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ABSTRACT: The composite action of reinforcement in the surrounding concrete involve a complex and non-
linear mechanism. Inadequate understanding of the underlying interactions may lead to designs with 
insufficient amount of bond resistance of reinforcing bars in concrete structures. To investigate the effects of 
various parameters on the bond strength of steel bars in concrete, 54 cube samples with varying embedded 
reinforcements and strengths were prepared. The samples were cured for 28 days and tested using ultrasonic 
pulse velocity (UPV) test for sample homogeneity and single pull out test for bond strength. Data gathered in 
the experiment were used in the development of bond strength model as a function of compressive strength, 
concrete cover to rebar diameter ratio, embedment length, and UPV using artificial neural network (ANN). Of 
all the bond strength models considered from various literatures, the neural network model provided the most 
satisfactory prediction results in good agreement with the bond strength values obtained from the experiment. 
The UPV parameter was found to be one of the most significant predictors in the neural network model having 
a relative importance of 20.57%. This suggest that the robust prediction performance of the bond model was 
attributed to this essential component of the model. The proposed model of this study can be used as baseline 
information and rapid non-destructive assessment for zone wise strengthening in reinforced concrete.    
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1. INTRODUCTION 
 

One of the essential components that must be 
achieved for structural design is the bond strength 
of the steel reinforcement to the enveloping 
concrete. The resistance of the rebar against 
slipping from embedment due to pulling force is 
defined as bond strength. The composite action 
between steel and the enveloping concrete may be 
may be destroyed by the inadequate bond resistance 
and may result to concrete brittle failure [1]. The 
bond does not only ensure the composite action but 
also controls structural behavior of the reinforced 
concrete. There are numerous number of researches 
embarking on bond behavior of steel bars in 
concrete are available in the literature. Results 
recorded from experiments of these studies were 
used to develop analytical and empirical models. 
Due to the complex non-linear relationships that 
exist in the rebar and concrete, several ideal 
assumptions were adopted to simplify the systems 
involved in the development of the models. These 
estimates however insufficiently represent the 
existing underlying mechanism of bond strength in 
reinforced concrete. As a result, the derived bond 
equations provided estimates that are in good 
agreement only within the framework of their study. 
It is therefore indispensable to consider other 
modelling techniques that are powerful enough to 

generally adopt with the complex behavior of bond 
strength in reinforced concrete. 

A convenient and precise way to model the 
complex interactions in such intricate systems is by 
means of artificial neural network [2-6]. There is no 
need to consider ideal assumptions to simplify the 
modelling approach as the neural network process 
raw data from actual experiments.  Through the aid 
of a set of input-output data, a system of 
interconnected neurons can be developed that is 
capable of predicting variables from a certain set of 
inputs. In this work, novel prediction model of bond 
resistance of reinforcing rebars in reinforced 
concrete using neural network will be developed. A 
greater number of variables will be considered in 
the modeling including concrete compressive 
strength, tensile capacity of concrete, homogeneity 
of concrete using ultrasonic pulse velocity, rebar 
diameter, embedment length and concrete cover. 
The performance of the model will be compared to 
other available bond strength models in the 
literature. Multiple regression model will also be 
derived for comparison. 

 
2. BOND STRENGTH MODELS  
 

The bond strength of reinforced concrete 
members depends on many different variables such 
as compressive strength, rebar size, length of 
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embedment, type of loading (dynamic or static), 
development length, and bar spacing. The use of 
pull out test played a vital role in the development 
of bond strength model. In the study of Hadi [7], 14 
simple pull out tests were performed in measuring 
the bond strength of 500 MPa grade steel embedded 
in a 70 MPa concrete compressive strength. 
Different bar diameters from 12 mm to 36 mm were 
used having concrete cover of 120 mm and 150 mm. 
The derived model using regression analysis is 
given in eqn 2. The equation is dependent on the 
compressive strength of concrete (f’c), concrete 
cover (c), diameter of the rebar (db), and the length 
of embedment (Ld). The bond strength equation was 
compared with other established models and 
comparison showed that among the models 
considered, the proposed model provided the best 
prediction values in agreement with the 
experimental results. 
 

          (1) 
 

Unlike any other studies that focus on bond 
strength, the study of Yalciner et al [8] made use of 
multiple linear regression in order to model an 
equation for the ultimate bond strength(τbu) that is 
dependent to compressive strength (f’c) of concrete 
and the cover (c) to bar diameter (D) ratio. An 
increase in concrete compressive strength and 
concrete cover would also result to an increase in 
bond strength. Moreover, it was found out that an 
increase in the compressive strength with constant 
concrete protective cover resulted to higher bond 
strength than a constant compressive strength with 
increasing the concrete protective cover. Using 
multiple linear regression, the following equations 
with high correlation coefficient values were 
established: 

 
                        (2) 
 
A larger number of variables were considered in 

the study of Diab et al [9] on bond performance and 
ultimate design of bond stress of normal and high 
strength concrete. Samples having different  
compressive strength (fcu), concrete cover (c), size 
of the bar (db), length of embedment (Ld), rib height 
(hr), and rib spacing (sr) were tested using single and 
double pull out tests. The bond stress equation of 
samples having compressive strength of 80 MPa 
was developed using multiple regression as shown 
in eqn 3. The reliability of this equation was 
validated using values recorded from experiments 
and compared with  forecasted values provided by 
other available models. 

(3) 
 
 

 

There is a satisfactory agreement of the 
proposed equation as described by the average 
value of actual to predicted bond strength ratio of 
0.89. 

In most of the studies enumerated for bond 
strength models, other equally important factors 
were not considered such as tensile strength and 
homogeneity of concrete. Thus, the results of the 
studies do not provide a substantial and complete 
discussion of the composite action between steel 
and concrete. Further, the derived models can only 
be applied to specific cases of bond strength to 
which the models were calibrated. In most of the 
studies involving non-linear relationships of 
multiple variables like bond stress, several ideal 
assumptions were usually adopted to reduce the 
complexity of the system in the modeling process. 
In order to avoid these simplifications that may 
reduce the reliability of results, a more powerful 
modelling approach such as artificial neural 
network must be used.  
 
3. EXPERIMENTAL PROGRAM  
 
3.1 Materials and Specimens 
 

In designing the correct proportion of concrete, 
raw materials need to exhibit desirable properties to 
ensure beneficial effect to the design mixture. With 
the advent of available standard testing procedures 
and duly accepted gaging criteria, this study was 
able to measure the physical properties of the 
materials used and found to be in good conditions 
for the production of concrete. Water used in the 
mix was in good quality and free from contaminants. 
The density and water absorption of the coarse 
aggregates used were 1572.028 kg/m3 and 0.402% 
respectively. These values were measured in 
accordance with ASTM C127-04. Using ASTM 
C127-04a and ASTM C136, the density, water 
absorption, and fineness of fine aggregates were 
respectively measured to be 1533.801 kg/m3, 3.2 %, 
and 2.673. Three distinct designs of concrete 
mixtures were prepared based on target 
compressive strengths of 21 MPa, 28 MPa, and 35 
MPa. Using a slump interval between 25mm and 
100mm, 2% entrapped air, and estimated water 
cement ratios of 0.68, 0.57, and 0.47, three design 
mixes shown in table 1 were obtained. A total of 54 
cube samples having side length of 200 mm with 
embedded reinforcement were prepared for the 
conduct of pull out test. Variation in rebar diameter 
(16mm, 20mm, and 25mm), concrete cover (60mm, 
70mm, and 80mm), and embedment length (50mm, 
75mm, and 100mm) were used in this study. 
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Table 1 Concrete design proportions and strengths 

Design 
Mix 

W 
kg/m3 

C 
kg/m3 

CA 
kg/m3 

FA 
kg/m3 

f’c 
(MPa) 

ft 
(MPa) 

1 189 301 1018    866 22 2.08 
2 189 359 1018 806 29 2.61 
3 190 436 1018 726 36 3.14 

 
3.2 Testing of Specimens 
 

Immediately after molding and finishing, cube 
and cylindrical specimens were cured by immersing 
the samples in water for 28 days (ASTM C31). The 
dimensions of the cylindrical samples were 6 inches 
in diameter and 12 inches in height. After the 
specified age of curing period have been reached, 
the cylindrical samples were tested in three trials for 
compressive strength (ASTM C39) and tensile 
strength (ASTM C496) of concrete using the 
universal testing machine. To assess the quality of 
concrete, ultrasonic pulse velocity test was carried 
out to all the cube samples (ASTM C597). All 
lateral faces of the specimen were applied with 
liquid coupling material for better contact between 
the coupler and surface of the sample. The 
transducer and receiver of the UPV apparatus was 
placed in direct set up. Lastly, standard single pull 
out test (ASTM C234-91A) was conducted in all the 
concrete cube samples to measure the maximum 
force necessary to pull the rebar from the concrete 
as shown in fig.1. Bond strength between the rebar 
and enveloping concrete was obtained by taking the 
ratio of the stress load and the surface area of steel 
bar which is in contact with the concrete. 

 

    
 

Fig. 1 Concrete cube sample under pull out test 
 
4. EXPERIMENTAL RESULTS 
 
Experimental Data Statistics 
 
     The statistics of 54 samples tested for ultrasonic 
pulse velocity and pull out tests were determined. 
The statistical description includes the mean, 
standard deviation, sample variance, maximum 
value, and minimum value of the geometric 
attributes and measured strengths of the samples. 
The maximum pulse velocity was 4537 km/s while 

the minimum velocity was 4009 km/s. These values 
were measured from samples having 36 MPa and 22 
MPa compressive strengths respectively. The 
observed values were reasonable since higher 
compressive strengths imply more solid or compact 
internal structure of the sample. The signal 
generated by the UPV apparatus travels faster in 
solid medium thus providing larger values of pulse 
velocity. The UPV standard deviation of 128.56 
km/sec suggests that the measured UPV values of 
the samples were roughly close to the average UPV 
value of 4355 km/sec. Less variability in the 
measured values were also observed as describe by 
a relatively small COV of only 3%. In the bond 
strength however, a larger dispersion in the 
measured values were observed as indicated by 
large SD of 6.376 MPa and COV of 46.7%. 
 
5. NEURAL NETWORK MODELLING 
 
5.1 Framework of the Neural Network Model 
 

The bond strength model was a function of 6 
independent variables namely compressive strength 
(f’c), tensile strength (ft), embedment length (ld), 
rebar diameter (φ), concrete cover (cc), and 
ultrasonic pulse velocity (UPV). These variables 
were individually represented by 6 distinct nodes in 
the input layer of the neural network. To develop a 
simple ANN model, only one hidden layer was used 
with varying number of hidden nodes between 3 to 
6. A single node in the output layer represents the 
bond stress in the model. Neural network 
architecture having 6 input nodes, 2 hidden layer 
neurons, and 1 output node was represented as N 6-
2-1. Four ANN structures were developed having 
different number of nodes in the intermediate layer. 
The variation in the nodes was carried out to explore 
a better neural network topology. Feedforward 
backpropagation algorithm was used as the learning 
algorithm in the derivation of the models with 
hyperbolic tangent sigmoid function f(n)=2/(1+e-
2n)-1 as the neural activation function. This transfer 
function calculates a layer output that returns value 
between -1 to 1. Threshold criteria of 100000 cycles 
or an error tolerance value of 0.001 were used to 
terminate the simulation process. A few number of 
nodes in the hidden layer was considered to avoid 
overfitting in the development of the model. Early 
stopping in the testing phase was also carried out to 
further improve the generalization of the model.  

 
5.2 ANN Model Experimental Data and 

Simulations 
 

The least number of training data pairs that will 
provide unique approximation must not be less than 
the number of weights and biases associated with 
the neural network model [10]. Carpenter and 
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Hoffman [11] further suggest that 20-50% 
overdetermined ANN model tends to provide 
satisfactory prediction performance. The bond 
strength model in this study involved six predictors, 
one hidden layer, and one output node. This neural 
network structure (N 6-5-1) with five nodes in the 
hidden layer and using 20% overdetermined 
network required a minimum number of input-
output data pairs between 42 to 50 [12].  
     The correlation coefficient (R) and the mean 
squared error (MSE) were used as performance 
metrics in selecting the best bond strength model. 
The best neural network structure among the 
variations considered will have the least MSE and 
the closest R value to 1.0. As shown in table 2 were 
the results of MSE and R of the four distinct ANN 
model architectures having different number of 
nodes in the hidden layer. It is evident that N 6-6-1 
model provided the best performance among all the 
models considered in the simulation. After all the 
data in the output layer were transformed in their 
corresponding physical attributes, the errors can be 
calculated by subtracting the experimental values 
from the estimated values provided by each model. 
The measured errors in the predicted values of N 6-
6-1 model were the least errors relative to the other 
neural network architectures inasmuch as the model 
obtained the least MSE of 1.491. Further, a better 
agreement between the experimental and predicted 
values of N 6-6-1 model was expected owing to its 
high Pearson correlation coefficient R equal to 
0.981. Having these desirable results, the developed 
model successfully learned from the simulation 
given a limited number of experimental data.  
 

Table 2 Variation of ANN models 

Model  Number of  
hidden nodes 

Performance criteria 
MSE R 

N 6-3-1 3 5.247 0.938 
N 6-4-1 4 3.413 0.957 
N 6-5-1 5 2.287 0.972 
N 6-6-1 6 1.491 0.981 

 
5.3   Connection Weights and Biases of N 6-6-1 

Model 
 
After a series of simulations of different ANN 
architectures, the N 6-6-1 model emerged as the 
best performing architecture. The model has six 
normalized nodes in the input layer representing 
compressive strength of concrete (f’c), tensile 
strength of concrete (ft), embedment length (Ld), 
rebar diameter (φ), concrete cover (cc), and 
ultrasonic pulse velocity (UPV). The weights and 
biases of this network model upon simulation were 
shown in table 3. Using the causal inference 
procedure developed by Garson [13], the relative 
importance of each parameter was also reflected in 
the table. Apparently, the rebar diameter was the 
most significant predictor in the model having a 
relative importance of 29.29% followed by 
compressive strength (16.78%), and concrete cover 
(16.63%). This was reasonable since the bond 
strength in reinforced concrete is largely influenced 
by the change of these three parameters. The least 
significant predictor on the other hand was the UPV 
having a relative importance of only 8.32%. 

Table 3 Connection weights and biases of N 6-6-1 model 
 

Hidden Nodes 
Input Layer Output 

Layer f’c ft Ld φ cc UPV 

1 1.2359 0.97265 -3.488 -0.7465 0.8836 0.7632 0.8562 
2 -1.5151 -1.3295 -2.7982 0.01032 -0.69229 0.10122 -0.2242 
3 0.25005 -0.3640 3.1946 2.3349 -0.99424 0.28041 -0.3132 

 4 -3.1719 -1.4096 1.0701 -2.4758 0.62345 -4.111 -0.6295 
5 -1.8764 -1.253 0.74373 -2.1176 -0.6216 -0.6828 0.7191 
6 -0.0100 -0.8921 -0.3019 -0.3384 -0.9233 0.5979 -0.3561 

Biases -5.4397 2.5168 -1.1038 -3.5886 -1.9855 -1.7898 0.12035 
Rel. Impt. 

(%) 
16.78 13.43 15.15 29.29 16.63 8.32  

 
5.4    Prediction Performance of N 6-6-1 Model 
 

Fig. 2 shows the comparison of the N 6-6-1 model 
predictions to the experimental values for both 
training and test data. The results obtained in both 
data sets were significantly correlated as described by 
their respective Pearson’s correlation coefficients of 
0.99 and 0.90. A vast majority of the plotted points 

almost lied on the perfect line with an average 
prediction error of 6.86%. Roughly 90% of the 
predicted values of the model lied within the 10% 
error. Maximum and minimum errors of 64% and 
0.01% respectively were observed in the estimated 
values. An average ratio between the experimental 
and predicted values of 0.998 was further obtained. 
This result suggests that the estimated bond strength 
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was very close to the measured bond strength. 
Based on these desirable results, the derived ANN 
model exhibited a robust prediction performance 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

Fig. 2    ANN model predictions of bond strength 

 
5.5  Comparison Between N 6-6-1 Model and 

Other Bond Strength Models 
 

The performance of N 6-6-1 model was 
compared with other existing models developed by 
Hadi [7], Yalciner et al [8], Diab et al [9], and the 
developed model using multiple linear regression. 
Data sets in each study were consolidated and used 
to test the prediction performance of each bond 
strength model. Fig. 3 shows the plotted points of 
the experimental data against predicted values 
provided by the aforementioned models. A 45° line, 
also called the perfect line, was drawn in the figure 
to clearly observe the fitness of the models in 
estimating the bond strength of a given set of input 
parameters. The better the prediction, the closer will 
be the point to the perfect line. The scatter plot 
diagram displayed large dispersion of collected data 
sets from different studies.  The figure suggests that, 
in general, the models performed satisfactory only 
within the set of data in which the models were 
respectively calibrated. Most of the models 
provided significant deviations from the perfect line 
for values beyond the framework of their study. 
These undesirable attributes showed poor 
generalization of the models considered. It may be 
because of the ideal assumptions made in the 
modelling process that may not be the actual 
underlying behavior of the interactions involved in 
the system. The model developed by Yalciner [8] 
exhibited the largest recorded average error of 75%. 
While the model developed by Diab [9] included the 
largest number of parameters, the average 
prediction error was 49%. In fact, Hadi’s [7] model 
involving four independent variables offered better 
approximations providing a mean error of only 48% 
in the predictions. This observation implies that the 
superiority of the model does not rely on the number 
of variables involved in the modelling process but 

by how significant is the contribution of each 
variable in the model. Looking closely on the plots 
of the proposed N 6-6-1 model, majority of the 
points showed relatively small deviations from the 
perfect line and obtained a correlation coefficient of 
0.855. Among all the models considered in this 
study, the proposed ANN model gave the least 
average prediction error of only 29%. The 
maximum and minimum correlation coefficients 
were 0.855 and 0.062 respectively. About 72% of 
the consolidated data sets from various studies 
considered were captured by the ANN model with 
an error within ±20%. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.    Bond predictions using different models 
 

6. CONCLUSIONS 
 

Upon training various neural network 
architectures, N 6-6-1 model was found to be the 
best performing architecture having six input nodes, 
one hidden layer with five nodes, and one output 
node. The model was able to provide satisfactory 
prediction results capturing 72% of the data from 
experiments conducted and from various literatures 
with an error of at most 20%. Model comparison 
further showed that the proposed N 6-6-1 model 
provided the best prediction performance against 
other existing models considered in this study. The 
superiority was achieved since no simplified ideal 
assumptions were considered and only 
experimental results were used in the simulation 
process. This shows the power of artificial neural 
network in modelling highly complicated 
interactions using a limited source of experimental 
data.  

The compressive and tensile strengths of 
concrete, concrete protective cover, and ultrasonic 
pulse velocity offered direct correlation with the 
bond strength behavior of reinforced concrete. The 
bond stress however decreases as the rebar diameter 
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and embedment length of reinforcement increases. 
This observation was attributed by the lateral 
contraction of the rebar due to Poisson’s ratio. The 
derived model can be considered as rapid and 
convenient approach to estimate the bond strength 
of concrete. The results of the model can be used as 
baseline information in the design of reinforced 
concrete structures and other engineering 
applications involving bond strength.  
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