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ABSTRACT: The majority of Train Accidents (TA) in Indonesia from 2015 to 2020 were caused by 

infrastructure factors, namely railway tracks, bridges, and signals. To mitigate these TAs, infrastructure 

maintenance is required, prioritizing locations with a high risk of TA. The prioritization of these locations can 

be accomplished through a model that estimates TA based on infrastructure risk factors. Locations with the 

highest TA estimates will be prioritized for infrastructure maintenance. This model illustrates the associative 

relationship between KKA as the dependent variable and exposure (train frequency and track length) and 

infrastructure risk factors (railway tracks, bridges, and signals) as independent variables. The model is 

constructed using the Generalized Linear Model (GLM), considering Poisson Regression (PR), Negative 

Binomial (NB), Zero Inflated Poisson (ZIP), and Zero Inflated Negative Binomial (ZINB) models. TA data 

from the Operational Areas (OA) of Jakarta, Bandung, and Cirebon during 2015-2020 were used to build the 

model, with the model entity being the segment between two train stations. The selection of the best model is 

based on tests of dispersion value, goodness-of-fit test, and Vuong test. Modeling results indicate that the NB 

model is the most suitable for illustrating the associative relationship between TA and infrastructure factors in 

the Indonesian Railway. The variables are train frequency (trains/day), track length (km), train speed (km/h), 

length of curves with a radius of 500 m to ≤ 1000 m (km), number of vulnerable areas (points), length of 

electricity network (km), and track type (single or double). 
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1. INTRODUCTION 

 

The highest risk of TA is derailment [1], and one 

of the factors for this is infrastructure such as tracks, 

bridges, and signals. Data from the Indonesian 

Ministry of Transportation indicates that the TA 

from 2015 to 2019, 52% were caused by 

infrastructure, 23% by equipment, 12% by human 

resources, 7% by external factors, and 6% by 

natural factors. Several factors that can influence 

railway safety include (1) bridges [2]; (2) types of 

level crossing safety devices [3]; (3) train speed [3]; 

(4) train frequency [3]; (5) the number of level 

crossings [4]; (6) signal systems [5]; (7) turn-out 

[6]; (8) vulnerable areas [7]; (9) curves [8]; (10) 

track length [8]; (11) concrete sleepers [9]; (12) rails 

[10]. Comprehensive safety risk management and 

evaluation are needed to reduce the TA, 

accomplished by managing data such as 

infrastructure data, inspection data, maintenance 

data, etc. One of these is to understand the 

relationship between TA and infrastructure factors 

through a model. Accident analysis models and 

methods explain and even predict accident 

mechanisms, which help to choose and implement 

effective and efficient countermeasures [11].  

Initially, linear regression was widely employed 

for accident modeling, where accident data was 

assumed to follow a normal distribution [12] with 

constant variance [13]. However, this distribution 

fails to accurately represent accident data, 

particularly those stemming from random and 

infrequent time and location events [14]. Accidents 

are random occurrences in which the number of 

vehicles involved in accidents on a specific road 

segment during a given period is probabilistic in 

nature [15]. Linear regression models must be used 

cautiously in safety studies because accident figures 

cannot be negative, and accident data exhibit non-

constant variance [16]. Moreover, a normal 

distribution allows for negative values, especially in 

cases of low traffic volume. Linear regression 

models are unsuitable for predicting accident 

numbers due to their discrete [17], random [18], 

non-negative, and sporadic nature [19]. Hence, they 

cannot conform to a normal distribution, and their 

variance is also non-constant. The limitations of 

linear regression models in accident prediction have 

led to the development of Generalized Linear 

Models (GLM) [20], where non-linearity in GLM 

arises due to the inclusion of link functions. Over 

the past two decades, there has been extensive 

research in the field of transportation focusing on 

accident prediction using models like Poisson 

Regression (PR), Negative Binomial (NB), Zero-

Inflated Poisson (ZIP), and Zero-Inflated Negative 

Binomial (ZINB) [21]. GLM is widely utilized for 

constructing  accident  prediction  models, deviating  
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from the assumption of a normal distribution [22]. 

Instead, it employs a set of Independent Variables 

(IV) to establish a relationship with the Dependent 

Variable (DV), which represents accident rates 

through link functions. 

Rakhmat [2012] developed an accident 

prediction model using GLM, comprising PR, NB, 

ZIP, and ZINB for the case of the Purbaleunyi 

highway accidents in Indonesia. In their model, 13 

parameters believed to influence accidents on the 

highway were considered, and the results indicated 

that the most appropriate model for the case was NB 

[23]. Silla [2012] conducted a study on railway 

safety in Finland using GLM. The parameters used 

included the number of casualties, the number of 

derailments and accidents, the number of level 

crossings, the number of accidents, and the number 

of vehicles passing through level crossings. The 

research showed that the suitable model was PR. 

This study focused solely on level crossings and not 

on lines (tracks) between stations [24]. Hence, it 

becomes essential to understand the impact of 

infrastructure on TA in Indonesia through a model 

that demonstrates the relationship between 

infrastructure factors and TA. Currently, such a 

model does not exist, necessitating further research 

to develop it. Research related to accident 

modelling has been conducted extensively, but 

primarily in the context of road accidents. In the 

case of TA, research is limited, making it a 

challenge to gather references and determine the 

appropriate variables and methods for creating a TA 

model. 

This research involves identifying various infra-

structure  factors  considered  of  TA  in  Indonesian  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Railway cases, followed by analysis to create a TA 

model. This model will illustrate the associations 

relationship between infrastructure factors (IV) and 

estimates of TA (DV). The results of this research, 

in the form of a TA model, will represent a 

significant contribution. With this model, it is 

expected that the relationship between infra-

structure factors and TA can be understood, serving 

as a tool for decision-making to reduce of TA. 

This journal will cover the introduction, 

research significance, methodology, data collection, 

model development analysis, and conclusions. 

 

2. RESEARCH OBJECTIVE AND SCOPE 

 

The objective of this research is to develop a 

predictive model for TA based on infrastructure 

variables associated with TA in Indonesia, focusing 

on the analysis unit of railway segments or lines 

(tracks) between railway stations. 

The scope of this research encompasses the 

following aspects: 

1. This research is conducted in Operational Area 

1 Jakarta, Area 2 Bandung, and Area 3 Cirebon 

of the Indonesian Railway, with the analysis 

unit being the length of railway segments or 

lines (tracks) between railway stations.  

2. A total of 379 segments are considered (229 in 

Operational Area 1 Jakarta, 78 in Area 2 

Bandung, and 72 in Area 3 Cirebon). 

3. The types of TA considered include 

derailments and collisions, both involving 

passenger and freight trains. 

4. The variables under consideration include 

infrastructure variables such as tracks, bridges, 

Fig. 1. Map of Research Location 
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signals, and electrical. 

5. The model development involves the use of 

GLM, comprising PR, NB, ZIP, and ZINB. 

 

 
Fig. 2. Train Collisions 

 

 
Fig. 3. Train Derailment 

 

3. RESEARCH SIGNIFICANCE 

 

Currently, there is no research related to a model 

that demonstrates the associative relationship 

between TA and infrastructure factors in Indonesian 

Railway. Hence, this represents a novelty in our 

study. The model is utilized to estimate TA based 

on infrastructure factors, which constitute the 

majority of TA causes. The output from this model 

(TA estimates) can be used to prioritize 

maintenance at locations with a high risk of TA, 

where those with the highest TA will be the primary 

focus for infrastructure upkeep. The findings of this 

research are highly beneficial for enhancing railway 

safety and reducing TA in Indonesia. 

 

4. RESEARCH METHODOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Research Methodology 

 

5. MODEL DEVELOPMENT 

 

The model is constructed by establishing a 

relationship between TA and infrastructure 

variables (exposures and risks). Model 

development is using GLM. The specification of the 

basic model is as follows: 

 

µ = k (V.2190)α × Lβ × exp (γ1X1 + γ2X2 + ⋯ ) (1) 

 

Where:  µ  = Accident expectation  

k   = Constant 

α, β, γ  = Coefficient 

V   = Train frequency (Train/day) 

L  = Length of track line (Km) 

X1, X2,..  = Risk variables 

 

The model will be constructed by four distributions 

are PR, NB, ZIP, and ZINB, with a 95% confidence 

level. This means that the variable in the model 

must be significant, with a P-value ≤ 0,05. Variables 

with P-values > 0,05 will be eliminated one by one 

until all variables are significant.  

 

5.1 Generalized Linear Model (GLM) 

5.1.1 Poisson Regression (PR)  

If Yi is the PR distribution variable, µi is the 

expected TA,  and  yi  is the actual TA at location i,  
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then its probability function is as follows: 

 

𝐟(𝐘𝐢 = 𝐲𝐢) =
𝛍𝐢

𝐲𝐢𝐞𝐱𝐩−𝛍𝐢

𝐲𝐢!
  (2) 

 

If Xi is the independent variable and β is the 

constant, then the expected TA E(Yi) is: 

 

𝐄(𝐘𝐢) = 𝛍𝐢 = 𝐞𝐱𝐩(𝐗𝐢𝛃) = 𝐞𝐱𝐩(∑ 𝐱𝐢𝐣𝛃𝐣
𝐩
𝟏 )  (3) 

 

In this model, the variance (Var(Yi)) is equal to the 

mean of TA. This can be a problem because in many 

cases, the variance is greater than the mean, 

especially for data with a wide spread. Therefore, as 

an alternative is NB or ZIP models. 

 

5.1.2 Negative Binomial (NB) 

If Yi follows a NB distribution, where α > 0, the 

probability function is as follows: 

 

𝐟(𝐘𝐢 = 𝐲𝐢) =
𝚪(𝐲𝐢+

𝟏

𝛂
)

𝚪(𝐲𝐢+𝟏) 𝚪(
𝟏

𝛂
)

(
𝟏

𝟏+𝛂𝐢𝛍𝐢
)

𝟏

𝛂
(

𝛂𝐢𝛍𝐢

𝟏+𝛂𝐢𝛍𝐢
)

𝐲𝐢
  (4) 

 

The expected TA (E(Yi)) are the same as Equation 

(2), and the variance is given by: 

 

𝐕𝐚𝐫(𝐘𝐢) = 𝛍𝐢 + 𝛂𝐢𝛍𝐢
𝟐 (5) 

 

When α > 0, the model follows a NB distribution. 

In cases many of zero accidents, the PR and NB can 

become biased and unsuitable. As an alternative, the 

ZIP and ZINB models are used, specifically for data 

with a significant number of zero values. 

 

5.1.3 Zero-Inflated Poisson (ZIP) 

If Yi follows a ZIP distribution, the probability 

function is as follows: 

 

𝐟(𝐘𝐢 = 𝐲𝐢) = 𝐪𝐢 + (𝟏 − 𝐪𝐢)𝐞−𝛌𝐢 (6) 

 

𝐟(𝐘𝐢 = 𝐲𝐢) = (𝟏 − 𝐪𝐢)
𝐞−𝛌𝐢  𝛌𝐢

𝐲𝐢

𝐲𝐢!
  (7) 

 

𝐥𝐨𝐠 (
𝐪𝐢

𝟏−𝐪𝐢
) = 𝛕 ∑ 𝐱𝐢𝐣𝛃𝐣

𝐩
𝟏  (8) 

 

𝛌𝐢 = 𝐞𝐱𝐩(𝐗𝐢𝛃) = 𝐞𝐱𝐩(∑ 𝐱𝐢𝐣𝛃𝐣
𝐩
𝟏 ) (9) 

 

Where Xi is an IV, and β is a constant. The expected 

TA (E(Yi)) and the variance (Var(Yi)) are given by: 

 

𝐄(𝐘𝐢) = 𝛍𝐢 = (𝟏 − 𝐪𝐢)𝛌𝐢 (10) 

 

𝐕𝐚𝐫(𝐘𝐢) = 𝛍𝐢 + (
𝐪𝐢

𝟏−𝐪𝐢
) 𝛍𝐢

𝟐 (11) 

 

When qi = 0, the ZIP model is identic to PR. When 

0 < qi < 1, the variance of Yi will exceed its mean. 

Thus,  the  ZIP  model  accommodates  data  that  is  

highly dispersed and includes many zero values. 

 

5.1.4 Zero-Inflated Negative Binomial (ZINB) 

If Yi follows a ZINB distribution, the 

probability function is as follows: 

 

𝐟(𝐘𝐢 = 𝐲𝐢) = 𝐪𝐢 + (𝟏 − 𝐪𝐢) [
𝟏

𝟏+𝛂𝐢𝛍𝐢
]

𝟏/𝛂

  (12) 

 

𝐟(𝐘𝐢 = 𝐲𝐢) = 

(𝟏 − 𝐪𝐢) [
𝚪(𝐲𝐢+

𝟏

𝛂
)(

𝟏

𝟏+𝛂𝐢𝛍𝐢
)

𝟏/𝛂
(

𝛂𝐢𝛍𝐢
𝟏+𝛂𝐢𝛍𝐢

)
𝐲𝐢

𝚪(
𝟏

𝛂
)𝐲𝐢!

]

𝟏/𝛂

  (13) 

 

𝐥𝐨𝐠 (
𝐪𝐢

𝟏−𝐪𝐢
) = 𝛕 ∑ 𝐱𝐢𝐣𝛃𝐣

𝐩
𝟏  (14) 

 

The expected TA (E(Yi)) is the same as Equation 

(4), and the variance (Var(Yi)) is the same as 

Equation (5), with the TA expectation (λi) given by: 

 

𝛌𝐢 = 𝐞𝐱𝐩(𝐗𝐢𝛃) = 𝐞𝐱𝐩(∑ 𝐱𝐢𝐣𝛃𝐣
𝐩
𝟏 ) (15) 

 

5.2 Test of Statistic Model 

 

The statistical model is tested using Dispersion 

Parameter, Goodness-of-Fit Test, and Vuong Test. 

The initial step in determining the best GLM is to 

examine the dispersion parameter (α) of the PR 

model. If α = 1, the variance equals the mean, 

making the PR is the best model. If α > 1, over-

dispersion occurs, and the best model is likely NB 

or ZIP. To determine whether the appropriate 

model is NB (indicating over-dispersion in the TA 

data) or ZIP (indicating over-dispersion due to 

many zero occurrences in the data), a Goodness-of-

Fit Test is conducted. 

 

5.2.1 Goodness of Fit Test  

The Goodness-of-Fit Test conducted in this 

research includes the Pearson X2 (Chi-Square Test) 

and the Scaled Deviance G2 (G Square Test). The 

model is considered appropriate if the G2 value 

(E(G2)) approaches (n-p), where n is the number of 

data points, and p is the number of estimated 

parameters. Mathematically, Pearson X2 and Scaled 

Deviance G2 can be expressed as follows: 

 

𝐏𝐞𝐚𝐫𝐬𝐨𝐧 𝛘𝟐 = ∑
(𝐲𝐢−𝐄[𝐲𝐢])

𝐕𝐀𝐑[𝐲𝐢]
𝐧
𝐢=𝟏  (16) 

 

𝐒𝐜𝐚𝐥𝐞𝐝 𝐃𝐞𝐯𝐢𝐚𝐧𝐜𝐞 𝐆𝟐 = 𝟐(𝐥(𝐲|𝐲) − 𝐥(𝛍|𝐲)) (17) 

 

Where:   

l(y|y)  =  Log-likelihood value for the maximum 

model if the generated model fits the 

entire data 

l(μ|y)  =  Log-likelihood value for the reduced 

model 
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If the Goodness-of-Fit Test results indicate that the 

ZIP model is accepted, the testing is concluded. 

However, if the results favour the NB model, further 

testing is conducted by comparing the NB and 

ZINB models to determine whether over-dispersion 

occurs in the TA data or if it's due to the prevalence 

of zero occurrences. This test is using Vuong Test. 

 

5.2.2 Vuong Test  

If N is total sample, m̅ is mean, Sm is standard 

deviation, the Vuong statistic (V) is as follows: 

 

𝐕 = 𝐍𝟏 𝟐⁄  𝐦̅/𝐒𝐦 (18) 

 

Table 1. Vuong Statistic [25] 

 t Statistic of α 

Vuong Statistic < 2 > 2 

V < -1.96 PR NB 

V > 1.96 ZIP ZINB 

 

After one of the best models between NB and ZINB 

is selected, the next step is model validation to 

assess its accuracy using the Mean Absolute 

Percentage Error (MAPE). 

 

5.3 Validation Model 

 

MAPE is the percentage of average absolute 

error. It's a statistical measurement of prediction or 

estimation accuracy. MAPE provides information 

about the extent of prediction or estimation errors 

compared to the actual values. A smaller percentage 

error value in MAPE indicates a more accurate 

prediction or estimation. If yi is observed value, ŷi 

is estimated value, and n is number of data points, 

the MAPE is as follows: 

 

 (19) 

 

MAPE values can be interpreted in four categories: 

if MAPE < 10%, the model is very good; if MAPE 

ranges from 10-20%, the model is good; if MAPE 

ranges from 20-50%, the model is reasonable; and 

if MAPE > 50%, the model is inaccurate or 

unsuccessful [26]. 

 

6. DATA COLLECTING 

 

The research use data from OA Jakarta, 

Bandung, and Cirebon, with the unit of analysis is 

the segments between two railway stations. The 

variables and data used are described in Table 2. 

The study covers a total of 379 segments (229 

segments from OA Jakarta, 78 segments from OA 

Bandung, and 72 segments from OA Cirebon). 

There are 20 variables considered to influence TA, 

resulting in a total of 7.580 data. 

Table 2. Data Variable  

No Notation Variable Unit 
Variable 

Role 

1 X1 Train frequency Train/ 

day 

Exposure 

2 X2 Track length Km Exposure 

3 X3 Train speed Km/ 

hour 

Risk 

4 X4 Track length with 

rail type of R54 

Km Risk 

5 X5 Track length with 

concrete sleeper 

Km Risk 

6 X6 Turnouts number Unit Risk 

7 X7 Level crossing 

number 

- Risk 

8 X8 Signalling type - Risk 

9 X91 Length of bridge 

with the age 

>100 years 

Km Risk 

10 X92 Length of bridge 

with the age 

<100 years 

Km Risk 

11 X101 Length of curve 

with the radius 

≤250 m 

Km Risk 

12 X102 Length of curve 

with the radius 

250 m to 500 m 

Km Risk 

13 X103 Length of curve 

with the radius 

500 m to 1000 m  

Km Risk 

14 X104 Length of curve 

with the radius 

>1000 m 

Km Risk 

15 X11 Number of 

vulnerable areas 

- Risk 

16 X12 Length of 

catenary line 

Km Risk 

17 X131 Length of track 

with the slope 

≤10 permille for 

incline and ≤-10 

permille for 

descendant 

Km Risk 

18 X132 Length of track 

with the slope 

>10 permille for 

incline and >-10 

permille for 

descendant 

Km Risk 

19 X14 Double or single 

track 

- Risk 

20 X15 Passing tonnage Million 

ton / 

year 

Risk 

 

7. ANALYSIS AND DISCUSSION 

 

7.1 Model Development 

 

The model is constructed using Equation 1 and 

analyzed using the PR, NB, ZIP, and ZINB models 
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with a 95% confidence level through multiple 

iterations to identify significant variables (P-value 

≤ 0,05). The analysis results in Table 3. 

 

Table 3. Modeling Results 

Model Equation  
PR µ = 1,654 (2190.X1)-0,021 × X2

-0,149 

× exp (-0,027.X3 + 0,288.X4 – 

0,763.X102 – 1,227.X103 + 

0,313.X11 – 0,267.X12 – 1,411.X14) 

 

 

 

(20) 

NB µ = 0,927 (2190.X1)-0,021 × X2
0,121 × 

exp (-0,032.X3 – 1,591.X103 + 

0,395.X11 – 0,308.X12 – 2,163.X14) 

 

 

(21) 

ZIP µ = 0,383 (2190.X1)-0,248 × X2
0,362 × 

exp (-0,035.X3 – 0,364.X101 – 

0,355.X12 + 0,272.X15) 

 

 

(22) 

ZINB µ = 0,383 (2190.X1)-0,248 × X2
0,036 × 

exp (-0,035.X3 – 0,364.X101– 

0,355.X12 + 0,272.X14) 

 

 

(23) 

 

7.2 Statistic Model Test 

 

Based on the analysis for the PR model, 

dispersion value (α) is 1,44. This indicates over-

dispersion in the data, suggesting that the PR model 

is not suitable, and the more appropriate models 

could be NB or ZIP. To determine whether the 

suitable model is NB (over-dispersion occurs in the 

TA data) or ZIP (over-dispersion happens due to the 

abundance of zero occurrences in the TA data), a 

Goodness-of-Fit Test was conducted, using 

Equations 16 and 17 as shown in Table 4. 

 

Tabel 4. Goodness-of-Fit Test  

Model NB ZIP 

Data Count 379 379 

Parameter Count 7 6 

Degrees of Freedom 371  372 

X2 315,41 267,59 

G2 375,53 235,66 

X2 (0,95;7) , X2 (0,95;6) 416,91 417,85 

 Accepted Rejected 

 

Based on the analysis results presented in Table 

4, it was determined that the suitable model for this 

case is the NB model. Subsequently, a Vuong Test 

was conducted on the NB and ZINB models to 

ascertain whether over-dispersion occurred in the 

TA data or if it was due to the abundance of zero 

occurrences in the TA data. Analysis yielded a t-

statistic value of 2,44, which is greater than 2,00, 

indicating that the suitable model could be either 

NB or ZINB. Additionally, a Vuong Statistic value 

of -10,94 < -1,96, suggests that the most appropriate 

model for the TA case is the NB model. Further 

validation of the model was carried out using 

MAPE. 

 

7.3 Model Validation 

 

Model validation was using MAPE as per 

Equation 19. For the NB model, a MAPE value of 

20,10% was obtained, falling within the range of 

20% to 50%. This percentage error, indicated by the 

MAPE value, demonstrates that the TA estimation 

results using this equation are reasonable. 

 

7.4 Discussion 

 

Based on the modeling and analysis results, out 

of the 20 infrastructure variables considered, only 

seven significantly influence train accidents in 

Indonesia. These variables are the frequency of 

trains, the length of railway tracks, train speed, the 

length of curves with a radius of 500 m to ≤ 1000 

m, the number of vulnerable locations, the length of 

catenary networks, and single-track lines. 

1. The frequency of trains has a positive impact on 

TA, meaning that the higher the frequency of 

trains, the higher the TA. 

2. The length of railway tracks has a positive 

impact on TA, meaning that the longer the 

railway tracks, the higher the TA. 

3. Train speed has a negative impact on TA, 

meaning that the higher the train speed, the 

lower the TA. This is related to the frequency of 

railway track maintenance. High-speed railway 

tracks will certainly affect the increase in 

railway track maintenance. 

4. The length of curves with a radius of 500 m to ≤ 

1000 m has a negative impact on TA, meaning 

that the longer the curve, the lower the TA. 

Curves with this radius are safer to use 

compared to curves with a radius < 500 m. 

5. The number of vulnerable areas has a positive 

impact on TA, meaning that the more vulnerable 

areas, the higher the TA. 

6. The length of catenary networks has a negative 

impact on TA, meaning that the longer the 

catenary networks, the lower the TA. Generally, 

catenary networks are associated with 

commuter transportation, where the railway 

tracks are not long, thereby reducing the TA. 

7. Single-track lines have a positive impact on TA; 

single-track lines can influence an increase in 

TA compared to double-track lines, and this is 

related to their operational pattern. 

These variables will affect the expected number 

of accidents. The higher the TA on a railway track, 

the more dangerous the track, requiring attention 

and intervention. 

 

8. CONCLUSION 

 

1. The suitable GLM for the railway accidents 

model in Indonesian Railway case is the NB. 
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2. The factors associated with TA in Indonesia as 

per this model encompass: 

a. Train frequency (X1 in trains/day) as 

exposure. Train frequency plays a crucial 

role in shaping the likelihood of TA. A 

higher frequency, or the greater number of 

trains traversing a specific rail segment per 

day, escalates the probability and risk of TA. 

b. Length of track (X2 in km) as exposure. The 

extent of the railway track directly affects 

TA. Longer tracks translate to extended 

travel durations for trains, which can also 

influence the probability of TA. 

c. Train speed (X3 in km/hour) as a risk factor. 

Train speed significantly affects the 

incidence of TA. Elevated train speeds on a 

railway track elevate the likelihood and risk 

of TA. 

d. Length of the curve with a radius of 500 m 

to ≤ 1000 m (X103 in km) as a risk factor. The 

length of a curve with a radius ranging from 

500 m to ≤ 1000 m exerts an influence on 

TA. Considering the available data, this 

radius category is prevalent within the study 

area. The greater the number or length of 

curves within this range, the higher the risk 

of TA. Mitigating this risk to railway safety 

necessitates the reduction of such curves. 

e. Number of vulnerable areas (X11 in points) 

as a risk factor. The quantity of vulnerable 

areas is a pertinent factor in determining TA. 

An escalation in the count of vulnerable 

areas correlates with an augmented risk of 

TA. To alleviate risks to railway safety, 

reducing the number of vulnerable areas 

becomes imperative. 

f. Length of catenary line (X12 in km) as a risk 

factor. The extent of the catenary line 

directly influences TA. A longer catenary 

line along a track line amplifies the risk of 

TA. The length of the catenary line typically 

aligns with the length of the track line in 

sections featuring catenary line, such as in 

OA Jakarta. 

g. Single track (X14) as a risk factor. Whether a 

railway track is single or double-track has a 

significant impact on the occurrence of TA. 

Single-track sections present a heightened 

risk of TA compared to double-track 

sections, primarily due to operational 

patterns. Operational procedures on single 

tracks allow trains to cross on the same track, 

substantially heightening the risk of TA. 
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