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ABSTRACT: Seafloor sediments have a significant role in the planning and development of coastal areas, 
especially port areas. Acoustic technology developing today, especially multifrequency Multibeam Echosounder 
(MBES), is expected to measure seafloor sediment and detect the type and distribution of seafloor sediments. The 
question posed in this study is how to improve the accuracy of sediment classification using multifrequency MBES. 
This study uses deep neural networks to classify seafloor sediments in the study area with input bathymetric and 
bathymetric differences and 74 in situ sediment samples (silt, clayey sand, silty sand, and sandy silt). Sediment 
classification results show that clayey sand dominates the sediment distribution in the Central and Eastern regions. 
On the other hand, sandy silt predominates in the western area (harbor pond). Classification of seafloor sediments 
in the study area has an accuracy of 41.9% (average) and a kappa coefficient of 21.9% (fair). The implication of 
the study is that bathymetric and bathymetric differences from multifrequency MBES produce a low sediment 
classification accuracy value of below 50%. Therefore, it needs to be re-evaluated in relation to bathymetric and 
bathymetric differences and the amount and distribution of sediment sample data needed to improve its accuracy.   
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1. INTRODUCTION 
 

Coastal zones are unique areas at the interface of 
land and sea [1] and are dynamic and change 
spatiotemporal. There are strong interactions between 
land and sea in coastal areas such as beaches, 
swamps, mangroves, coral reefs, etc. The transition 
from land to sea creates highly diverse and productive 
ecosystems. Coastal areas have very high economic 
value. Coastal areas also are rich in biodiversity and 
function as places for exchange between countries, 
islands, and regions. 

Activities in coastal areas require marine maps to 
support economic and environmental activities on the 
coast. Nautical charts are important to marine data 
and information, depicting the configuration of the 
seafloor and coastlines [2]. A nautical chart contains 
geographic information from the sea and coastal 
areas, which includes bathymetry, seafloor 
sediments, coastlines, navigation hazards, natural and 
artificial navigation aids, tides, currents, man-made 
structures such as ports, buildings, jetties, and bridges 
[3]. Apart from that, the characteristics of seafloor 
sediments must be included in a nautical chart [4]. 

The characteristics of seafloor sediments play a 
significant role in the planning and development of 
marine and coastal areas, such as safety transportation 
and navigation, marine structures constructions 
(pipelines, cables, platforms, harbors), and the marine 
environment (habitats, waste treatment, 
sedimentation). Seafloor sediment maps are usually 
obtained by in situ data (grab and core samplers), 

optical (camera and video), and acoustic methods 
(sonar) [5]. The acoustic methods commonly used to 
classify seafloor sediments are single beam 
echosounder (SBES), side scan sonar (SSS), and 
multibeam echosounder (MBES).  

Over the past five years, technological 
developments have been used to classify seafloor 
sediments using multifrequency MBES, where a 
survey directly captures multifrequency based on 
ping by ping [6,7]. Multifrequency MBES data comes 
with bathymetric and backscatter data for each 
frequency. The bathymetric data for each frequency 
can be adjusted to obtain the sediment thickness 
(depth difference) between the frequencies. 

Recent developments in MBES technology can 
produce bathymetric, backscatter, and water column 
data in one survey [8,9]. Researchers often use 
backscatter data to classify seafloor sediments in 
single frequency [10-14] and multifrequency [6,7,15-
17]. In addition, some researchers use bathymetric 
and backscatter data [18-20] and bathymetric and 
backscatter features [14,21-24]. Currently, there are 
no studies that use bathymetric data and bathymetric 
differences for sediment classification.  

According to many researchers, including [25], 
further investigation of the depth difference 
parameters between frequencies is recommended to 
ensure accurate interpretation and classification of 
multifrequency data. Therefore, this study aims to 
examine the types of seafloor sediments in coastal 
waters using the depth and depth differences of 
multifrequency MBES. A positive correlation 
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between depth difference (sediment thickness) and 
seafloor sediment should exist. 
 
2. RESEARCH SIGNIFICANCE 
 
 Seafloor sediment classification has a vital role in 
port area management. This study utilizes the 
bathymetric multifrequency MBES to classify seabed 
sediments. The method used in this study is a deep 
neural network with input data in the form of 
bathymetric and bathymetric difference data from 
multifrequency MBES. In situ sediment sample data 
are used as validation. Although the results of this 
study are not satisfactory because the accuracy of the 
classification of seabed sediments is still below 50%, 
this is a breakthrough in terms of the classification of 
seabed sediments with bathymetric data. 

 
3. DATA AND METHODOLOGY  
 
3.1 Research Location 

 
PT Gresik Jasatama has operated since 2005 as 

Gresik's first inland port. This port integrates large-
scale modern facilities with transshipment services, 
making it one of the fastest operating ports in East 
Java. The port of Gresik Jasatama (GJT port) is an 
essential national object and a key force in the 
national economy. The company operates around the  
clock while applying innovations to maintain the 
nation's and its stakeholders' trust. It is committed to 

the nation's prosperity and being the most trusted and 
environmentally responsible company.  

GJT port is located on the north coast of Gresik 
Regency, East Java, in the West Shipping Channel of 
Surabaya. It currently covers 8.3 hectares of 
reclaimed land, with five fully operational berths, at 
the end of 2016 [26]. Fig.1 shows the survey area 
represented by the yellow rectangle located in Gresik, 
East Java, Indonesia. 
 
3.2 Multibeam Echosounder Survey and 
Processing 
 

The MBES survey was conducted on Wednesday, 
January 4, 2023, covering an area of 
approximately 41 hectares. The depth of the study ar
ea is less than 25 m LWS. The reliefs of the area 
studied are simple, with the usual harbor and 
coastline. The seafloor is covered with various 
landforms, and sediments, including clay, mud, sand, 
and gravel. The study of the acoustic properties of 
sediments has dramatically benefited from using 
seafloor sediments. Collect depth measurement data 
using R2Sonic 2020 multifrequency MBES. This 
survey uses five frequency modes: 400, 350, 
300, 250, and 200 kHz. The 2020 MBES R2Sonic is 
a ping by ping based multifrequency, which means 
the system can capture frequency-to-frequency depth 
measurement data in a single survey.  
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig.1 Area Survey Location at Gresik Jasatama Port, East Java, Indonesia
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During the adjustment survey, the MBES converter 
was installed on the side of the ship (side-mounted). 
The GNSS differential horizontal and directional 
positioning is linked directly to the CORS station. 
The survey also included a sound velocity profiler to 
measure the speed of sound waves in the water layer 
at the survey's beginning, middle, and 
end. Data from the Sound Velocity Profiler (SVP) 
was corrected for the velocity of the sound waves 
emitted by the MBES. The data acquisition system is 
automatically adjusted, including transmit power, 
gain, and pulse length. The inertial motion unit (IMU) 
sensor measures the ship’s attitude, such as roll, pitch, 
and yaw. In addition, tidal observation was also made 
around this location to adjust the benchmark to the 
chart datum, lower water spring (LWS). The 
parameters and specifications of MBES R2Sonic 
2020. Table 1 shows the parameters and 
specifications of MBES R2Sonic 2020, which were 
used in this survey.  

 
Table 1 Parameter and spesification R2Sonic 2020 

MBES [9] 
 

Beam width (Ωtx and 
Ωrx) 

4° x 4° at 200kHz; 1.8° 
x 1.8° at 450kHz;  

Selectable Swath 
sector 

10° to 130° User 
selectable in real-time 

Pulse type Shape CW 

Number of soundings Up to 1024 soundings 
per ping 

Frequency 200 – 450 kHz 

Sounding Pattern Equiangular Equidistant 
single  

Nominal pulse Length 
τn 

15 s – 1 ms 

 
MBES raw bathymetric measurements were 

processed using Eiva NaviModel software. Post-
processing includes corrections for sound signal loss 
during transmission, encoder effects, and system-
implemented model removal. A patch test is 
calibrated for latency and the ship’s attitude, such as 
yaw, roll, and pitch. Configure the SVP aims to 
achieve a sound speed profile at each depth layer.   
SVP value to correct the sound wave generated by the 
MBES transducer. Tidal data is obtained by 
converting readings from tidal observations into chart 
datum that refers to the low water spring (LWS). Raw 
bathymetric measurement is performed by frequency 
separation into five frequencies: 200 kHz, 250 kHz, 
300 kHz, 350 kHz, and 400 kHz. After receiving the 
patch test calibration value, the sound speed profile, 
and the vertical reference, these can be imported into 
the depth data as a bathymetric map. Finally, the 
bathymetric of each frequency is matched to obtain 
the difference in depth between the frequencies. 

3.3 Seafloor Sediment Samples  
 
This study collected up to 74 seafloor sediment 

samples in the study area (GJT port) using the Van 
Veen type. Van Veen in situ sampling is suitable for 
bulk sampling a wide range of materials, from soft, 
fine-grained materials to sandy materials [27]. 
Sampling points are based on a predefined initial 
schedule evenly distributed throughout the survey 
area. Due to current and other factors, the final 
sampling location can be seen in Fig.2.  

 

 
 

Fig.2 Seafloor sediment sample distribution in the 
survey area (blue dots) 

 
Locate the sampling points using a Global 

Navigation Satellite System Real Time Kinematic 
(GNSS RTK) linked to the nearest Continue 
Operating Reference Station (CORS) station, which 
has an accuracy of less than 10 cm [28]. Samples are 
taken to a professional laboratory for screening and 
sieve analysis. A sieve analysis [29] is a procedure 
used to examine and measure the size of particles in a 
material sample. It usually involves sieving the 
sample through a series of sieves, each with a 
different mesh size, to allow the passage of particles 
of different sizes. The proportions of particles of 
different sizes can then be measured and compared, 
helping to assess sample quality. The result is the 
percentage composition of each gravel, sand, clay, 
and mud type.  

 
4. RESULT AND DISCUSSION  
 
4.1 Bathymetric Map 

 
Fig.3 describes the bathymetric map for each 

frequency in the survey area. The depth of the survey 
area ranges from 2.4 m to 25.5 m. The area near the 
port (port pool) in the west has a depth of less than 
8.2 m, the middle of the survey area has a depth of 8.2 
to 19.7 m, and the eastern part of the study area, which 
is the western shipping channel of Surabaya has a 
depth of more than 19.7 m from the Lower Water 
Spring (LWS). In general, and visually in the image, 
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depth at each frequency is almost like depth at one 
frequency with depth at another. Although 
theoretically, lower frequencies will have deeper 
depths compared to higher frequencies. High-
frequency waves travel a shorter distance because of 
their longer cycles, meaning more energy is 
dissipated into heat more quickly. Their small 
wavelength makes them useful for detecting objects 
since they reflect them. 
 
4.2 Bathymetric Difference Inter Frequencies 

 
The bathymetric data of each frequency (200 kHz, 

250 kHz, 300 kHz, 350 kHz, and 400 kHz) are 
subtracted from each other such as h200 – h250, h200 
– h300, and others. A map of bathymetry between 
frequencies can be seen in Fig.4. The difference in 
bathymetry between frequencies is -10 cm to 10 cm, 
except for the difference in bathymetric results 
between frequency depths of 300 kHz, 350 kHz, and 
400 kHz, which range from -5 cm to 5 cm.  

Several spots have a bathymetric difference 
between 10 cm to 40 cm, and tiny spots of more than 
1 m in the western area (blue), which can be caused 
by the noise that occurs and significant errors in this 
area. According to [30], bathymetric differences 
between frequencies have a less significant impact on 
the calculation of dredging volume. 

 
4.3 Deep Neural Network Classifier 

 
The Deep Neural Network (DNN) is a deep 

learning Artificial Neural Network (ANN) model 
[31], which consists of a multi-layer perceptron with 
many hidden layers, the weights of which are fully 

connected and often initialized using unlabeled or 
labeled pre-training techniques. The main purpose of 
a neural network is to take a set of inputs, perform 
increasingly complex calculations on them, and 
provide an output to solve real-world problems such 
as classification. The DNN model is widely used in 
signal and image processing due to its advantages, 
such as its simple and easy-to-understand structure 
[32].  

Apart from that, another definition based on [21] 
states that a DNN is a network model with an input 
layer structure, an output layer, and several hidden 
layers connected to each layer. The significance of the 
specific layers and neurons in DNN structure is to 
perform feature extraction, identifying and separating 
relevant information from input data needed to make 
predictions and decisions. Fig.5 shows the DNN 
structure diagram used in this case, with the input 
layer having 15 neurons (five bathymetric and ten 
bathymetric differences), the hidden layers' 
corresponding weights and biases, and four neurons 
(four sediment types) as the output layer.  

An activation function is needed to determine 
whether the neuron should be active or not based on 
the weighted sum of the input. The activation function 
is a function that is used to process information from 
input with calculations. Several activation functions 
can be used in deep learning networks, but in this 
case, the ReLu activation function is used to process 
the hidden layer, and softmax activation functions are 
used to process the output layer. The Deep Neural 
Network model created with various predetermined 
parameters is then carried out in a calculation process 
using previously prepared input data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3 Bathymetric Map for each frequency (a) 200 kHz (b) 250 kHz (c) 300 kHz (d) 350 kHz (e) 400 kHz 
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In this study, 74 input data were used, corresponding 
to the number of types of sediment samples that had 
been obtained. From the 74 types of sediment sample 
data, other variables were added in the form of 
bathymetry data and bathymetry differences. The 74-
input data were divided into training data (70%), 
which is used to measure model performance during 
training, and validation data (30%), which is used to 
measure model performance during training and 
assist in parameter tuning. In this study, the training 
data got an accuracy of 62.9%, while the validation 
data got an accuracy of 50%.  

4.4 Seafloor Classification and Classification 
Accuracy 

 
Fig.6 shows the results of seafloor sediment 

classification using a deep neural network (DNN) 
with bathymetric and bathymetric differences in 
frequency data input. In general, the bottom sediment 
in the study area is dominated by clayey sand and 
followed by silty sand. Silty Sand spreads near the 
coast and a small part to the east (APBS channel). The 
distribution of the Clayey Sand classification 
dominates the area of the port channel. A small part 
of the area is silt, and very little is Sandy Silt.

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4 Bathymetric differences inter-frequencies 
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Table 2 presents estimates of sediment 
classification accuracy using the confusion matrix, 
which is used for classification because errors can 
occur when classifying a map based on selected 
pixels that do not match the in-situ data. Data in Table 
2 can be used to calculate Overall Accuracy (OA), 
Producer's accuracy (PA), User's Accuracy (UA), and 
Kappa coefficient. OA describes the proportions 
mapped correctly out of all the reference locations. 
OA is often expressed as a percentage, with an 
accuracy of 100 being a level of perfect classification 
where all reference locations have been correctly 
classified. At the same time, PA is the accuracy of a 
map from the cartographer's perspective. It is the 
frequency with which actual topographic features are 
accurately represented on a classified map or the 
probability that a given land cover of a ground area is 

so classified. In comparison, UA is the accuracy from 
the perspective of the map user. User accuracy 
indicates how often the layer on the map will be 
present at the scene. 

In this study, OA, the seafloor sediment 
classification, is only 41.9%. Landis and Koch [33] 
consider 0-0.20 (slight), 0.21-0.40 (fair), 0.41-0.60 
(moderate), 0.61-0.80 (severe), and 0.81-1 (almost 
perfect). Thus, the sediment classification in this case 
is included in the moderate category (0.41 – 0.60). 
The user and producer accuracy for any given class is 
often different. In this case, the PA for the silt class 
was 25.9%, while the UA was 47%. It means that 
although 25.9% of the reference silt areas have been 
correctly identified as silt, only 47% of the areas 
identified as silt in the classification were silt.  

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
Fig.5 Deep Neural Network classifier model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.6 Seafloor Sediment Classification Map 
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Table 2 Matrix Confusion between in situ and 
classified data 

 
Analyzing the accuracy and error metrics is better 

for evaluating classification and results. Often, very 
high accuracy for certain classes, while others may 
have poor accuracy. The information is important to 
evaluate the appropriateness of the seafloor sediment 
classified map. 

Classifiers built and evaluated on datasets of 
different class distributions can be compared more 
reliably using the Kappa statistic [34] to evaluate the 
predictive performance of classifiers. The Kappa 
coefficient is generated from a statistical test to 
evaluate classification accuracy. Essentially, the 
Kappa coefficient evaluates classification 
performance to just assign random values. The 
Coefficient of Kappa has a value between -1 and 1. 
Zero value indicates that the classification is no better 
than random classification. Negative numbers 
indicate that the classification is significantly worse 
than chance. A value of 1 indicates that the 
classification is significantly better than random 
classification. In this area survey, seafloor sediment 
classification had a kappa of only 21.9%. According 
to Landis and Koch [33], this result is included in the 
Fair category (0.21 – 0.40).  

The results of seabed sediment mapping using 
DNN, in this case, have a smaller accuracy value 
compared to other studies that have been conducted 
by other researchers, such as Zhu et al. [21] and Cui 
et al. [22]. As mentioned above, the main input of this 
study is bathymetric data and bathymetric differences 
between frequencies from multifrequency MBES 
data, while according to [21,22], using input data in 
the form of backscatter data and backscatter features 
which correlate very strongly with seabed sediment 
types. 
 
5. CONCLUSION 
 

Multifrequency MBES survey data in Gresik Jasa 
Tama port waters produced water depths for each 
frequency ranging from 2.4 m LWS to 25.5 m LWS. 
The bathymetric difference between frequencies (200 

kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz) 
shows a depth difference of ± 10 cm.  

The seafloor sediment classification results show 
that clayey sand dominates sediment distribution in 
the central and east areas. In contrast, silty sand 
dominates in the western area (harbor pond), with 
little silt-type sediment and very little or no sandy silt 
sediment.  

The classification of seafloor sediments in the 
survey area with DNN with bathymetric inputs and 
bathymetric differences has an accuracy of 41.9% 
(moderate) and a kappa coefficient of 21.9% (fair). 
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