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ABSTRACT: This paper presents a new nonlocal beam-substrate medium model for the static bending 

analysis of micro- and nano-sized Euler-Bernoulli beam systems resting on an elastic substrate medium. The 

modified couple stress theory (MCST) represents the small-scale effect (nonlocal effect) inherent in micro- 

and nanoscale structures. The Winkler-Pasternak foundation model is used to model the characteristics of the 

underlying substrate medium, while the surface continuum model of Gurtin and Murdoch is employed to 

account for the size-dependent effect (surface-energy effect). The governing differential equation and its 

associated boundary conditions for the proposed beam-substrate medium model are derived based on the 

principle of virtual displacement. These equations are employed to assess the bending behavior of the 

nanobeam system on the elastic substrate medium. The analytical results are discussed through a numerical 

simulation, and this reveals that the small-scale effect, as well as size-dependent and substrate-structure 

interaction effects, lead to stiffness enhancement in the system. 

 

Keywords: Modified couple stress theory, Small-scale effect, Size-dependent effect, Winkler-Pasternak 
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1. INTRODUCTION 

 

In the recent year, nanotechnology has been 

developed, resulting in superior properties and 

higher-performance materials in engineering 

applications such as nanowire [1], biosensors [2], 

actuators [3], etc. For safety in design and use in 

these nano-applications, an in-depth study on both 

static and dynamic behaviors of these nanostructure 

systems is of great importance and is required. 

However, there are several limitations on the 

experimental tests of these nanosized structures, 

such as test equipment size, testing cost, and 

expertise in testing [4-5]. Therefore, rational 

structural models to predict both the static and 

dynamic behaviors of the nanostructures are 

required. 

In the basic concept to develop the rational 

models, several higher-order elasticity theories 

have been employed to represent the small-scale 

effect (nonlocal effect) inherent in micro- and 

nanoscale structures, such as strain gradient theory 

[6], nonlocal elasticity theory [7], modified couple 

stress theory (MCST) [8], and modified strain 

gradient theory (MSGT) [4]. The MCST is one of 

these theories that has become popular in the last 

two decades to address the small-scale effect 

inherent in micro- and nanoscale structures. For 

example, Espo et al. [9] developed the piezoelectric 

phononic crystal nanobeam based on the MCST for 

the flexure wave band structure analysis, while 

Estabragh and Baradaran [10] developed the finite 

beam model based on the MCST to investigate the 

large deflection of the nanobeam. Jazi [11] 

employed the MCST to enhance the Timoshenko 

beam for the nonlinear force vibration analysis of 

an elastically connected double nanobeam system. 

Abouelregal and Marin [12] used the MCST to 

develop the Euler-Bernoulli beam model for the 

investigation of the temperature-dependent 

properties within the nanobeam. All those research 

works [9-12] confirmed the capability of the MCST 

to represent the small-scale effect in the 

nanostructures. 

To represent the size-dependent effect due to the 

surface stress and its residual, Gurtin and Murdoch 

[13, 14] proposed the surface model. Due to its 

simplicity and capability, several works have used 

the Gurtin-Murdoch surface model to study the 

size-dependent effect inherent in micro- and 

nanoscale structures [15, 16]. 

According to the available nanobeam-substrate 

medium models, several works extend the MCST to 

develop the beam-substrate medium models [15, 

17, 18]. For example, Limkatanyu et al. [15] 

enhanced the beam model on the Winkler 

foundation with the MCST to investigate the small-

scale effect. Togun and Bağdatli [17] employed the 

MCST to develop the beam model on the Winkler 

foundation for the vibration analysis of the 
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nanobeam on an elastic foundation, while Akbas 

[18] used a similar concept to study the force 

vibration analysis. However, to the best knowledge 

of the authors, there is no work that employed the 

MCST to develop the beam model on the Winkler-

Pasternak foundation with the inclusion of the 

surface-energy effect for the bending analysis of the 

nanobeam on an elastic substate medium. 

Therefore, there is still room to develop and propose 

the rational beam-substrate medium model within 

the engineering fields. 

This work employed the MCST [8], Gurtin-

Murdoch surface model [13, 14], and Winkler-

Pasternak foundation [19] to develop the beam-

substrate medium model. The principle of virtual 

displacement is used to formulate the governing 

differential equation and its boundary conditions. 

Finally, a numerical simulation is employed to 

examine the small-scale, size-dependent, and 

substrate-structure interaction effects on the 

bending behavior of the nanobeam system on an 

elastic substrate medium. 

 

2. KINEMATICS 

 

Based on the Euler-Bernoulli beam theory [16], 

the deformed section of the nanobeam remains 

plane and normal to the longitudinal axis, as 

presented in Fig. 1. Therefore, the displacements at 

a particular point R, referred to by the reference axis, 

can be expressed as: 

 

( )
( )

( ) ( )

( )

0

0, ; ;

and 0

x y

z

dv x
U x y y U x v x

dx

U x

= − =

=

              (1) 

 

where ( ),xU x y , ( )yU x , and ( )zU x  are, 

respectively, the displacement fields along the x, y, 

and z axes; y  is a distance measured from the 

reference axis; and ( )0v x  is the vertical 

displacement. 

 

 
Fig.1 Kinematics of Euler-Bernoulli beam theory 

[16] 

3. MODIFIED COUPLE STRESS THEORY 

 

In order to represent the small-scale effect 

(nonlocal effect) on the classical beam model, this 

study applies the modified couple stress theory 

(MCST), as presented by Yang et al. [8] herein. The 

MCST is composed of the Cauchy stress and couple 

stress tensors, which are expressed as [15]: 

 

2ij kk ij ij   = +                                      (2) 

22ij m ijm l =                                      (3) 

 

where ij  denotes the symmetric stress tensor, 

which is the conjugate-work pair of the strain tensor 

ij ; ijm  denotes the couple stress tensor, which is 

the conjugate-work pair of the symmetric curvature 

tensor ij ;   and   are the Lame constants; ml  

denotes the material length-scale parameter; and 

ij  denotes the Kronecker delta. 

The strain ij  and curvature tensor ij  are 

defined as [15]: 

 

( ), ,

1

2
ij i j j iu u = +                                      (4) 

( ), ,

1

2
ij i j j i  = +                                      (5) 

 

where ,i ju  is the displacement gradient tensor; and 

,i j  is the rotation gradient tensor. The rotation 

vector 
i  can be written as [15]: 

 

,

1

2
i ijk k je u =                                      (6) 

 

where ijke  being the permutation symbol. 

Based on the kinematics of the Euler-Bernoulli 

beam system of Eq. (1), the non-zero components 

of ij  and ij  can be written in terms of ( )0v x  as 

follows: 

 

( )
( )2

0

2
,xx

d v x
x y y

dx
 = −                                      (7) 

( ) ( )
( )2

0

2

1

2
xz zx

d v x
x x

dx
 = =                                (8) 

 

The non-zero components of ij  and ijm  in 

terms of ( )0v x  can be determined by substituting 

the ( ),xx x y  and ( )xz x  of Eqs. (7) and (8) into 

the constitutive relations of Eqs. (2) and (3) as 

follows: 
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( )
( )2

0

2
,xx

d v x
x y yE

dx
 = −                                      (9) 

( ) ( )
( )2

02

2xz zx m

d v x
m x m x l

dx
= =                           (10) 

 

where E  denotes the elastic modulus. 

The Lame constants   and   can be written in 

terms of E and   (Poisson’s ratio) as [15]: 

 

( )( ) ( )
and =

1 1 2 2 1

E E
 

  
=

+ − +
                 (11) 

 

It is worthy to note that the Poisson’s ratio is 

neglected in this study. 

 

4. SURFACE ELASTICITY THEORY 

 

According to the surface continuum models, 

Gurtin and Murdoch [13, 14] presented the surface 

model to reflect the size-dependent effect inherent 

in micro- and nano-sized structures based on 

surface continuum models. The bulk core and 

surface layer make up the beam’s cross section. The 

beam core-surface layer bond is considered to be 

perfect, and the surface layer is regarded as a zero-

thickness layer, as shown in Fig. 2. Under these 

hypotheses, the in-plane and out-of-plane surface 

stresses for the planer Euler-Bernoulli beam system 

are given by Limkatanyu et al. [16] as: 

 

( ) ( )0, ,sur sur sur sur

xx xxx y E x y  − =                           (12) 

( ) ( )0

sur sur sur

nx nxx x  =                                      (13) 

 

where  ( ),sur

xx x y  denotes the in-plane surface 

stress, which is the conjugate-work pair of the 

surface strain ( ),sur

xx x y ; ( )sur

nx x  denotes the out-

of-plane surface stress, which is the conjugate-work 

pair of the surface deformation ( )sur

nx x ; 0

sur  

denotes the residual surface stress [16]; and 

2sur sur surE  = +  denotes the surface elastic 

modulus obtained from the elastic constants 
sur  

and 
sur . 

Based on the kinematics of Euler-Bernoulli 

beam of Eq. (1), the surface compatibility equations 

can be expressed as [16]: 

 

( ) ( )
( )2

0

2
, ,sur

xx xx

d v x
x y x y y

dx
 = = −                (14) 

( )
( )0sur

nx y

dv x
x n

dx
 =                   (15) 

 

where yn  is the unit vector on the y-component. 

 

 
Fig.2 Gurtin and Murdoch surface model [13,14] 

 

Substituting the surface compatibility of Eqs. 

(14) and (15) into the surface constitutive relations 

of Eqs. (12) and (13), we have: 

 

( )
( )2

0

0 2
,sur sur sur

xx

d v x
x y yE

dx
 − = −                        (16) 

( )
( )0

0

sur sur

nx y

dv x
x n

dx
 =                                      (17) 

 

5. WINKLER-PASTERNAK MODEL 

 

This study uses the Winkler-Pasternak 

foundation model [19] to represent the nanobeam-

substrate medium interaction. The underlying 

substrate medium is modeled as a non-interaction 

spring attached to the shear layer for this foundation 

model, as illustrated in Fig. 3. The constitutive 

relations of the Winkler-Pasternak model, as 

proposed by Limkatanyu et al. [19], are as follows: 

 

( ) ( )sub sub subD x k v x=                              (18) 

( ) ( )sub sub subV x G x=                                      (19) 

 

where 
subk  and 

subG  are the substrate medium 

stiffness and shear layer stiffness; ( )subD x  and 

( )subV x  are the interactive force of the substrate 

medium and shear layer; and ( )subv x  and ( )sub x  

are the deformation of the substrate medium and 

shear layer, respectively. 

The compatibility relations between the 

underlying substrate medium and nanobeam are 

given by Limkatanyu et al. [19] and assume that the 

bond between the nanobeam and substrate medium 

is perfect, resulting in the following relations: 

 

( ) ( )0subv x v x=                              (20) 

( )
( )0

sub

dv x
x

dx
 =                                      (21) 

 

The foundation force-displacement relations are 

D b

hz z

y y

n
t

nSurface Layer

t
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obtained by substituting the relations of Eqs. (20) 

and (21) into Eqs. (18) and (19), resulting in the 

following equations: 

 

( ) ( )0sub subD x k v x=                              (22) 

( )
( )0

sub sub

dv x
V x G

dx
=                                      (23) 

 

6. FORMULATION 

 

6.1 Governing Differential Equation and Its 

Boundary Conditions: Displacement Approach 

 

The notion of virtual displacement is used to 

obtain the governing differential equation and its 

boundary conditions for the proposed model. The 

overall virtual work can be written in the following 

general form: 

 

int extW W W  = +                                      (24) 

 

where W , 
intW , and 

extW  are, respectively, the 

total, internal, and external virtual work. 
The internal and external virtual works of the 

proposed model can be expressed as: 

 

( ) ( )
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



 
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 

 
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 
+ −  

 

 
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 

+

+

 

 

 

 





 (25) 

( ) ( )ext 0

T

y

L

W w x v x dx  = − − U P                     (26) 

 

where A  and   are, respectively, the sectional 

area and perimeter; ( )yw x  is the external 

transverse load;  1 2 3 4

T
P P P P=P  is the force 

vector, which contains the end forces at boundaries; 

and  1 2 3 4

T
U U U U=U  is the displacement 

vector, which contains the end displacements at 

boundaries. 

Substituting the internal and external virtual 

works of Eqs. (25) and (26) and the compatibility 

relations of Eqs. (7), (8), (14), (15), (20), and (21) 

into Eq. (24), the total virtual work W can be 

rewritten as: 

 

 

( )
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( )
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( )
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( )
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( )
( )

( ) ( )
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2 2

0 0
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T

y

L
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W M x dx M x dx

dx dx

d v x d v x
M x dx V x dx

dxdx

d v x
V x dx D x v x dx

dx

w x v x dx



 


 




 

= +

+ +

+ +

− − =

 

 

 

 U P

 (27) 

 

where ( ) ( ),
xx xx

A

M x y x y dA = −  denotes the 

sectional bending moment of the nanobeam; 

( ) ( )xz xz

A

M x m x dA=   denotes the sectional 

bending moment caused by the couple stress; 

( ) ( )( )0,sur sur sur

xxM x y x y d 


= − −   denotes the 

sectional bending moment caused by the in-plane 

surface stress; and ( ) ( )sur sur

y nxV x n x d


=   

denotes the sectional shear force caused by the out-

of-plane surface stress. 

To relocate the differential operators, the 

integration by part is applied, yielding the following 

equation: 
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2
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0

0
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L
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x L
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 
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
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 (28) 

 

where ( ) ( ) ( ) ( )
xx

sur

xzM x M x M x M x= + +  

denotes the total sectional bending moment; and 

( ) ( ) ( )sur

eff subV x V x V x= +  denotes the effective 

sectional shear force. 

Based on Eq. (28), the total sectional shear force 

( )V x  is: 

 

( )
( )

( )eff

dM x
V x V x

dx
= − +                             (29) 
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The relation of Eq. (28) can be rewritten based 

on the Cartesian sign convention as: 

 

( )
( ) ( )
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

 (30) 

 

 
 

Fig.3 Concept of beam-substrate medium model 

[19] 

 

By considering the arbitrariness of ( )0v x , the 

governing differential equilibrium equation and its 

boundary conditions of the proposed model can be 

expressed as: 

 

( ) ( )
( ) ( )

2

2
0

eff

sub y

dV xd M x
D x w x

dxdx
− + − =          (31) 

( )
( ) ( )( )

( )
( ) ( )( )

1 2 0

0

3 4

; ;

;

eff x

x

eff x L

x L

dM x
P V x P M x

dx

dM x
P V x P M x

dx

=

=

=

=

 
= − − + = − 

 

 
= − + = 
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 (32) 

 

By imposing the constitutive relation of Eqs. (9), 

(10), (16), (17), (22), and (23) into Eqs. (31) and 

(32), the governing differential equilibrium 

equation and its boundary conditions for the 

nanobeam system resting on the elastic substrate 

medium in Fig. 4 can be written in terms of ( )0v x  

as: 
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0 0
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  (34) 

 

where ( ) 2H sur

meff
EI EI l A E I = + +  denotes the 

higher-order effective flexure rigidity; 

( ) 0

H sur

subeff
GA S G = +  denotes the higher-order 

effective shear rigidity; 
A

A dA=   denotes the 

section area; 
2

A

I y dA=   denotes the second 

moment area; 
2I y d



=   denotes the second 

moment perimeter; and 
2

yS n d



=  . 

 

 
Fig.4 Nanobeam system resting on the elastic 

substrate medium subjected to the external load  

 

6.2 Analytical Solutions 

 

The general solutions of the governing 

differential equation of Eq. (33) are composed of 

the homogeneous solution ( )0

HSv x  and the 

particular solution ( )0

PSv x  as follows: 

 

( ) ( ) ( )0 0 0

HS PSv x v x v x= +                             (35) 

 

The homogeneous solution ( )0

HSv x  is 

determined from Eq. (33) by neglecting the term of 

( )yw x , while the particular solution ( )0

PSv x  

considers this term ( ( ) 0yw x  ). The general form 

3 3,P U
1 1,P U

subk
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( )0,y v x
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4 4,P U
2 2,P U

 1 2 3 4

T
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T
U U U U=U
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Shear-Layer

subG
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( )yw x

Surface Layer
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of the homogeneous solutions ( )0

HSv x  in Eq. (35) 

stems from the solution of the beam model on the 

Winkler-Pasternak foundation, as proposed by 

Limkatanyu et al. [19] as: 

 

( ) ( ) ( )

( ) ( )

0 1 1 2 2

3 3 4 4

HSv x C x C x

C x C x

 

 

= +

+ +
 (36) 

 

where 
1C , 

2C , 
3C , and 

4C  are the constants from 

the integration; and ( )1 x , ( )2 x , ( )3 x , and 

( )4 x  are the displacement functions, as presented 

in Appendix [19]. 

 

7. NUMERICAL SIMULATION 

 

To investigate the size-scale effects on the 

bending behavior of the nanobeam on the substrate 

medium, a nanobeam system resting on the 

Winkler-Pasternak foundation subjected to a 

midspan concentrated load is employed herein and 

illustrated in Fig. 5. The geometric and material 

properties of the nanobeam are taken from 

Limkatanyu et al. [16] and are shown in Table 1, 

while the properties of the substrate medium are 

taken from Liew et al. [20] and Refaeinejad et al. 

[21]. The material length-scale parameter is defined 

to vary between 50 and 200 nm. 

 

Table 1 Material properties of the nanobeam [16] 

 

Material Bulk 

modulus 

(MPa) 

Poisson’s 

ratio 

Surface 

elastic 

modulus 

(nN/nm) 

Residual 

surface 

stress 

(nN/nm) 

Lead 16 0.4 8 0.63 

 

 
Fig.5 Simulation I: Bending analysis 

 

Figure 6 depicts the vertical displacement 

pattern along the length of the nanobeam. When 

compared to the classical model (without the size-

dependent and small-scale effects), the results show 

that both size-dependent and small-scale effects 

increase system stiffness, particularly the small-

scale effect. The system stiffness increases as the 

material length-scale parameter ml  is increased. 

To demonstrate the influence of the nanobeam-

substrate medium interaction on bending behavior, 

the nanobeam-substrate medium system shown in 

Fig. 5 is used again, with the material length-scale 

parameter ml  set to 200 nm. The outcome is 

depicted in Fig. 7: Both the Winkler and Winkler-

Pasternak models resulted in a stiffer system when 

compared to the model without foundation. As a 

result, it is possible to infer that the nanobeam-

substrate medium interaction increases the stiffness 

of the system, particularly the Winkler-Pasternak 

foundation. 

 

 
Fig.6 Influence of the small-scale and size-

dependent effects on bending analysis 

 

 
Fig.7 Influence of the nanobeam-substrate medium 

interaction effect on bending analysis 

 

8. CONCLUSIONS 

 

This paper proposes a novel beam-substrate 

model for the bending analysis of the nanobeam 

system on an elastic substrate medium. The small-

scale and size-dependent effects are, respectively, 

represented through the modified couple stress 

theory and Gurtin-Murdoch surface model, while 

the nanobeam-substrate medium interaction effect 

is addressed based on the Winkler-Pasternak 

foundation. The associated differential equation and 

its boundary conditions of the proposed model are 

formulated based on the variational method and 

employed to assess and investigate the size-scale 
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effects on the bending behavior. Finally, a 

numerical simulation is employed to examine the 

small-scale, size-dependent, and substrate-structure 

interaction effects on the bending behavior of the 

nanobeam system on an elastic substrate medium 

and can be concluded as follows: 

• The small-scale, size-dependent, and 

nanobeam-substrate medium interaction 

effects lead to the stiffness enhancement of 

the nanobeam-substrate medium system. 

• The system stiffness enhancement caused 

by the small-scale effect follows the 

increase in the material length-scale 

parameter ml . 

• Both Winkler and Winkler-Pasternak 

models show stiffer systems with 

nanobeam-substrate medium interaction, 

indicating increased stiffness, especially in 

the Winkler-Pasternak foundation. 

• The small-scale, size-dependent, and 

nanobeam-substrate medium interaction 

effects are significant for the bending 

analysis of the nanostructures on the 

substrate medium. 
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11. APPENDIX 
 

The homogeneous solution ( )0

HSv x  of Eq. (36) 

depending on the values of the system parameters 

( )1 /
H

sub eff
k EI =  and ( ) ( )2 /

H H

eff eff
GA EI =  can be 

expressed as: 
 

Case I: 2 12   

( )    

   

   

   

0 1

2

3

4

cosh cos

sinh cos

cosh sin

sinh sin

HSv x C x x

C x x

C x x

C x x

 

 

 

 

=

+

+

+

 (A1) 

Case II: 2 12   

 

( )    

   

   

   

0 1

2

3

4

cosh cosh

sinh cosh

cosh sinh

sinh sinh

HSv x C x x

C x x

C x x

C x x

 

 

 

 

=

+

+

+

 (A2) 

 

Case III: 2 12 =  

 

( )
4 4

1 1

4 4
1 1

0 1 2

3 4

x xHS

x x

v x C e C xe

C e C xe

 

 − −

= +

+ +
 (A3) 

 

where   and   are the auxiliary variables, which 

can be defined as: 

 

1 2

2 4

 
 = +  (A4) 

1 2

12

for Case I; and
2 4

for Case II
4 2

 





= −

= −

 (A5) 
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