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ABSTRACT: Excessive time-consuming has been a great problem when applying metaheuristic algorithms to the 
optimization of structures using direct analyses, including steel truss structures. In this work, a robust optimization 
method was proposed to solve this issue. In the proposed method, an efficient variant of the differential evolution 
algorithm (DE), which was proved to be powerful in searching optimum designs and converged quickly, was 
employed as the optimizer. An effective framework based on LightGBM classification models was developed to 
save lots of time-consuming direct analyses required for evaluating constraints. To enhance the performance of 
LightGBM models, an adaptive parameter, which can reflect the convergence speed of the population, was 
proposed to prevent the imbalanced classification problem in the training data. Two truss optimizations with 
continuous design variables were studied, including a 47-bar power line and a 113-bar planar bridge. The results 
proved that the proposed method yielded better optimum designs than DE/best/1 and EpDE. It also saved more 
than 60% of time-computing compared to DE/best/1, EpDE, and 2EpDE. Besides that, the proposed framework 
for using LightGBM models was compatible with metaheuristics having different convergence rates, including 
DE/best/1, EpDE, and 2EpDE. 
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1. INTRODUCTION 
 

Sizing optimization of steel truss structures has 
attracted significant interest from researchers. In 
sizing optimization of a truss, cross-sections of truss 
elements are optimized to minimize the total 
costs/mass of the structure. In practice, the cross-
section of an element is often chosen from a given 
discrete list. However, for the study purpose, 
continuous range can be considered to evaluate the 
efficiency of the developed algorithm. The 
constraints of the optimization are the design 
requirements of the standards, where lots of load 
combinations are considered. Due to the 
characteristics of steel material, the analysis of steel 
trusses requires consideration of the structural 
nonlinearities. In such cases, nonlinear inelastic 
analyses are good solutions. The whole structure's 
nonlinear response and load-carrying capacity are 
directly captured and the separate member check can 
be eliminated [1]. 

Recently, metaheuristic algorithms based on non-
gradient have been preferred to gradient-based 
optimizers since they performed superior for non-
discontinuous, non-convex, and highly nonlinear. 
Publications in the literature proved that 
metaheuristics are effective with the optimization of 
various structural types i.e. truss structures [2], 
modular block walls [3], steel frames subject to static 

and seismic loads [4], pavement structures [5], etc. 
Some popular metaheuristics are differential 
evolution (DE) [6], ant colony [7], and particle swarm 
optimization (PSO) [8].  

In 2018, Truong and Kim [2] proposed an 
efficient p-best-based DE algorithm (named EpDE) 
using a p-best method: ‘DE/pbest/1’. This approach 
allows balancing 2 popular DE mutation strategies: 
‘DE/rand/1’ and “DE/best/1’. Numerical results in [2] 
proved that EpDE found better global optimal 
solutions and converged more quickly. In 2023, Vu et 
al. [9] improved EpDE by using two p-best 
individuals (not only one as integrated with EpDE), 
called 2EpDE. The results showed that 2EpDE 
converged more quickly and searched global optimals 
better than EpDE. However, the study of Vu et al. [9] 
was limited to steel frames with discrete design 
variables. The evaluation of 2EpDE robustness for 
truss structures with continuous design variables is 
necessary. 

Integrating nonlinear inelastic analysis in 
metaheuristic-based optimization frameworks spends 
abundant computational efforts since lots of structural 
analyses are required to evaluate constraints. 
Consequently, developing efficient methods for 
reducing the number of time-consuming nonlinear 
inelastic analyses is an interesting research direction. 
In conventional approaches, improving the 
performance of metaheuristic algorithms by 
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increasing the ability to find globally optimal 
solutions, increasing convergence speed, and 
reducing calculation time is preferable. Based on this 
approach, many new metaheuristic algorithms and 
optimization frameworks based on metaheuristics 
have been proposed. For example, Pham [10], Ho-
Huu et al. [11], and Truong and Kim [2] improved the 
DE algorithm to develop frameworks for truss 
optimization that not only found better optimal results 
but also reduced the number of objective function 
evaluations. However, the number of structural 
analyses required is still great.  

Recently, using surrogate models based on 
machine learning (ML) algorithms have been 
considered a promising solution to the structural 
optimization problem. Given ML surrogate models, 
Mai et al. [12] applied a deep neural network (DNN) 
to optimize truss structures under several load 
combinations. Mai et al. [13] integrated the DNN 
surrogate model with DE for optimization of truss 
structures considering geometrically nonlinearity. 
Liu and Xia [14] combined DNN and GA for three 
classical truss problems (size, shape, and size-shape 
integrated optimizations). Gholizadeh & 
Mohammadi [15] developed a combination of 
particle swarm optimization (PSO) and bat algorithm 
(BA) for reliability-based design optimization 
(RBDO) of steel frames. 

It is well-known that surrogate models can predict 
with very high accuracy but not absolute. This small 
error causes many good individuals to be overlooked 
during the optimization process. From the perspective 
of using surrogate models as support for the 
optimization frameworks, Truong et al. [16] 
developed an efficient optimization method for 
nonlinear inelastic trusses by combining a binary 
classification surrogate using light gradient boosting 
machines (LightGBM) and EpDE, named 
LightGBM-EpDE. In LightGBM-EpDE, a safety 
factor t  was employed to prevent the removal of 
good individuals due to surrogate model errors. The 
authors proposed the value of t  increases from 0.9 to 
1.0 according to the generation and the increase of the 
training database. However, the use of such t  value 
may cause the LightGBM classification model to not 
be efficient if an imbalanced classification problem 
occurs in the training data. Consequently, although 
the above framework for LightGBM classification 
surrogate worked well with EpDE, its efficiency may 
be significantly reduced when combined with other 
metaheuristic algorithms, which have a convergence 
speed much different from EpDE.  

The next sections of the paper are as follows. In 
section 2, the research significance is summarized. 
Section 3 states the sizing truss optimization problem 
using nonlinear inelastic analysis. Section 4 
introduces the proposed method and Section 5 shows 
two truss examples to demonstrate the efficiency of 
the proposed method. Finally, Section 6 draws some 

conclusions from this work. 
 

2. RESEARCH SIGNIFICANCE 
 
In the current work, an efficient optimization 

framework for nonlinear truss structures is developed 
by combining the LightGBM classification model 
and 2EpDE. 2EpDE plays a role as an optimizer. A 
framework for using a LightGBM classification 
surrogate is proposed based on an adaptive safety 
parameter t  that adjusts the value according to the 
convergence of the population to prevent the 
imbalanced classification problem in the training 
data. To evaluate the efficiency of the proposed 
method, two well-known complexity optimization 
truss structures are studied, including a 47-bar power 
line with 27 design variables and a 113-bar planar 
bridge with 43 design variables. 

 
3. OPTIMIZATION PROBLEM STATEMENT 
 
3.1 Nonlinear Inelastic Analysis of Truss 
Structures 

 
The incremental equilibrium equation between 

two configurations for the truss element is written in 
the terms of virtual displacement principle as [1] [13]: 

           1 2
1 2 3 { }E Gk k s s s d f f       (1) 

where 1 f  and 2 f  are the element initial nodal 

forces at previous and current configurations, 
respectively;  Ek  and  Gk  are elastic and 

geometric stiffness matrices, respectively;  1s ,  2s , 

and  3s  are higher-order stiffness matrices [18]. 

The above truss modeling and analysis have been 
integrated into the Practical Advanced Analysis 
Program (PAAP) [19] which is applied for structural 
analysis in this paper. In view of nonlinear inelastic 
analysis, the ultimate load factor (ULF) (expressed in 
Eq. (2)) of the whole structure can be found. At this 
time, the structure is considered safe if ULF > 1. 

R
ULF

S
  (2) 

where R and S are the structural load-carrying 
capacity and applied loads, respectively. 

 
3.2 Optimization Problem Statement 

 
Applying the nonlinear inelastic analysis 

presented in the above section, the sizing 
optimization of steel truss structures is stated in this 
section as follows. The objective function is the total 
mass of the structure that can be expressed as: 

 
1 1

Minimize X
innm

i q
i q
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where  1 2X , ,.., nmx x x  is the vector of design 

variables, ix  is the cross-sectional area of the 

element group thi , iLB  and iUB  are given lower and 

upper bounds of ix , qL  is the length of the truss 

element thq  of the element group thi , in  is the 

number of truss element in the element group thi , and 
nm  is the number of design variables (which is also 
the number of design variables). 

The constraints of the optimization include 
strength and serviceability constraints that are 
calculated according to strength and serviceability 
load combinations, respectively. In strength load 
combinations, the structural safety is evaluated using 
ULF as presented in Section 3.1. In serviceability 
load combinations, nodal displacements are restricted 
from exceeding the allowable values. All above 
constraints are expressed as follows: 

Subject to: ,

er e

,

1 0 1,..,

1 0 1,.., ; 1,..,

j strength

k l

s vic nodeu
k l

ULF j N

d
k N l N

d

  



   


 (4) 

where ,k ld  and ,
u
k ld  are the displacement of the 

node thl and its allowable value, respectively, 

according to the serviceability load combination thk . 
Since most metaheuristic algorithms were 

originally proposed for solving unconstrained 
optimization problems, the penalty method is 
employed here to convert the above truss 
optimization into an unconstrained one: 

   
e

1, 2,
1 1
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where str
i  and service

j  are the penalty parameters 

corresponding to the strength load combination thi  
and the serviceability load combination thj , 

respectively, and 1,i  and 2, j are the violated 

magnitude at the strength load combination thi and 
the serviceability load combination thj , respectively. 

Using a large value of   makes  XunW  receiving a 

much greater value if a constraint is violated. Since 
the optimization process will keep individuals having 
a smaller objective function in the population, 
infeasible individuals with very high objective 
functions easily be removed. In this work, the penalty 
parameters are chosen to be 10,000. 

 
4. COMBINED METHOD LIGHTGBM-2EPDE 
 

4.1 LightGBM-EpDE Optimization Framework 
 
Observed from Eq. (4), the number of structural 

analyses for each individual is  er estrength s vicN N . 

Consequently, the total of structural analyses for an 
optimization process with D  design variables, NP  
individuals in the population, and maxIter  generations 

is   max strength serviceNP Iter N N   . Such structural 

analyses may require excessive computing time. To 
overcome this issue, Truong et al. [16] proposed an 
efficient framework by combining a LightGBM 
binary classification surrogate and EpDE, named 
LightGBM-EpDE. The basic concept of LightGBM-
EpDE can be summarized as follows: 

(1) A LightGBM classification model is 
employed to evaluate the violation of an individual 
with constraints. A promising individual is neglected 
immediately if its predicted unconstrained objective 
function is worse than the target one. Otherwise, 
nonlinear inelastic analysis is applied to accurately 
determine the unconstrained objective function. 

(2) The training data is created by collecting 
from all nonlinear inelastic analyses for individuals. 
The LightGBM surrogate model is updated 
constantly if the size of the training data increases a 
pre-defined value. This approach allows for 
improving the accuracy of the LightGBM model. 

(3) The EpDE algorithm plays the role of the 
optimizer. LightGBM surrogate models are employed 
to reduce the number of structural analyses required 
for constraint evaluation. The characteristics of the 
EpDE algorithm are maintained, including the 
capacity to search optimal designs and convergence 
speed. 

(4) A safety parameter t  is applied to reduce 
the predicting error of LightGBM surrogate models. 
In view of t , the surrogate model LightGBM(t) 
means that the output is true (or structural is safe) if 
ULF t  but not 1.0ULF   as normal. Since 

1.0t  , more promising individuals may be 
evaluated using nonlinear inelastic analysis. 

It is seen that the efficiency of LightGBM-EpDE 
is dependent on two key factors: (1) the robustness of 
EpDE as an optimizer and (2) the effectiveness of 
LightGBM surrogate model-based framework with 
the safety factor t . In view of this, in this section, we 
propose an improved version of LightGBM-EpDE 
using 2EpDE and an adaptive framework for 
LightGBM surrogate models, named ALGB2EpDE. 
In the next sub-sections, LightGBM and 2EpDE are 
introduced first, then the ALGB2EpDE algorithm is 
proposed. 

 
4.2 Light Gradient Boosting Machines 

 
LightGBM was introduced by Microsoft in 2017 

in the view of a gradient-boosting framework [20]. 
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Several weak learners (decision trees) are ensemble 
sequentially in LightGBM, where the following tree 
predicts the error of the previous one. Two novel 
techniques of LightGBM are exclusive feature 
bundling (EFB) and gradient-based one-side 
sampling (GOSS). 

EFB is based on the sparse characteristic of high-
dimensional data, where several features are mutually 
exclusive, to regroup exclusive features into an 
exclusive feature bundle. In view of this, the 
complexity of the data changes from O(data × 
feature) to O(data × bundle) with bundle<<feature. 
Therefore, the training speed is improved while the 
memory used is reduced. 

The GOSS technique is a robust sampling method 
that can effectively reduce the number of data 
instances while maintaining the accuracy of decision 
trees. In GOSS, all data instances having large 
gradients are kept, and instances with small gradients 
are randomly dropped (but not all) to retain the 
decision tree accuracy. The numerical results [20] 
proved that, with EFB and GOSS, LightGBM 
outperformed in terms of memory consumption and 
computational speed. 

 
4.3 Efficient Differential Evolution Algorithm 
Using Two P-Best Individuals (2EpDE) 

 
The EpDE algorithm was developed by Truong 

and Kim [2] by integrating a modified ‘DE/pbest/1’ 
mutation technique into DE. In EpDE, the trial 
individual is created in view of a top 100 %p  

individual of the population, X pbest , as follows:  

 
1 2

U X X Xpbest r rF     (7) 

In which:   max

1

1

j
B

Iterp j A NP
 
       (8) 

where A  and B  are the given parameters for 
controlling p , j means the generation jth, NP is the 

number of individuals in the population, and 
1

Xr  and 

2
Xr  are other indivduals in the population.  

Eq. (7) indicates that U  inherits the 
characteristics of X pbest . This may not be efficient in 

the early stage of the optimization process due to the 
high dispersion of the population (many X pbest  have 

not good information on optimum areas). To 
overcome this drawback, Vu et al. [9] proposed an 
improvement of Eq. (7) (called ‘DE/2pbest/1’), where 
two top 100 %p  individuals, ,1X pbest  and ,2X pbest , as 

follows: 

   ,1 ,2 1 2U 0.5 X X X Xpbest pbest F      (9) 

As observed from Eq. (13), U  now can gather 
information from two top 100 %p  individuals, 

,1X pbest  and ,2X pbest . Therefore, using Eq. (13) helps 

U  have more opportunity to get good information 

than using Eq. (7). The numerical results in [9] also 
proved that 2EpDE outperformed EpDE in both 
mathematical examples and steel frames. In particular, 
2EpDE found better optimals and converged much 
faster than EpDE. 

 
4.4 Framework of The Proposed Optimization 
Method: ALGB2EpDE 

 
The robustness of 2EpDE provides a method for 

improving LightGBM-EpDE by replacing EpDE 
with 2EpDE as the optimizer in the optimization 
framework. Besides that, the efficiency of 
LightGBM-EpDE also comes from using the factor t, 
which is calculated as follows: 

   
max

1

10.9 0.1 1 0.9 0.1 1
j

B
Iterp

t Nj P
A

j
 
    

               



 (10) 

According to the report in [20], the optimization 
process begins by evaluating all constraints using 
nonlinear inelastic analysis to form the initial 
database for training LightGBM surrogate models. 
The surrogate model is built when the size of the 
database reaches a pre-defined value i.e. 1,000. The 
database continues updated when a nonlinear 
inelastic analysis is required for constraint evaluation. 
And, the surrogate model is rebuilt if the size of the 
database increases by a given number i.e. 20. The 
surrogate model using the safety factor t  is called 
LightGBM(t). If ULF t , the output is true and vice 
versa. 

Along with the convergence of the optimization, 
the ULF  of U tends to reach around the limit value 
of constraints i.e. 1.0. Eq. (10) shows that t  changes 
from 0.9 to 1.0 according to the increment of the 
generation without considering the convergence 
speed of the optimization. Therefore, if the 
convergence of the optimization process is much 
faster than the increment speed of t , most of ULF  
of trial vectors, which reach around 1.0, will be 
greater than t . Consequently, new samples added to 
the training data are considered to be safe, and an 
imbalanced classification problem occurs. The 
surrogate models are then not efficient since they may 
predict all output of ULF  to be safe. 

To overcome the above issue, we propose a new 
equation for calculating t  which can always ensure a 
reasonable distribution of classes in the training data. 
In particular, assuming that the training data is 
Datamatrix  with the N outputs. Absolutely, among 
N outputs, there are many outputs smaller than 1.0. 
We assume that there are Nt (Nt<N) outputs smaller 
than 1.0, and called: 1ULF , 2ULF ,..,

tNULF . t  is now 

calculated as follows: 

10.8 0.2

tN

i
i

t

ULF
t

N
 


 (11) 
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Obviously, with Eq. (11) there are lots of samples 
having outputs smaller than t . So, the imbalanced 
classification problem is solved. If the population 
converges quickly, the much later values in the 
sequence ( 1ULF , 2ULF ,..,

tNULF ) will approach 1.0, 

and then t  increases more quickly. Therefore, Eq. 
(11) reflects the convergence speed of the population. 

  
5. NUMERICAL EXAMPLES 

 
In this section, two truss structures (a 47-bar 

power line and a 113-bar planar bridge to represent 
two common types, including civil structures and 
bridges, using truss structures) are examined to 
demonstrate the efficiency of the proposed method. 
Three algorithms: EpDE, 2EpDE, and DE/best/1 are 
combined with LightGBM with two options: using Eq. 
(10) and using Eq. (11). By this way, there are a total 
of nine optimization frameworks considered, 
including DE/Best/1, EpDE, 2EpDE, 
DE/best/1+LightGBM using Eq. (10), EpDE+ 
LightGBM using Eq. (10), 2EpDE+LightGBM using 
Eq. (10), DE/best/1+LightGBM using Eq. (11), 
EpDE+LightGBM using Eq. (11), and 
2EpDE+LightGBM using Eq. (11). It should be noted 
that EpDE+LightGBM using Eq. (10) is the 
LightGBM-EpDE proposed in Ref. [18] and 
2EpDE+LightGBM using Eq. (11) is the proposed 
method in this work, named as ALGB2EpDE. 
Furthermore, the multi-comparison technique [2] is 
integrated into all algorithms to save computational 
efforts. 

The population in algorithms is 30. The A and B 
parameters in Eq. (8) are 0.5 and 1.0, respectively. In 
DE/best/1, the parameters F and CR are 0.7 and 0.6, 
respectively. The total generation is 2,000. The 
hyperparameters of the LightGBM classification 
model are taken from [16] as: learning_rate=0.05; 
n_estimators=1,000; reg_alpha=0.0; 
reg_lambda=0.0; n_jobs= 5. 

 
5.1 47-Bar Power Line 

 
The 47-bar power line presented in Fig. 1 includes 

27 groups of element cross-sectional areas such as: 
(1) A1 = A3; (2) A2 = A4; (3) A5 = A6; (4) A7; (5) A8 
= A9; (6) A10; (7) A11 = A12; (8) A13 = A14 ; (9) A15 = 
A16; (10) A17 = A18; (11) A19 = A20; (12) A21 = A22; 
(13) A23 = A24; (14) A25 = A26; (15) A27; (16) A28; (17) 
A29 = A30; (18) A31 = A32; (19) A33; (20) A34 = A35; 
(21) A36 = A37; (22) A38; (23) A39 = A40; (24) A41 = 
A42; (25) A43; (26) A44 = A45; (27) A46 = A47. The 
design variables are continuous in the [64.516, 
6451.6] (mm2). The load combination of 
(1.2DL+0.5LL+1.7W) is investigated where DL, LL, 
and W are the dead, live, and wind loads, respectively. 
DL and LL are 70 (kN) and 50 (kN), respectively, at 
all nodes. W is equal to 30 (kN) at nodes 17 and 22 
according to the horizontal axis. 

 
 
Fig.1 Example 1: 47-bar power line 
 

Table 1 presents the optimal results obtained from 
20 independent runs for each algorithm. Figs. 2 and 3 
indicate the convergence speed of the algorithms. As 
observed from these figures, DE/best/1 and 2EpDE 
converged quite similarly and were much better than 
EpDE. 

The results in Table 1 proved that 2EpDE was 
slightly better than EpDE while it yielded smaller 
values of the best, the worst, and the average values 
of optimum masses found. In particular, the best 
masses of 2EpDE and EpDE were 1,005.07 (kg) and 
1,005.28 (kg), respectively. The DE/best/1 had a 
worse performance than EpDE and 2EpDE when 
searching for greater values of the best, the worst, and 
the average values of the optimum masses. The best 
mass found using DE/best/1 was 1,006.42 (kg). 

To assess the impact of using LightGBM models 
on the optimal results found by algorithms, three 
optimization method groups are evaluated, including: 
(1) (DE/best/1, DE/best/1+LightGBM using Eq. (10), 
DE/best/1+LightGBM using Eq. (11)), (2) (EpDE, 
EpDE +LightGBM using Eq. (10), 
EpDE+LightGBM using Eq. (11)), and (3) (2EpDE, 
2EpDE +LightGBM using Eq. (10), 
2EpDE+LightGBM using Eq. (11) or ALGB2EpDE). 
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In group 1, the optimum designs found using 
DE/best/1+LightGBM with Eq. (10) and 
DE/best/1+LightGBM with Eq. (11) were similar to 
the results of DE/best/1. In particular, the best 
optimum mass found using DE/best/1, 
DE/best/1+LightGBM using Eq. (10), and 
DE/best/1+LightGBM using Eq. (11) were 1,006.42 
(kg), 1,006.42 (kg), and 1,006.53 (kg) which were 
almost the same. The similar results were also found 
in groups 2 and 3. 

 
Fig.2 Convergence curves of the average of all runs 
for the 47-bar power line 
 

The combination of LightGBM surrogate models 
saved lots of direct analyses of conventional 
metaheuristic algorithms considered. In group 1, 
DE/best/1 required an average of 42,029 structural 
analyses, while DE/best/1+LightGBM using Eq. (10) 
and DE/best/1+LightGBM using Eq. (11) spent only 
32,418 and 17,245 structural analyses, respectively, 
which equaled to 77.13% and 41.03% that of 
DE/best/1. However, as can be seen above, 
DE/best/1+LightGBM using Eq. (11) saved much 
more structural analyses than DE/best/1+LightGBM 
using Eq. (10). A similar result was obtained in group 
3 where 2EpDE used 39,899 structural analyses while 
2EpDE +LightGBM using Eq. (10) and 

ALGB2EpDE required only 31,042 and 15,179 
structural analyses, respectively. The results proved 
that using the LightGBM model with Eq. (11) saved 
much more computational effort compared to using 
Eq. (10). In group 2, EpDE, EpDE +LightGBM using 
Eq. (10), and EpDE+LightGBM using Eq. (11) 
required 40,344, 21,877, and 18,477 structural 
analyses, respectively. It confirmed the efficiency 
when using LightGBM to reduce the computational 
effort. However, in this case study, the robustness of 
using Eqs. (10) and (11) was similar. The above 
results indicated that the LightGBM model using Eq. 
(11) worked well with all algorithms DE/best/1, 
EpDE, and 2EpDE, while the LightGBM model using 
Eq. (10) seemed to be not efficient with DE/best/1 
and 2EpDE.  

 
Fig.3 Convergence histories of the best optimal for 
the 47-bar power line 
 
5.2 113-Bar Planar Truss Bridge 

Fig. 4 presents the layout and geometry of the 
bridge with 34 continuous design variables in the 
range [3870.96, 22580.6] (mm2). One load 
combination, (1.25DL+1.75LL), is studied, where 
DL and LL are equal to 150 (kN) and 120 (kN), 
respectively, at all truss joints on the upper chord. 

Table 1 Optimization results of 47-bar power line with different algorithms (unit: kg) 

Content DE/best/1 EpDE 2EpDE 
Using Eq. (10) Using Eq. (11) 

DE/best/1 EpDE 2EpDE DE/best/1 EpDE 2EpDE 
Best mass 1,006.42 1,005.28 1,005.07 1,006.42 1,005.32 1,005.18 1,006.53 1,005.29 1,005.15 

Worst mass 1,022.16 1,013.44 1,011.23 1,026.37 1,013.48 1,010.28 1,021.87 1,014.59 1,012.17 
Ave. mass 1,010.38 1,006.98 1,006.36 1,013.46 1,006.88 1,006.82 1,011.67 1,006.81 1,006.56 
Std. mass 4.109 2.146 1.377 7.499 1.850 1.737 5.136 2.097 1.460 

Ave. 
analyses 

42,029 40,344 39,899 32,418 21,877 31,042 17,245 18,477 15,179 

Ave. time 
analysis (s) 

59,080 56,705 56,078 45,529 30,666 43,589 24,135 23,041 18,925 

Time ratio 312.18% 299.62% 296.31% 240.57% 162.04% 230.32% 127.53% 121.75% 100.00% 
 

 
Fig.4 Example 2: 113-bar planar truss bridge 
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The optimum results are reported in Table 2, 
while the converged curves are presented in Figs. 5 
and 6. As can be seen in these figures, DE/best/1 and 
2EpDE converged quite similarly and more quickly 
than EpDE. Compared to EpDE, 2EpDE performed 
slightly better with smaller best, worst, and average 
values of the optimum masses found. DE/best/1 was 
worse than EpDE and 2EpDE when yielded much 
greater values of best, worst, and average optimum 
masses. In particular, the best masses found using 
DE/best/1, EpDE, and 2EpDE were 35,407.6 (kg), 
35,200.6 (kg), and 35,192.6 (kg), respectively. 

 

 
Fig.5 Convergence histories of the average of all runs 
for 113-bar planar truss bridge 
 
LightGBM surrogate models maintained the 
efficiency of metaheuristic algorithms considered in 
searching for the optimum designs. In particular, in 
group 3, the best masses found using 2EpDE, 
2EpDE+LightGBM using Eq. (10), and 
ALGB2EpDE are similar and equal to 35,192.6 (kg), 
35,211.5 (kg), and 35,195.0 (kg), respectively. 
Secondly, LightGBM surrogate models saved lots of 
time-consuming direct analyses of DE/best/1, EpDE, 
and 2EpDE. For example, in group 1, DE/best/1 spent 
an average of 41,434 structural analyses, while 
DE/best/1+LightGBM using Eq. (10) and 
DE/best/1+LightGBM using Eq. (11) required only 
28,854 and 18,383 structural analyses, respectively. 
However, LightGBM surrogate models using Eq. 
(11) saved more structural analyses than LightGBM 
surrogate models using Eq. (10) for DE/best/1, EpDE, 
and 2EpDE, especially for DE/best/1 and 2EpDE. 

This proved that LightGBM surrogate models using 
Eq. (11) were better compatible with algorithms.  
 

 
Fig.6 Convergence histories of best optimal for 113-
bar planar truss bridge 

 
6. CONCLUSION 

 
The paper developed a robust optimization 

framework for nonlinear truss structures with 
continuous design variables. An improved two-pbest-
based DE algorithm (2EpDE) was used as the 
optimizer. 2EpDE showed good performance 
regarding both convergence speed and optimum 
design search in the comparison with DE/best/1 and 
EpDE algorithms. An efficient strategy for using 
LightGBM classification models was developed. An 
adaptive parameter t  was proposed to (1) prevent the 
imbalanced classification problem in the training 
data, (2) prevent the removal of good individuals due 
to surrogate model errors, and (3) reflect the 
convergence speed of the population. The results of a 
47-bar power line and a 113-bar planar bridge proved 
the robustness of 2EpDE since it found better 
optimum designs than DE/best/1 and EpDE. 2EpDE 
also converged much better than EpDE. The proposed 
method (ALGB2EpDE) was more powerful than 
2EpDE since it not only yielded good optimum 
designs like 2EpDE but also saved more than 60% of 
time-computing compared to DE/best/1, EpDE, and 
2EpDE. Furthermore, the proposed framework for 
using LightGBM surrogate models worked well with 
metaheuristic algorithms that have different 
convergence speeds, including DE/best/1, EpDE, and 

Table 2 Optimization results of 113-bar planar truss bridge with different algorithms (unit: kg) 

Content DE/best/1 EpDE 2EpDE 
Using Eq. (10) Using Eq. (11) 

DE/best/1 EpDE 2EpDE DE/best/1 EpDE 2EpDE 
Best mass 35,407.6 35,200.6 35,192.6 35,411.9 35,213.7 35,211.5 35,411.9 35,228.4 35,195.0 

Worst mass 35,904.6 35,765.2 35,653.4 35,903.1 35,723.1 35,646.0 35,902.1 35,770.4 35,653.5 
Ave. mass 35,567.7 35,467.3 35,384.1 35,604.2 35,478.7 35,403.3 35,609.3 35,560.2 35,477.1 
Std. mass 198.12 185.72 180.32 214.25 208.47 163.68 182.38 170.17 158.37 

Ave. 
analyses 

41,434 39,363 38,105 28,854 20,255 27,144 18,383 17,165 16,413 

Ave. time 
analysis (s) 

72,089 68,465 66,264 50,074 35,026 47,082 31,749 29,619 28,303 

Time ratio 254.71% 241.90% 234.13% 176.92% 123.75% 166.35% 112.18% 104.65% 100.00% 
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2EpDE. Therefore, it can be considered a good 
technique for integrating metaheuristic algorithms. 
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