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ABSTRACT: This paper proposes a novel method for analyzing steel frames with semi-rigid connections and 
displacement constraints, using a condensed finite element formulation. The paper outlines a systematic 
approach for constructing the condensed stiffness matrix and the condensed force vector. The proposed analysis 
can predict accurately the nonlinear effects of connections on the behavior and strength of semi-rigid steel 
frames. Kishi-Chen power model is applied to describe the nonlinear behavior of semi-rigid connections. The 
proposed method's effectiveness is demonstrated through analytical and numerical analysis of a semi-rigid steel 
frame structure, highlighting the procedure's simplicity and robustness. To verify the validity and applicability 
of the proposed method, several examples of realistic structures and benchmark cases are provided. The 
strengths predicted by the proposed method demonstrate good agreement with the available experimental 
results.      

Keywords: Finite Element Method, Semi-Rigid Connection, Displacement Constraint, Transformation 
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1. INTRODUCTION

The analysis and design of structures heavily
rely on the accurate modeling of connections. 
However, this procedure can be challenging in 
certain cases. Connections in steel structures such 
as bolting and riveted joints, or after-cracked joints 
in concrete structures exhibit significant self-
deformations that cannot be assumed to be either 
hinged or rigid. Failing to properly account for 
connection behavior may lead to an incorrect 
estimation of the structure's overall behavior. It is 
generally more appropriate to model connections as 
semi-rigid with finite stiffness. Additionally, other 
factors such as the size effect of the column-to-
beam connection and displacement constraints at 
the intersections of structural members cannot 
always be ignored during the modeling process.   

The work of Wilson and Moore [1] was one of 
the earliest investigations into semi-rigid 
connections, specifically focusing on determining 
the rigidity of riveted joints in steel-framed 
structures. The study tested the rigidity of various 
joint types, revealing that most of the joints under 
analyzed stresses could not be considered entirely 
rigid. Other significant works, such as those 
conducted by Young and Jack [2] and Rathbun [3], 
examined the relationship between the moment and 
relative rotation of welded and riveted connections. 
The experimental data gathered from these studies 

served as crucial references for subsequent 
investigations into semi-rigid connections. 

In subsequent decades, data banks for semi-rigid 
connections expanded, encompassing not only steel 
structures but also concrete structures in after-crack 
phases, with a focus on both analytical and 
experimental subjects. Frye and Morris [4] 
developed a polynomial model that employs an 
odd-term polynomial to obtain real moment-
rotation curves of steel connections, producing 
reasonable agreement with experimental data, but 
generating negative stiffness components that lack 
physical meaning. Paulay et al. [5] analyzed in 
detail the behavior of interior beam-column joints 
in concrete structures subjected to seismic actions 
and introduced straightforward analytical models of 
the behavior. Stelmack [6] experimentally verified 
the validity of analytical models for the response of 
flexibly connected steel frames. Nethercot [7] 
reviewed and summarized test data to assess the 
behavior of steel beam-to-column connections. 

Lui and Chen [8] presented one of the most 
significant works in the development and 
application of analytical models for finite element 
analysis regarding semi-rigid connections. Their 
elasto-plastic model assumed plasticity at 
connection locations and linear elastic behavior in 
the remaining member, with beam elements 
discretized into sub-elements. They used an 
exponential function to capture the moment-
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rotation curve of the connection, although their 
constitutive model was limited to monotonic 
loading. Kishi and Chen [9] systematically 
developed a steel connection data bank program, 
building moment-rotation characteristics for each 
connection type. In a subsequent work, Kishi and 
Chen [10] improved Lui and Chen's exponential 
model and introduced a power model for 
connections with angles using three parameters: 
initial elastic stiffness, ultimate moment, and shape 
parameter. This straightforward procedure enables 
the evaluation of initial elastic stiffness and the 
ultimate moment capacity of semi-rigid 
connections.  

The research on semi-rigid connections has 
expanded to address a variety of structural 
problems. Stelmack et al. [11] performed cyclic 
loading tests on a one-bay, two-story semi-rigid 
steel frame without using a macro-element, instead 
introducing separate spring elements at the cost of 
increased nodes and degrees of freedom. Abolmaali 
[12] proposed separate spring elements to address 
nonlinear dynamics in steel frames. Chan and Chui 
[13] established numerical techniques for large 
deflection and elasto-plastic analysis of steel frames 
subjected to static and dynamic loads. Vu [14] 
presented a method for stability analysis of steel 
frames with semi-rigid connections and rigid zones 
by using the P-Delta effect. De Lima et al. [15] 
proposed using neural networks to determine the 
initial stiffness of beam-to-column joints. Nguyen 
and Kim [16] developed an analysis method for 
three-dimensional semi-rigid steel frames that 
considers nonlinear sources and second-order 
effects. Macro-frame element models were 
developed by Saritas and Koseoglu [17] and by 
Thai and Kim [18] to analyze steel-framed 
structures with the spread of inelastic behavior 
along the element length and incorporate nonlinear 
semi-rigid connections. Truong et al. [19] 
investigated the use of machine learning methods to 
estimate the load-carrying capacity of semi-rigidly 
connected steel structures. 

The field of connection modeling remains 
attractive for two primary reasons: the varied 
behaviors of connections and the complexity of 
additional work required in practice. When finite 
element analysis includes semi-rigid connections, it 
may be necessary to introduce additional nodes, 
degrees of freedom, or complex finite element 
formulations. In practice, explicit element stiffness 
matrices and force vectors are often used for a given 
structure with semi-rigid connections, resulting in 
bulky formulations. This complexity is further 
compounded when considering other factors in 
structural analysis, such as multi-component semi-
rigid connections, stiff regions, displacement 
constraints, or diagonal bracing. Therefore, it is 
crucial to have a simple and systematic approach for 

modeling member joints to solve a wider range of 
problems. 

To this end, this study proposes a procedure that 
uses the finite element method with a 
transformation technique to analyze structures with 
semi-rigid connections and constraints. The 
procedure constructs the element formulations 
implicitly in matrix form, which is concise and can 
be expanded in explicit form as needed. Using this 
approach, any number of semi-rigid connections 
with displacement constraints at any arbitrary 
member end can be included without requiring the 
introduction of additional nodes or degrees of 
freedom. 

 
2. RESEARCH SIGNIFICANCE 

 
The proposed approach provides a streamlined 

and universal method for modelling connections 
between structural elements and constraints, 
eliminating the necessity for cumbersome matrices 
typically associated with such problems. 
Importantly, the condensation process ensures that 
the size of matrices remains unchanged for both 
individual elements and the assembled structure, 
resulting in minimal additional computational time. 

The results obtained from linear and nonlinear 
analyses performed on flexibly jointed frames with 
displacement constraints demonstrate a remarkable 
alignment with existing benchmark tests. These 
findings emphasize the substantial influence of 
connections and constraints on the distribution of 
internal forces and deflections within a structure. As 
a result, the method enhances the efficiency of 
frame structure design. 

 
3. THE METHOD 

 
3.1 Mathematical Method 

 
Our discussion initially focuses on linear frame 

problems. Fig. 1 illustrates a three-dimensional 
frame element with semi-rigid connections and 
rigid zones at its ends that is subjected to external 
loading. 

 
Fig.1 Typical frame element 

In this context, the main body is represented by 
particle 2-3, while particles 1-2 and 3-4 represent 
semi-rigid connections, and particles i-1 and 4-j 
represent the rigid zones or displacement 
constraints of the member. The finite element 
formulation of the element can be expressed in a 
familiar matrix form: 
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Kd F                                                                 (1) 
with a system of constraint equations 

0Cd                                                                    (2) 
where K is the stiffness matrix, d and d̃ are the 

nodal displacement vectors, F is the nodal force 
vector, and C is the displacement constraint matrix 
of the problem. Vector d comprises all the degrees 
of freedom of internal points, 

 1 2 3 4

T
d d d d d                                              (3) 

Vector d̃, on the other hand, contains degrees 
of freedom at end points i and j, and internal points 
1 and 4 

 1 4

T

i jd d d d d                                              (4) 

We aim to obtain a condensed stiffness matrix 
K̂ and force vector F̂ that solely involve the degrees 
of freedom of the endpoints: 

ˆˆ ˆKd F                                                                   (5) 
where 

 ˆ T

i jd d d                                                                (6) 

A transformation technique is now applied to 
construct the condensed stiffness matrix and 
condensed force vector for our problem. 

 
3.2 Mathematical Model 

 
We first consider the problem of semi-rigid 

connections as shown in Fig. 2. 

 
Fig.2 Typical frame element with semi-rigid 
connections 

Referring to Eq. (1), which presents the finite 
element formulation for our problem, we observe 
that matrices K and vector F are created using the 
stiffness matrices and force vectors of both the 
semi-rigid connections and the body. By employing 
the transformation method as outlined in [20], we 
rearrange the formulation into the following format: 

K K d F
rr rc r r

d FK K
c ccr cc


             
         

                                        (7) 

where vector dr contains degrees of freedom that 
will be retained, and vector dc contains degrees of 
freedom that will be condensed 

 1 4

T

rd d d                                     (8) 

 2 3

T

cd d d                        (9) 

Equation (7) is re-written as  

rr r rc c rK d K d F                     (10) 

cr r cc c cK d K d F                     (11) 

From Eq. (11), we have 

 -1 -c cc c cr rd K F K d       (12) 

Substituting dc from Eq. (12) into Eq. (10), we 
obtain 

 -1 -1- -rr rc cc cr r r rc cc cK K K K d F K K F                   (13) 

or 

rKd F            (14) 

where 
-1-rr rc cc crK K K K K       (15) 

-1-r rc cc cF F K K F                    (16) 

Equation (15) and equation (16) show the 
condensed stiffness matrix and the condensed force 
vector, respectively, for our semi-rigid connection 
problem. 

 
3.3 Condensation for constraints 

 
We now consider the problem of displacement 

constraints as shown in Fig. 3 

 
Fig.3 Typical frame member with displacement 
constraints 

The finite element formulation of the problem 
was shown in Eq. (14) and with constraint in Eq. (2). 
The constraint equations can be rewritten as 

ˆ
ˆ 0r

r

d
Cd C C

d

         
       (17) 

where Ĉ involves degrees of freedom at end 
points, whereas Cr involves components at nodes 1 
and 4. From Eq. (17), we get 

ˆˆ 0r rCd C d                      (18) 
-1 ˆ ˆˆ-r rd C Cd Td        (19) 

where 
-1 ˆ- rT C C        (20) 

is a transformation matrix. Substituting Eq. (19) for 
Eq. (14), pre-multiplied by TT, we get 

ˆT TT KTd T F        (21) 
We recall Eq. (15) and Eq. (16), and denote 

-1ˆ ( - )T T
rr rc cc crK T KT T K K K K T                   (22) 

is the condensed stiffness matrix, and 
-1ˆ ( - )T T

r rc cc cF T F T F K K F                    (23) 

is the condensed force vector. Eq. (5) and Eqs. 
(21-23) are now identical. 

 
3.4 Stiffness Matrix and Force Vector of a 

Typical Beam Element 
 
We utilize the proposed technique to generate 

the condensed stiffness matrix and condensed force 
vector for a representative bent beam element with 
rotationally semi-rigid connections that is subjected 
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to a uniformly distributed force, as illustrated in Fig. 
4. The analysis assumes that the relationships 
between the end moments and the relative rotations 
of the semi-rigid connections are linear, with 
stiffness values of k1 and k2. 

 
 

Fig.4 Typical beam bending problem 
 
We first implement for the semi-rigid 

connection and then for the rigid zone ends, with a 
procedure of two steps. 

Step 1: Condensation for semi-rigid 
connections 

We consider the bar and the semi-rigid 
connections at its ends. The displacement vector for 
internal nodes is written as 

 1 1 2 2 3 3 4 4

T
d v v v v          (24) 

The stiffness matrices for the connections at 
both ends are in the form: 

( )1 1 1
1

( )1 1 2

-

-

k k
k

k k





 
  
 

     (25) 

( )2 2 3
2

( )2 2 4

-

-

k k
k

k k





 
  
 

     (26) 

and the stiffness matrix is: 
( )2

3 2 3 2

( )22 2

( )3 2 3 2 3

2 2 ( )3

12 6 12 6
-

6 4 6 2
-

12 6 12 6
- - -

6 2 6 4
-

v

b

v

EI EI EI EI

L L L L
EI EI EI EI

L LL Lk
EI EI EI EI

L L L L
EI EI EI EI

L LL L





 
 
 
 
 

  
 
 
 
 
 

   (27) 

and the equivalent force vector of the body is: 

( )2

2

( )2

( )3

2

( )3

2

12

2

-

12

F

M

b

F

M

fL

fL

F
fL

fL

 
 
 
 
    
 
 
 
 
  

       (28) 

Note that v1=v2 and v3=v4. After assembling the 
stiffness matrices and the force vectors, we have the 
finite formulation for the system: 

13 3 2 2

1 11 1

1

43 3 2 2
4

42 2

2
1 12 2

3

2 22 2

12 12 6 6
0 - 0

2

0 0 0 - 0

12 12 6 6
- 0 0 - -

0 0 0 0 -

6 6 4 2
- - 0

6 6 2 4
0 - -

fLEI EI EI EI F
L L L L

v Mk k
fLEI EI EI EI F

vL L L L
k k

EI EI EI EI
k k

L LL L
EI EI EI EI

k k
L LL L







   
                        
 
  

4

2

2

2

12

-
12

M

fL

fL

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (29) 

 
We denote: 

 1 1 4 4

T

rd v v        (30) 

 2 3

T

cd                       (31) 

3 3

1

3 3

2

12 12
0 - 0

0 0 0

12 12
- 0 0

0 0 0

rr

EI EI

L L
k

K
EI EI

L L
k

 
 
 
   
 
 
  

    (32) 

2 2

1

2 2

2

6 6

- 0

6 6
- -

0 -

rc

EI EI

L L
k

K
EI EI

L L
k

 
 
 
   
 
 
  

      (33) 

12 2

22 2

6 6
- - 0

6 6
0 - -

cr

EI EI
k

L LK
EI EI

k
L L

 
 

  
 
  

     (34) 

1

2

4 2

2 4cc

EI EI
k

L LK
EI EI

k
L L

  
  
   

                  (35) 

1 1 4 4( ) ( )
2 2

T

r

fL fL
F F M F M

    
 

    (36) 

and 
2 2-

12 12

T

c

fL fL
F

 
  
 

     (37) 

Equation (29) and equation (7) are now identical. 
Implementing Eq. (15) and Eq. (16), we get 

3 3

1

3 3

2

-12 2

1 12 2
1

2 22 2 2 2

2

12 12
0 - 0

0 0 0

12 12
- 0 0

0 0 0

6 6

4 2 6 6
- - 0- 0

-
6 6 2 4 6 6

- - 0 - -

0 -

EI EI

L L
k

K K
EI EI

L L
k

EI EI

L L EI EI EI EI
k kk L L L L

EI EI EI EI EI EI
k k

L L L L L L
k



 
 
 
    
 
 
  

 
                             
  

     (38)   
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1

1

4

4

-12 2 2

1
1

2

22 2

2

2

2

6 6

4 2
- 0 12-
6 6 2 4 -- -

12
0 -

fL
F

M
F F

fL
F

M

EI EI

L L EI EI fL
kk L L

EI EI EI EI fLk
L L L L

k



  
 
    
 
 
 
 

 
                              
  

 

             (39) 

which are matrix forms for the condensed 
stiffness matrix and the condensed force vector for 
the bar with the semi-rigid connections. Equation 
(39) indicates that the equivalent force vector can 
be expressed in the following manner: 

-12 2 2

1
1

2

22 2

2

2
0

2
0

6 6

4 2
- 0 12- .
6 6 2 4 -- -

12
0 -

eqv eqv

fL

F F
fL

EI EI

L L EI EI fL
kk L L

EI EI EI EI fLk
L L L L

k



 
 
 
    
 
 
 
 

 
                              
  



       (40) 

Components of the stiffness matrix and the force 
vector for the bar with the semi-rigid connections 
are shown in Table 1. It is noted that the stiffness 
matrix is symmetric. 

Step 2: Condensation for rigid-zone ends 
We now consider the problem of constraints 

with the following displacement vector 

   1 2 3 4
ˆ TT

i i i j rd v v v v d d         (41) 

where 

 ˆ T

i i i jd v v      (42) 

 1 2 3 4

T

rd v v      (43) 

We have displacement constraint conditions 
i=1, j=4, u1=ui+1i, uj=u4+2j. We can 
write the constraints in the following matrix form: 

. 

1

12

1

4

4

-1 - 0 0 1 0 0 0 0

0 -1 0 0 0 1 0 0 0

0 0 -1 0 0 1 0 0

0 0 0 -1 0 0 0 1 0

i

i

j

j

v

v

v

v









 
 
 
    
    
                      
 
  

            (44) 

We denote: 

1

2

1 0 0

0 1 0 0ˆ
0 0 1

0 0 0 1

C

  
  
  
 

 

     (45) 

and 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

rC

 
 
 
 
 
 

                                          (46) 

 
Table 1 The stiffness matrix and the force 

vector for the bar with the semi-rigid connections 
/i EI L  
2

2 1 1 212 4 4k i k i k i k k     

  
The transformation is in the form: 

1

1

2

1 0 0

0 1 0 0ˆ
0 0 1

0 0 0 1

rT C C

 
 
   
 
 
 

                               (47) 

Terms Expressions 

11K  
 1 2 2 1

3

12 k k k i k iEI

kL

 
 

12K  
 1 2

2

26 k k iEI

kL


 

13K  
 1 2 2 1

3

12 k k k i k iEI

kL

 
  

14K  
 2 1

2

26 k k iEI

kL


 

22K  
 1 234 k i kEI

L k


 

23K  
 1 2

2

26 k k iEI

kL


  

24K  1 22 k kEI

L k
 

33K  
 1 2 2 1

3

12 k k k i k iEI

kL

 
 

34K  
 2 1

2

26 k k iEI

kL


  

44K  
 2 134 k i kEI

L k


 

1F  
 2

1 2 1 212 5 3

2

i k i k i k kqL

k

  
 

2F  
 2

1 26

12

k i kqL

k


 

3F   2
1 2 1 212 3 5

2

i k i k i k kqL

k

  
 

4F  
 2

2 16

12

k i kqL

k


  
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Recalling Eq. (22) and Eq. (23), we get the 
condensed stiffness matrix 
ˆ ˆTK T KT K                                                    (48) 

and the condensed force vector 
ˆ ˆTF T F F                                                        (49) 

Here, indices α and β are in a range from 1 to 4 
for our beam bending problem. Components of the 
stiffness matrix and the condensed force vector are 
presented in Table 2 

Table 2 The stiffness matrix and the force vector 
for the bar with the semi-rigid connections and the 
rigid zone ends 

/i EI L  
2

2 1 1 212 4 4k i k i k i k k     
Terms Expressions 

11K̂   1 2 2 13

12 1EI
k k k i k i

kL
   

12K̂      1
1 2 1 2 2 12

26 1
2

EI
k k i k k k i k i

k LL

      
 

13K̂   1 2 2 13

12 1EI
k k k i k i

kL
    

14K̂      2
2 1 1 2 2 12

26 1
2

EI
k k i k k k i k i

k LL

      
 

22K̂      
2

1 1
1 2 1 2 1 2 2 1 2

3 34 1
3 2

EI
k i k k k i k k k i k i

L k L L

  
      

 
 

23K̂     1
1 2 1 2 2 12

26 1
2

EI
k k i k k k i k i

k LL

       
 

24K̂      1 2 1 2
1 2 2 1 1 2 1 2 2 1 2

3 3 62 1
2 2

            

EI
k k k k i k k i k k k i k i

L k L L L

 

33K̂   1 2 2 13

12 1EI
k k k i k i

kL
   

34K̂     2
2 1 1 2 2 12

26 1
2

EI
k k i k k k i k i

k LL

       
 

44K̂      
2

2 2
2 1 2 1 1 2 2 1 2

3 34 1
3 2

  
      

 

EI
k i k k k i k k k i k i

L k L L
 

1̂F   2
1 2 1 2

1
12 5 3

2

qL
i k i k i k k

k
    

2̂F     
2

2 1
1 2 2 1 1 2

61
6 12 3 5

12

qL
k i k i k i k i k k

k L

       
 

3̂F   2
1 2 1 2

1
12 3 5

2

qL
i k i k i k k

k
    

4̂F     
2

2 2
2 1 2 1 1 2

61
6 12 3 5

12

qL
k i k i k i k i k k

k L

        
 

 
3.5 Nonlinear Analysis 
 
We will now examine a frame problem with 

nonlinear semi-rigid connections, and apply the 
standard procedure outlined below: 

1. At the current loading step and at the 
incremental step i, determine the displacement 
vector d෠௜

 , stiffness matrix K̂i, external force vector 
F̂i, and the structure resisting force R෡௜

 . Solving the 

global structure equilibrium equation, we receive 
the incremental displacement ∆d෠௜

  
1ˆ ˆ ˆ ˆ( )i i i id K F R                                                 (50) 

and the displacement for the next step 

1
ˆ ˆ ˆ

i i id d d                                                            (51) 

2. Compute member strains and forces based on 
the updated displacement vector d෠௜ାଵ

 . 
3. Update the element stiffness matrix K̂i+1, the 

force vector F̂i+1, the structure resisting force vector 
R෡௜ାଵ

 , and the unbalanced force vector F෠௜ାଵ
 െ R෡௜ାଵ

 . 
4. Verify if the structure has converged. If the 

unbalanced forces satisfy the specified tolerance, 
indicating convergence, move on to the next 
incremental loading step. If not, return to step 1 for 
the subsequent iteration to eliminate the unbalanced 
forces of the structure. 

 
4. EXAMPLES 

 
4.1 Example 1. Frame With Rotationally Semi-
rigid Connections and Constraints 

 
Let us consider a planar frame problem with 

rotationally semi-rigid connections and rigid-zone 
ends, subjected to the uniformly distributed force 
shown in Fig. 5. It is required to compute nodal 
displacements and construct internal force diagrams. 

 

 
 
L=10 m; Sb (bbhb) : 0.4 m 0.8 m; 1=0.4 m 
h=6 m; Sc (bchc) : 0.4 m 0.6 m; 2=0.3 m 
k1=50000 kN/m; F=50 kN; E=2107 kN/m2 
k2=20000 kN/m; f=10 kN/m 

Fig.5 A planar frame problem 
 

The results of nodal displacements and internal 
forces using Etabs and the condensed method are 
shown in Table 3. It should be noted that a mesh 
with 24 degrees of freedom was used for the Etabs 
model, whereas 6 degrees of freedom are needed for 
the analysis using our condensed method. 

The results using the proposed formulations 
show good agreement with the finite element 
analysis from ETABS software program. 
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Table 3 Nodal displacements 
and internal forces for Example 2 

Quantity ETABS 
Condensed 

method 
Difference 

(%) 
Nodal 
disp. 

 
 

 

uB [m] 0.030816 0.030704 0.363 
vB [m] -0.000046 -0.000046 0.000 
B [rad] 0.002727 0.002720 0.257 
uC [m] 0.030771 0.030659 0.364 
vC [m] -0.000079 -0.000079 0.000 
C [rad] 0.000348 0.000344 1.149 
Int. forces    
MA [kNm] 82.88 82.79 0.109 
MB [kNm] 50.73 50.75 0.039 
MC [kNm] -92.54 -92.62 0.086 
MD [kNm] 88.85 88.84 0.011 
QAB [kN] 21.21 21.20 0.047 
QBC [kN] -36.73 -36.73 0.000 
QCB [kN] 63.27 63.28 0.016 
QDC [kN] 28.79 28.80 0.035 
NAB [kN] -36.73 -36.73 0.000 
NBC [kN] -28.79 -28.80 0.035 
NDC [kN] -63.27 -63.28 0.016 

 
4.2 Example 2. Stelmack two-storey frame   

 
A two-story and one-bay frame shown in Fig.6, 

presented in the work by Stelmack et al. [11], is 
adopted as a benchmark test to study the nonlinear 
response of the structure. The frame members are 
fabricated from A36 W5x16 sections. Column 
bases are pinned supports. Connections used in the 
frame were bolted top and seat angle connections of 
A36 L4x4x1/2. The experimental moment-rotation 
relationship is shown as the dashed line in Fig.7. A 
gravity loading of P=10.7kN (2.4 kips) was first 
applied, and then a lateral load was applied. The 
lateral load-displacement relationship shown as the 
dashed line in Fig.8 was provided by the 
experimental work. 

 
Fig.6 A two-story and one-bay frame  

 

The three-parameter power model proposed by 
Kishi and Chen is used as the material model of the 
connection. Here, we utilize the parameters used by 
Thai and Kim [18], with the initial elastic stiffness 
Rki=4519.4 kNm/rad (40000 kip.in/rad), ultimate 
moment Mu=24.9 kNm (220 kip.in) and shape 
parameter n=0.91. The current moment is 
determined by the following expression: 

1/

0

1

i
nn

K
M







  
   
   

                                           (52) 

the current tangent stiffness is 

( 1)/

0

1

i
n nn

KdM
K

d 


 
  
   
   

                            (53) 

and the relative rotation is 

1/

1

nn

i
u

M

M
K

M

 
  
   
   

                                         (54) 

The incremental relative rotation for updating 
each step is 

1
i

i
i

M

k
 


                                                                (55) 

then, the updated relative rotation is given by 

1i i i                                                            (56) 

and the internal force vector for updating 
 

1 4

1

1 4

4

(1 )
M M b

P
L L

M
R

M M b
P

L L
M

   
 
    
 
 
 

                                      (57) 

Shown in Fig. 7 is the moment-rotation 
relationship for our problem. 

 
Fig.7 Moment-rotation curves  

 
Applying the presented iteration procedure, the 

nonlinear problem was analyzed. The lateral load-
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displacement relationship at the first floor is shown 
in Fig. 8 

 
Fig.8 Comparison of lateral load-displacement 
curves by experiment and proposed method for 
verification study  

 
The result shows a good agreement with the 

experimental tests presented by Stelmack et al. [11] 
 

5. CONCLUSIONS 
 
Using the transformation technique, a numerical 

procedure and condensed finite element 
formulations were developed to analyze steel 
frames with semi-rigid connections and 
displacement constraints. The proposed method 
was found to be general and simple, enabling more 
realistic modeling of connections between 
structural elements without complex mathematics. 
Additionally, the stiffness matrix for the element 
and assembled structure does not increase after the 
condensation process, minimizing extra 
computational time. The proposed method is 
illustrated through examples of linear and nonlinear 
analyses of flexibly jointed frames, exhibiting 
strong agreement with benchmark tests that are 
currently available. These results highlight the 
significant effect that connections and constraints 
have on internal force and deflection distribution in 
a structure, leading to greater efficiency in the 
design of frame structures. Practical methods for 
determining connection parameters are provided for 
specific connection configurations. 

In addition, the new method is highly practical 
for engineering applications as it can be 
conveniently implemented computationally and 
calculated by hand with ease. Moreover, the 
procedure can be extended to address various 
structural problems, such as distributed semi-rigid 
connections, second-order effects, or cyclic 
dynamic loading. 
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