identify potential areas for groundwater resources across the country, 

contributing to sustainable water management and improving Djibouti's water security. Our study highlights 

the potential of deep learning techniques in addressing challenges related to sustainable water management in 

arid regions. 
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1. INTRODUCTION 

 

Djibouti is a country in the Horn of Africa that 

covers a land area of 23,200 km2, with a rainfall of 

130 mm/year and an arid climate, so it relies mainly 

on groundwater resources, estimated to be around 

300 million m3/year [1]. 

The country's geology consists of ancient 

sedimentary lands from the Mesozoic age 

(secondary era) and is characterized by fracture-

fault lines. The Ali Sabieh horst (ca, 27 to 23 Ma) 

extends from Djibouti city south into the north of 

the Aysha horst in Ethiopia, and the fracture-fault 

systems within its borders are composed of rhyolitic 

lavas in the east (ca, 25 to 19 Ma) and in the west 

(14 Ma to 10 Ma), mainly covered by basaltic flows 

such as the Dalha series (ca, 9 to 4 Ma) and Somalis 

basalt (ca, 7 to 3 Ma) in the east, and Tadjourah 

basalts (3 Ma to 1 Ma) in the central region [2]. 

Fracture-fault volcanic aquifers have been 

analyzed as the main water resources in Djibouti, 

with pumping test data showing the major basaltic 

series [3].  

Under these conditions, it is important to 

conduct groundwater modeling to estimate the 

availability of local water resources. It has been 

observed that success of groundwater flow 

simulation using numeric models such as 

GETFLOWS is greatly impacted by poor fracture-

fault delineation, which is an important parameter 

for identifying areas with high potential for 

groundwater resources [4] [5]. 

In 2015 a 1:200 000 geological map was created 

[6], based on nine maps of 1:100 000 published by 

ISERT-ORSTOM, from 1983 to 1995 [7]. The fault 

networks on this map were extracted from satellite 

images with a vertical resolution of 15 m. 

Fig. 1. Unmatching wadi when overlapping 

Geological map 1:200 000 and map on the WGS 

1983 projected coordinated system 
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When georeferencing this map, it was found that 

the wadis location was not matching completely 

with the projected coordinate system WGS 1984 

(Fig. 1).  

For this reason, to improve fracture-fault 

delineation, we propose a Deep-CNN approach [8], 

which is part of Machine Learning, an emergent 

technology that uses big amounts of data and high-

performing computers, and have applications in 

agriculture, such as crop, livestock, water, and soil 

management [9]. Deep-CNN is based on Deep 

Artificial Neural Networks (Deep ANNs), widely 

referred as deep learning (DL), which is composed 

of multiple processing layers that allows to learn 

complex data representations, and it is useful in 

image recognition.  

Deep-CNN relies on easily accessible satellite-

derived datasets. Our approach uses WorldView-3 

(WV-3) [10], PALSAR-1/2 [11], 5 m resolution 

ALOS World 3D level 1 DSM [12], and slope 

derived from DEM to train a multi-input Deep-

CNN model using wadi streamline derived from 

AW3D-DEM as fracture-fault labels of the target 

area [13].  

Deep learning techniques in geological feature 

settings have been widely used, such as automatic 

extraction of seismic landslides in large earthquake 

areas with complex environments [14] [15]. Other 

works have used object-oriented classification 

techniques to segment homogeneous images using 

high-resolution multi-spectral data [16].  

Furthermore, studies have used deep learning to 

establish a reliable river environment by observing 

the complicated relationships between water 

environment factors [17], to detect defects on 

asphalt [18] and used remote sensing for mapping 

fault distribution based on DEM data [19]. However, 

the application of deep learning to surface 

geological structures such as fracture-faults is 

limited. 

This study differs from previous works in that it 

proposes a Deep-CNN approach for fracture-fault 

detection that is trained using multispectral satellite 

images, which provides a more accurate method for 

identifying fracture-fault lines. The proposed 

approach has the potential to improve groundwater 

flow model simulations and aid in identifying 

potential areas for groundwater resources across 

Djibouti, contributing to sustainable water 

management in arid regions, particularly in the 

context of Djibouti's water security. 

 

2. RESEARCH SIGNIFICANCE 

  

This study's significance lies in its contribution 

to the application of deep learning and stepwise 

elimination methods in underground water 

simulation. It is the first of its kind in sub-Saharan 

Africa's dryland, where limited data poses a 

challenge to groundwater resource management. 

The use of advanced technologies like deep 

learning can support sustainable water management 

in arid regions like Djibouti. The novelty of this 

study rests on the combination of deep learning and 

multispectral satellite imagery to accurately detect 

fracture-fault structures in the Ali Faren sub-

catchment of Ambouli Wadi.  

The proposed approach can improve 

groundwater flow model simulations and aid in 

identifying potential areas for groundwater 

resources, contributing to sustainable water 

management. 

In the following sections, methodology of fault 

detection is explained for the study site, which is an 

arid zone that heavily relies on underground water. 

Processes applied to data are detailed, and settings 

of the Deep-CNN training model are enumerated. 

Then results of the model training and evaluation 

are discussed. Lastly, it is concluded that this model 

can detect fault structures. 

 

3. STUDY AREA  

 

3.1 Study Area Data 

  

The target area of this study is the Ali Faren 

catchment, which is located 40 km to the west of 

Djibouti city, and it is part of the Ambouli 

watershed (Fig. 2).  

Fig. 2 Study area: Ali Faren Catchment, part of the 

Ambouli Watershed, Djibouti. 

 

For this study, we used WorldView-3 (WV-3), 

the latest in a constellation of commercial high-

spatial resolution Earth imaging satellites 

developed by Digital Globe Inc (Longmont, 
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Colorado, USA) [12]. High-spatial images collected 

between 12th May 2018 and 5th April 2021 with 0% 

cloud cover between N.W Latitude 11.55372100 

and Longitude 42.77572500, 8-band multispectral 

image (red, red edge, coastal, blue, green, yellow, 

near-IR1, and near-IR2) 400 nm – 1040 nm of 1.2-

m spatial resolution, and 5-m spatial resolution 

AW3D DEM (ALOS World 3D level 1 DSM).  

The original DEM resolution of 5-m was 

downscaled to same resolution as the PALSAR-1/2 

images. Using ESRI’s ArcGIS Pro v 2.7 (ESRI 

2021), we created the slope images derived from the 

DEM and PALSAR-1/2, that were stacked together 

to create a composite of 11-band raster image. The 

PALSAR-1/2 Global Mosaic data is a seamless 

global SAR image created by mosaicking the SAR 

image in backscattering coefficients measured by 

PALSAR-1/2 with 25-m resolution. 

 

3.2 Relief Image for delineation of fault system 

 

Since PALSAR-1/2 are filled with speckle noise 

due to the interference during signal transmission, 

the adaptive filter Enhanced Lee Filter was applied 

to reduce speckle noise on the image [20], [21]. 

SAR images can penetrate clouds and hence 

observe the ground surface during day and night 

because they are composed of radar signals. For 

PALSAR-1/2 images, geometric distortion 

correction (ortho-rectification) and topographic 

effect on image intensity (slope correction) were 

applied.  

From this, a relief image was obtained, and it 

was possible to delineate the fault system in the 

study area. The relief image shows that fault lines 

and dry rivers are associated with rugged features 

on image, where fault lines appears as straight lines 

and rivers as curved lines (Fig. 3). 

 

Fig. 3 Relief image (PALSAR 1/2) showing 

fault-fractures in Ali Faren 

Fracture-fault labels as wadi streamline were 

derived from AW3D-DEM of the target area. The 

coverage of the created composite layer included 

the target Ali Faren catchment (Fig. 4). 

 

3.3 Labeling the Training Data 

 

To train the Deep-CNN model on a generated 

multi-band raster image, a group of labeled raster 

cells of the 11-multi-band, which can indicate the 

characteristics of fracture-fault, must be used to 

train the model. We obtained the fracture-fault label 

by using ArcGIS Pro software, applying the buffer 

method of 50 m resulting into a polygon shape as 

shown in Fig. 4. The derived polygon shape files 

were used as Region of Interest (ROI) in ENVI 

Deep Learning in creating training labels [22], [23]. 

The data used in this research, and the processes 

conducted are expressed in Fig. 5. 

Fig. 4 Stacked 11-band raster image training (red) 

and validation (black) data for training Deep-CNN 

model 

Fig. 5 Data used in this study 
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3.4 Stepwise elimination 

 

Stepwise elimination is a technique commonly 

used for identifying a subset of features that are 

related to a set of input observations to output 

measurements [24], which consists of finding a 

small subset of features, so the resulting model 

provides and accurate representation of the 

measurements. This is achieved by eliminating 

variables, in a stepwise manner.  

 

4. DEEP-CNN TRAINING 

 

ENVINet5 (built in ENVI version 5.6, and 

ENVI Deep Learning version 1.2) is used to train 

the Deep-CNN model on the multi-band raster 

image. The ENVINet5 architecture shown in Fig. 6 

is a mask-based encoder-decoder fully 

convolutional network with 5 levels and 23 

convolutional layers. Its architecture is based on U-

Net [25] with some modifications on layers of 

convolution and the size of input and output.  

The input of ENVINet5 is a patch with fracture-

fault polygon sampled from the 11-band multi-input 

raster images. Training raster is used to train the 

initialization model. Model training is to expose 

training raster to the model. The model learns to 

convert the spectral and spatial information in the 

training raster into a class activation map, a 

probability map, highlighting the target to be 

extracted as shown in Fig. 6.

 

Fig. 6 ENVINet5 architecture. Source; Harris Geospatial Solution (2021) [23] 

 

 

ENVINet5 refers to the binary cross-entropy 

loss function with the weighted map used by U-Net. 

 

     (1) 

 

 

Stacked 11 bands 

Input patch 

Class activation 

map 

Stepwise elimination 

Fracture-fault 
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where pl(x)(x) is the SoftMax loss function; l : Ω → 

{1,···,K} is the label value of the pixel and ω:εR 

is the weight of the pixel that gives a higher weight 

to the pixel close to the boundary point in the raster 

image [26]. 

The number of patches per epoch determines the 

amount of training. The settings are lower for small 

datasets and higher for large datasets. The number 

of patches per epoch is set to 414 and number of 

patches per image set to 32.  

The number of patches per batch system is 

automatically set to 1. For the rest of the parameters, 

ENVI automatically determines the appropriate 

values. To prevent overfitting, data augmentation is 

used. Data augmentation is a technique commonly 

used with deep learning to supplement the original 

training data. By having more information to extract 

from the training data, the trainer and classifier can 

more effectively learn the appearance of features of 

interest. During each epoch, ENVI creates a new 

training dataset with a randomly assigned angle per 

training example. Likewise, it creates a new training 

dataset with a randomly assigned scale factor per 

training example.  

In traditional Deep-CNN training, an epoch 

represents the period in which all data sets are 

passed into the training model. However, it is 

different in the ENVI Deep Learning Module, 

which intelligently extracts patches from the 

training raster, so high-brightness characteristic 

pixel areas are more often encountered than low-

brightness regions at the beginning of training. At 

the end of the training, all areas look more uniform. 

Because there is bias determination in patch 

extraction, an epoch in ENVI deep learning refers 

to the number of patches trained before bias 

decision adjustment. 

To get a better model, multiple epochs are 

needed to fully train the model. The number of 

epochs and the number of patches per epoch depend 

on the diversity of feature sets to be learned, which 

has no exact value. In general, enough epochs are 

needed to adjust the weight to ensure smooth 

progress. We set number of epochs to 50.  

Fig. 7 Showing Training curve for accuracy, loss, 

precision, recall of the experiment 

Model training were run on a Windows 10 Pro 

Operating System Intel (R) Core 9TM i9-990K 

CPU processor clocking 3.6GHz and with a 

NVIDIA GeForce RTX 2080i GPU. The training 

time of the model is 50 min. The curves of training 

accuracy, training loss, training precision and 

training recall are shown in Fig. 7. 

 

5. RESULTS AND DISCUSSION 

 

5.1 Training and Evaluation Result 

  

The training curve showing accuracy, loss, 

precision, and recall is shown in Fig 7. Similarly, 

results of validation of the raster images showing 

validation accuracy, validation loss, validation 

precision and validation recall curves are shown in 

Fig. 8.  

Fig. 8 Validation curves for accuracy, loss, 

precision, recall and F1 

 

ENVI generates a model based on the lowest 

point of the validation loss value, that is, the epoch 

with the best match between the classifier and the 

validation data. The lowest loss value of the trained 

model is 0.0393, accuracy is 0.9604, precision is 

0.8438, recall is 0.9582 and F1 is 0.8997.  

Validation of data yielded a loss 0.03391556, 

accuracy of 0.9684, precision of 0.9124, recall of 

0.9701 and F1 of 0.8997 

 

5.2 Image Classification 

  

To classify other raster images for fracture-

faults using the trained model, class activation map 

raster represented in Fig. 9 was generated.  

The class activation map shows each pixel in the 

grayscale image roughly represented as probability 

of belonging to the fracture-fault, and the threshold 

ranges from 0 to 1. The black area in the class 

activated grayscale image represents the area with 

high probability, which means it is identified as a 

fracture-fault. The result identified by the trained 
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model is a fracture-fault probability map; the larger 

the values in this probability map, the more 

confident the identified fracture-fault. 

 

Fig. 9 Image class activation raster of selected 

validation area. In blue: Ali Faren watershed 

 

5.3 Stepwise Elimination in Fracture-fault 

Classification 

 

Fracture-fault classification from the classified 

image based on activation map is not a 

straightforward approach. To identify the real 

fracture-fault a stepwise elimination approach was 

used to identify the fracture-fault from the wadi 

streamlines class activation map since the result of 

the activation map are a mixture of wadi streamline 

and fault fracture.  

Using the stepwise elimination, we set 

conditions based on geological characteristics of 

fracture-fault. Fracture-fault will not winded as 

much as wadi. Wadis will not go beyond their 

watershed regions and some parts of the fracture-

faults might be used as wadi. Fracture-fault shapes 

as defined in geological maps also tend to be 

straight.  

 

Fig. 10 Image class activation raster showing 

fracture-fault (green) after stepwise elimination 

The predefined assumption of the stepwise 

elimination considered setting threshold to the class 

activation maps. With the set threshold of class 

value of given pixel values of greater than or equal 

to the threshold value, the polygon will be 

designated as the fracture-fault feature class within 

the polygon.  

Through trial and error, the appropriate 

threshold used was between 0.0588 and 0.8409 for 

a mixture of wadi and fracture-fault polygons. The 

best threshold for fracture-fault activation were 

between 0.186343 to 0.499941.  

We further eliminated the classified raster based 

on the prior defined activation map, result of the 

final fracture-fault are shown in Fig. 10 and Fig. 11 

 

 
Fig. 11 Fracture-fault as seen on a wadi after 

stepwise elimination 

 

6. CONCLUSION 

 

This study demonstrates the successful 

application of the Deep-CNN technique in detecting 

fracture-fault structures in the Ali Faren catchment 

of Djibouti.  

The stepwise technique applied to the Deep-

CNN generated class activation map provided 

accurate fracture-fault structure detection, and with 

the Geological maps available, can improve 

groundwater flow model simulations and aid in 

identifying potential areas for groundwater 

resources.  

Future research will evaluate the developed 

deep-CNN models in wider areas within Djibouti 

and explore the implementation of other deep 

learning architecture, such as feature engineering of 

appropriate parameters.  

The ultimate goal is to develop a comprehensive 

deep-CNN model to be used in other water 

catchments in Djibouti and integrate the fracture-

faults detected results in groundwater flow model 

simulation.  

This study demonstrates the potential of deep 

learning techniques for groundwater resource 

management in arid regions like Djibouti, which 
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can support sustainable water management 

practices. 
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