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ABSTRACT: In this paper, we present a new approach for solving the Laplace equation for steady groundwater 
flow using the Variational Iteration Method (VIM) and Analytic Solution. The Laplace equation is a fundamental 
equation that describes the behavior of groundwater flow in porous media. However, the analytical solution for 
this equation is not always possible, especially for complex geometries and boundary conditions. Finding a 
solution to the Laplace equation for steady groundwater flow in a given domain with certain boundary conditions 
is the stated problem. The strategy utilized in this study comprises using the VIM to solve the Laplace equation in 
series. A variety of differential equations can be solved using the VIM, which is a strong and effective method. In 
this study, we present the results of our analysis for different boundary conditions and geometries. The results 
show that the VIM is an effective method for solving the Laplace equation for steady groundwater flow. The 
solutions obtained with the VIM are compared with the analytic solutions, and good agreement is observed. 
In conclusion, the VIM and Analytic Solution approach is a promising method for solving the Laplace equation 
for steady groundwater flow. The results obtained with this method can be used to design and optimize 
groundwater remediation systems and to study the behavior of groundwater flow in complex geometries. 
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1. INTRODUCTION 
 

A noteworthy proportion of the precipitation that 
occurs as rain on terrestrial surfaces traverses 
unsaturated soil during the subsequent processes of 
infiltration, drainage, evaporation, and absorption of 
soil water by plant roots. Despite this, soil physics, 
which is primarily interested in agronomic or 
ecological aspects of hydrology, has done the 
majority of study on this subject. Hydrologists, on the 
other hand, have tended to pay relatively little 
attention to the phenomenon of water movement in 
unsaturated soils.  

The unsteady and unsaturated flow of water 
through soils is due to content changes as a function 
of time, and entire pore spaces are not completely 
filled with flowing liquid respectively. Knowledge 
concerning such flows is relevant to various workers 
including hydrologists, agriculturalists, and many 
fields of science and engineering. The water 
infiltration system and the underground disposal of 
seepage and waste water are encountered by these 
flows, which are described by nonlinear partial 
differential equation.  

The mathematical model conforms to the 
hydrological situation of one-dimensional vertical 
groundwater recharge by Spreading [1]. Such flows 
are of great importance in water resources science, 
soil engineering, and agricultural sciences. 

 Numerous researchers have discussed this 
phenomenon from various perspectives. For example, 
Klute [2] and Hank Bower [3] employ a finite 
difference method; Philips [4] uses a transformation 

of variable technique; Mehta [5] discussed a multiple-
scale method; Verma [1,6] has obtained Laplace 
transformation and similarity solution, and Sharma 
[7] discusses a variational approach. Bruce and Klute 
[8]; Gardner and Mayhugh [9]; Nielson and Bigger 
[10]; Rawlins and Gardner [11], Terwilliger [12], Van 
Vorts [13], and Rahme [14] have described the 
phenomenon of gravity drainage of liquids through 
porous media and supported their theoretical 
investigation by experimental results.  

In the present research paper, a ground water 
recharge problem with parabolic permeability is 
solved by Variational Iteration Method. He (1999, 
2000, 2006) developed the variational iteration 
method for solving linear, nonlinear, and boundary 
value problems.  

The method was first considered by Inokuti, 
Sekine, and Mura (1978) and fully explored by He. J. 
H. In this method, the solution is given in an infinite 
series usually converging to an accurate solution. 
Olayiwolaetal (2009) used modified power series 
method for the solution of systems of differential 
equations. It is observed that the method solves 
effectively, easily, and accurately a class of linear, 
nonlinear, ordinary differential equations with 
approximate solution, which converge very rapidly to 
accurate solution. Recently introduced variational 
iteration method by He [16,17-19], which gives 
rapidly convergent successive approximations of the 
exact solution if such a solution exists, has proved 
successful in deriving analytical solutions of linear 
and nonlinear differential equations. 

This method is preferable over numerical methods 
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as it is free from rounding off errors and neither 
requires large computer power/memory. He [16, 18] 
has applied this method for obtaining analytical 
solutions of autonomous ordinary differential 
equation, nonlinear partial differential equations with 
variable coefficients, and integro-differential 
equations. Mohsenin [20] discusses the thermal 
properties of foods and agricultural materials. Sun 
[21] highlights the use of computational fluid 
dynamics (CFD) as a design and analysis tool in the 
agri-food industry. Jun and Sastry [22] presents a 
model for the optimization of ohmic heating of foods 
inside a flexible package. Roy et al. [23] presents a 
CFD-based approach for determining temperature 
and humidity at leaf surfaces. Ortega et al. [24] 
presents a benchmark experiment for conjugate 
forced convection from a discrete heat source on a 
plane conducting surface. Sablani et al. [25] presents 
dimensionless correlations for convective heat 
transfer to liquid and particles in cans subjected to 
end-over-end rotation. Jensen and Friis [26] presents 
a prediction of flow in a mixproof valve using CFD, 
validated by LDA. De-bonis and Ruocco [27] 
presents a generalized conjugate model for forced 
convection drying based on an evaporative kinetics. 
Davalath and Bayazitoglu [28] discusses forced 
convection cooling across rectangular blocks. Garron 
and Garimella [29] presents composite correlations 
for convective heat transfer from arrays of three-
dimensional obstacles. Young and Vafai [30] presents 
a study on convective flow and heat transfer in a 
channel containing multiple heated obstacles. 
Wazwaz [31-33]present the variational iteration 
method for solving linear and nonlinear wave 
equations and Volterra integrodifferential forms of 
the Lane-Emden and the Emden-Fowler problems 
with initial and boundary value conditions. Maturi 
[34-42] present various numerical methods for 
solving integral equations, heat conduction equations, 
and integro-differential equations using tools such as 
Maple and finite difference method. 

 
2. RESEARCH SIGNIFICANCE 

 
The Laplace equation is a fundamental partial 

differential equation used to model various physical 
phenomena, including steady-state groundwater flow. 
While analytical solutions to this equation are 
challenging to obtain, the Variational Iteration 
Method (VIM) is a powerful analytical and numerical 
technique that can efficiently and accurately solve 
partial differential equations, even those that are 
nonlinear and singular. By employing VIM to solve 
the Laplace equation for steady-state groundwater 
flow, it is possible to predict groundwater behavior 
and develop effective strategies for managing and 
conserving this vital resource. The accuracy and 
computational efficiency of VIM make it particularly 
useful for large-scale problems, and its adoption can 

have significant implications for environmental 
management and resource conservation. 

 
3. VARIATIONAL ITERATION METHOD 

 
For the differential equation 
 

      𝐿𝐿𝐿𝐿 + 𝑁𝑁𝐿𝐿 = 𝑔𝑔(𝑥𝑥, 𝑡𝑡)                                       (1) 
 
The correction functional for equation (1) can be 

expressed as follows: the variational iteration 
approach allows the usage of this functional where L 
and N are linear and nonlinear operators, respectively, 
and g(x,t) is the source inhomogeneous term. 

 
         𝐿𝐿𝑛𝑛+1(𝑥𝑥, 𝑡𝑡) = 𝐿𝐿𝑛𝑛(𝑥𝑥, 𝑡𝑡) + ∫ 𝜆𝜆(𝜉𝜉)𝑡𝑡

0 (𝐿𝐿𝐿𝐿𝑛𝑛(𝜉𝜉) +
𝑁𝑁𝐿𝐿𝑛𝑛�(𝜉𝜉) − 𝑔𝑔(𝜉𝜉)))𝑑𝑑𝜉𝜉,  n≥ 0                                   (2) 

 
First, we need to find the Lagrange multiplier λ(ξ). 

Using the resulting Lagrange multiplier and any 
selective function u_0, one can easily construct the 
successive approximations 𝐿𝐿𝑛𝑛+1(𝑥𝑥, 𝑡𝑡) , n ≥  of the 
solution 𝐿𝐿(𝑥𝑥, 𝑡𝑡).  

The zeroth approximation, 𝐿𝐿0, should be chosen 
using the initial values 𝐿𝐿(𝑥𝑥, 0) and 𝐿𝐿𝑡𝑡(𝑥𝑥, 0) . It is 
possible to get the precise answer by using 
       𝐿𝐿 = lim

𝑛𝑛→∞
𝐿𝐿𝑛𝑛                                                     (3) 

 
It is worth noting 
 

 ∫ 𝜆𝜆(𝜉𝜉)𝐿𝐿𝑛𝑛′′(𝜉𝜉) 𝑑𝑑𝜉𝜉 = 𝜆𝜆(𝜉𝜉)𝐿𝐿𝑛𝑛′ (𝜉𝜉) − 𝜆𝜆′(𝜉𝜉)𝑢𝑢𝑛𝑛(𝜉𝜉) +
∫ 𝜆𝜆′′𝐿𝐿𝑛𝑛(𝜉𝜉) 𝑑𝑑𝜉𝜉                                                          (4) 

 
 

4. GROUNDWATER FLOW IN AVLLEY  
 

More than a hundred years ago, Henri-Philibert-
Gaspard Darcy, a French hydraulic engineer, 
conducted a laboratory experiment on water flow 
through sand and published his findings. He 
demonstrated that the apparent fluid velocity q in 
relation to sand grains is directly proportional to the 
gradient of hydraulic potential −𝑘𝑘𝑘𝑘𝑘𝑘.  

The hydraulic potential 𝑘𝑘 represents the sum of 
the point of measurement's elevation and the pressure 
potential (𝑝𝑝/𝜌𝜌𝑔𝑔). In the event of constant flow, 
Darcy's law combined with mass conservation 𝑘𝑘 ·
 𝑞𝑞 =  0  gives rise to Laplace's equation ∇2ϕ = 0, 
assuming that the aquifer is isotropic (same in all 
directions) and homogeneous.  

To demonstrate how separation of variables can 
aid in solving Laplace's equation, we will determine 
the hydraulic potential within a small drainage basin 
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situated in a shallow valley, as presented in Figure 1. 
Pursuant to Toth the governing equation is the 

two-dimensional Laplace equation 
 

𝜕𝜕2𝐿𝐿
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑦𝑦2

= 0,       

 0 < 𝑥𝑥 < 𝐿𝐿,   0 < 𝑦𝑦 < 𝑧𝑧0,                                         (5) 
 
Along with the boundary conditions 
 
𝒖𝒖(𝒙𝒙, 𝒛𝒛𝟎𝟎) = 𝒈𝒈𝒛𝒛𝟎𝟎 + 𝒈𝒈𝒈𝒈𝒙𝒙,                                          
 (6) 
 
𝐿𝐿𝑥𝑥(0, 𝑦𝑦) = 𝐿𝐿𝑥𝑥(𝐿𝐿,𝑦𝑦) = 0,  𝑎𝑎𝑎𝑎𝑑𝑑  𝐿𝐿𝑦𝑦(𝑥𝑥, 0) = 0,       (7)   

 
the present study concerns the hydraulic potential 

denoted as 𝐿𝐿(𝑥𝑥,𝑦𝑦) , the acceleration due to gravity 
denoted as g, and the slope of the topography 
represented by c. The no-flow condition through the 
bottom and sides of the aquifer is specified by the 
conditions 𝐿𝐿𝑥𝑥(𝐿𝐿, 𝑦𝑦) = 0  and  𝐿𝐿𝑦𝑦(𝑥𝑥, 0) = 0 . 
Additionally, symmetry about the 𝑥𝑥 =  0  line is 
ensured by the condition 𝐿𝐿𝑥𝑥(0, 𝑦𝑦) = 0.  

Furthermore, Equation 5 provides the fluid 
potential at the water table, where the elevation of the 
water table above the standard datum is denoted as 𝑧𝑧0. 
Finally, the term 𝑔𝑔𝑔𝑔𝑥𝑥 in unveils significant insights 
regarding the hydraulic potential. The potential rise 
from the valley bottom toward the water divide is 
expressed in equation 6. Generally speaking, it 
closely mimics the geography. 

 

 
Fig.1 Gross section of a valley. 
 
5. SEVERAL EXAMPLE 
 
Example1. Consider the Laplace equation for steady 
Groundwater Flow 
 
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑦𝑦2

= 0,    0 < 𝑥𝑥, 𝑦𝑦 < 𝜋𝜋 

𝐿𝐿(0, 𝑦𝑦) = 0,𝐿𝐿(𝜋𝜋, 𝑦𝑦) = sinh(𝜋𝜋) sin(𝑦𝑦) 
𝐿𝐿(𝑥𝑥, 0) = 0,𝐿𝐿(𝑥𝑥,𝜋𝜋) = 0 
  

Applying Variational Method using Maple 
 
Table 1 Numerical results and exact solution of 

Laplace equation for steady Groundwater 
Flow for example 1 

 
𝒙𝒙 𝒖𝒖(𝒙𝒙)        𝑬𝑬𝒙𝒙𝑬𝑬𝒈𝒈𝑬𝑬 =

𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙) 𝐬𝐬𝐬𝐬𝐬𝐬(𝒚𝒚) 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.10000 0.00999999 0.00999999 0.00000000 

0.20000 0.03999929 0.03999929 0.00000000 

0.30000 0.08999190 0.08999189 0.00000001 

0.40000 0.15995449 0.15995436 0.00000013 

0.50000 0.24982640 0.24982565 0.00000075 

0.60000 0.35948165 0.35947850 0.00000315 

0.70000 0.48869304 0.48868244 0.00001060 

0.80000 0.63708824 0.63705812 0.00003012 

0.90000 0.80409817 0.80402299 0.00007518 

1.00000 0.98889771 0.98872841 0.00016930 

 
 

 
 

Fig.2 Plot 2D of the exact solutions result of Laplace 
equation for steady Groundwater Flow for example 1. 
 
Example2. Consider the Laplace equation for steady 
Groundwater Flow  

 
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑦𝑦2

= 0,    0 < 𝑥𝑥, 𝑦𝑦 < 𝜋𝜋 

𝐿𝐿𝑥𝑥(0,𝑦𝑦) = 0,𝐿𝐿𝑥𝑥(𝜋𝜋,𝑦𝑦) = 
𝐿𝐿𝑦𝑦(𝑥𝑥, 0) = 0,𝐿𝐿𝑦𝑦(𝑥𝑥,𝜋𝜋) = coh(𝜋𝜋) cos(𝑦𝑦)   

 
Applying Variational Method using Maple 
Table 2 Numerical results and exact solution of             
Laplace equation for steady Groundwater 
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                  Flow for example 2 
𝒙𝒙 𝒖𝒖(𝒙𝒙)        𝑬𝑬𝒙𝒙𝑬𝑬𝒈𝒈𝑬𝑬 =

𝐜𝐜𝐜𝐜𝐬𝐬(𝒙𝒙) 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝒚𝒚) 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.10000 0.09966633 0.09966633 0.00000000 

0.20000 0.19732269 0.19732268 0.00000000 

0.30000 0.29091935 0.29091931 0.00000004 

0.40000 0.37832795 0.37832765 0.00000030 

0.50000 0.45730415 0.45730279 0.00000137 

0.60000 0.52545288 0.52544827 0.00000461 

0.70000 0.58019682 0.58018423 0.00001258 

0.80000 0.61874940 0.61872015 0.00002925 

0.90000 0.63809303 0.63803337 0.00005966 

1.00000 0.63496392 0.63485521 0.00010871 

 

 
 
Fig.3 Plot 2D of the exact solutions result of Laplace 
equation for steady Groundwater Flow for example 2.   

 
Example3. Consider the Laplace equation for steady 
Groundwater Flow  

 
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑦𝑦2

= 0,    0 < 𝑥𝑥, 𝑦𝑦 < 𝜋𝜋 

𝐿𝐿𝑥𝑥(0, 𝑦𝑦) = 0,𝐿𝐿𝑥𝑥(𝜋𝜋,𝑦𝑦) = 0 
𝐿𝐿𝑦𝑦(𝑥𝑥, 0) = cos(𝑥𝑥) ,𝐿𝐿𝑦𝑦(𝑥𝑥,𝜋𝜋) = coh(𝜋𝜋) cos(𝑥𝑥)   
 
Example4. Consider the Laplace equation for steady 
Groundwater Flow  
 
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝐿𝐿
𝜕𝜕𝑦𝑦2

= 0,    0 < 𝑥𝑥, 𝑦𝑦 < 𝜋𝜋 

𝐿𝐿𝑥𝑥(0, 𝑦𝑦) = 0,𝐿𝐿𝑥𝑥(𝜋𝜋,𝑦𝑦) = 0 
𝐿𝐿(𝑥𝑥, 0) = cos(𝑥𝑥) ,𝐿𝐿(𝑥𝑥,𝜋𝜋) = cosh(𝜋𝜋) cos(𝑥𝑥)   
Applying Variational Method using Maple 
Table 3 Numerical results and exact solution of 

Laplace equation for steady Groundwater 

Flow for example 3 
𝒙𝒙 𝒖𝒖(𝒙𝒙)        𝑬𝑬𝒙𝒙𝑬𝑬𝒈𝒈𝑬𝑬 =

𝐜𝐜𝐜𝐜𝐬𝐬(𝒙𝒙) 𝐬𝐬𝐬𝐬𝐬𝐬𝒉𝒉(𝒚𝒚) 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.10000 0.09966633 0.09966633 0.00000000 

0.20000 0.19732269 0.19732268 0.00000000 

0.30000 0.29091935 0.29091931 0.00000004 

0.40000 0.37832795 0.37832765 0.00000030 

0.50000 0.45730415 0.45730279 0.00000137 

0.60000 0.52545288 0.52544827 0.00000461 

0.70000 0.58019682 0.58018423 0.00001258 

0.80000 0.61874940 0.61872015 0.00002925 

0.90000 0.63809303 0.63803337 0.00005966 

1.00000 0.63496392 0.63485521 0.00010871 
 

 
 
Fig.4 Plot 2D of the exact solutions result of Laplace 
equation for steady Groundwater Flow for example 3.  
 
Table 4 Numerical results and exact solution of 

Laplace equation for steady Groundwater 
Flow for example 4 

 
𝒙𝒙 𝒖𝒖(𝒙𝒙)        𝑬𝑬𝒙𝒙𝑬𝑬𝒈𝒈𝑬𝑬 =

𝐜𝐜𝐜𝐜𝐬𝐬(𝒙𝒙) 𝐜𝐜𝐜𝐜𝐬𝐬𝒉𝒉(𝒚𝒚) 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

0.10000 0.99998333 0.99998333 0.00000000 

0.20000 0.99973333 0.99973325 0.00000009 

0.30000 0.99865003 0.99864906 0.00000097 

0.40000 0.99573359 0.99572834 0.00000525 

0.50000 0.98958488 0.98956575 0.00001913 

0.60000 0.97840666 0.97835284 0.00005383 

0.70000 0.96000621 0.95988013 0.00012608 

0.80000 0.93179990 0.93154332 0.00025658 

0.90000 0.89082078 0.89035527 0.00046551 

1.00000 0.83373003 0.83296606 0.00076397 
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Fig.5 Plot 2D of the exact solutions result of Laplace 
equation for steady Groundwater Flow for example 4.  

 
6. LAPLACE EQUTION FOR STEADY 
GROUNDWATER FLOW IN CYLINDRICAL 
COORDINATES 

 
The concept of electrostatic potential, which is the 

work required to overcome electric forces in order to 
transport a unit charge from a point of reference to a 
designated point, is fundamental in the field of 
electromagnetism. Moreover, it can be demonstrated 
that Laplace's equation governs the electrostatic 
potential in domains devoid of electric charge. 
Keeping this in mind, we'll try to determine the 
electrostatic potential, denoted by 𝐿𝐿(𝑟𝑟, 𝑧𝑧), inside a 
closed cylinder that has a 𝐿𝐿 and an an in its length and 
radius. The potential of the upper surface is V while 
the potential of the base and lateral surfaces is 0. 
Laplace's equation in cylindrical coordinates can be 
simplified to its simplest form because the potential 
depends only on 𝑟𝑟 and 𝑧𝑧. 

 
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟
� +

𝜕𝜕2𝐿𝐿
𝜕𝜕𝑧𝑧2

= 0,       

0 ≤ 𝑟𝑟 < 𝑎𝑎,   0 < 𝑧𝑧 < 𝐿𝐿,                                          (8) 
 

depending on the boundary circumstances. 
 

𝐿𝐿(𝑎𝑎, 𝑧𝑧) = 𝐿𝐿(𝑟𝑟, 0) = 0, 𝑎𝑎𝑎𝑎𝑑𝑑 𝐿𝐿(𝑟𝑟, 𝐿𝐿) = 𝑉𝑉,               (9) 
 
To solve this problem by separation of variables,9 

let u(r, z) = R(r)Z(z) and 
 
1
𝑟𝑟𝑟𝑟

𝑑𝑑
𝜕𝜕𝑟𝑟
�𝑟𝑟 𝑑𝑑𝑟𝑟

𝑑𝑑𝑟𝑟
� = − 1

𝑍𝑍
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑧𝑧2

= −𝑘𝑘2

𝑎𝑎2
,                             (10) 

 
The radial direction only has nontrivial solutions 

if the separation constant is negative. If so, then we 
have that 

1
𝑟𝑟
𝑑𝑑
𝜕𝜕𝑟𝑟
�𝑟𝑟 𝑑𝑑𝑟𝑟

𝑑𝑑𝑟𝑟
� + 𝑘𝑘2

𝑎𝑎2
𝑅𝑅 = 0.,                                  (11) 

The Bessel functions 𝐽𝐽0 �
𝑘𝑘𝑟𝑟
𝑎𝑎
�  and𝑌𝑌0 �

𝑘𝑘𝑟𝑟
𝑎𝑎
�  are the 

answers to Equation 4. Only 𝐽𝐽0 �
𝑘𝑘𝑟𝑟
𝑎𝑎
� can be a solution 

because𝑌𝑌0 �
𝑘𝑘𝑟𝑟
𝑎𝑎
� goes infinity at 𝑟𝑟 =  0. We are forced 

to select values of k such that 𝐽𝐽0(𝑘𝑘) = 0 by the 
requirement that 𝐿𝐿(𝑎𝑎, 𝑧𝑧)  =  𝑅𝑅(𝑎𝑎),𝑍𝑍(𝑧𝑧)  =  0 . 
Therefore, 𝐽𝐽0 �

𝑘𝑘𝑟𝑟
𝑎𝑎
�is the answer in the radial direction, 

where kn is the nth root of 𝐽𝐽0 �
𝑘𝑘𝑟𝑟
𝑎𝑎
� = 0. In 𝑧𝑧 − 𝑎𝑎𝑥𝑥𝑎𝑎𝑎𝑎 

direction 
 
𝑑𝑑2𝑍𝑍𝑛𝑛
𝑑𝑑𝑧𝑧2

+ 𝑘𝑘𝑛𝑛2

𝑎𝑎2
𝑍𝑍𝑛𝑛 = 0,                                           (12) 

 
The general solution to Equation 10 is 

 
𝑍𝑍𝑛𝑛(𝑧𝑧) = 𝐴𝐴𝑛𝑛 sinh �𝑘𝑘𝑛𝑛𝑧𝑧

𝑎𝑎
� + 𝐵𝐵𝑛𝑛 cosh �𝑘𝑘𝑛𝑛𝑧𝑧

𝑎𝑎
�,           (13) 

 
Because 𝐿𝐿(𝑟𝑟, 0)  =  𝑅𝑅(𝑟𝑟)𝑍𝑍(0)  =  0 and 

𝑔𝑔𝑐𝑐𝑎𝑎ℎ(0)  =  1 , 𝐵𝐵𝑛𝑛  must equal zero. Therefore, the 
general product solution is 

 

𝐿𝐿(𝑟𝑟, 𝑧𝑧) = ∑ 𝐴𝐴𝑛𝑛∞
𝑛𝑛=1 𝐽𝐽0 �

𝑘𝑘𝑛𝑛𝑟𝑟
𝑎𝑎
� sinh �𝑘𝑘𝑛𝑛𝑧𝑧

𝑎𝑎
�,                (14) 

 

The condition that 𝐿𝐿(𝑟𝑟, 𝐿𝐿)  =  𝑉𝑉  determines the 
arbitrary constant An. Along 𝑧𝑧 =  𝐿𝐿, 

 

𝐿𝐿(𝑟𝑟, 𝐿𝐿) = 𝑉𝑉 = ∑ 𝐴𝐴𝑛𝑛∞
𝑛𝑛=1 𝐽𝐽0 �

𝑘𝑘𝑛𝑛𝑟𝑟
𝑎𝑎
� sinh �𝑘𝑘𝑛𝑛𝐿𝐿

𝑎𝑎
�,        (15) 

where 
 

sinh �𝑘𝑘𝑛𝑛𝐿𝐿
𝑎𝑎
�𝐴𝐴𝑛𝑛 = 2𝑉𝑉

𝑎𝑎2𝐽𝐽1
2(𝑘𝑘𝑛𝑛)∫ 𝑟𝑟𝐿𝐿0 𝐽𝐽0 �

𝑘𝑘𝑛𝑛𝑟𝑟
𝑎𝑎
� 𝑑𝑑𝑟𝑟,            (16) 

 
from Equation  
 

𝐴𝐴𝑘𝑘 = 1
𝐶𝐶𝑘𝑘
∫ 𝑥𝑥𝐿𝐿0 𝑓𝑓(𝑥𝑥)𝐽𝐽𝑛𝑛(𝜇𝜇𝑘𝑘𝐿𝐿)𝑑𝑑𝑥𝑥 ,                             (17) 

 
and Equation  
𝐶𝐶𝑘𝑘 = 1

2
𝐿𝐿2𝐽𝐽𝑛𝑛+12 (𝜇𝜇𝑘𝑘𝐿𝐿) ,                                     (18) 

 Thus, 
 

sinh �𝑘𝑘𝑛𝑛𝐿𝐿
𝑎𝑎
�𝐴𝐴𝑛𝑛 = 2𝑉𝑉

𝑎𝑎2𝐽𝐽1
2(𝑘𝑘𝑛𝑛)

�∫ 𝑟𝑟𝐿𝐿0 𝐽𝐽0 �
𝑘𝑘𝑛𝑛𝑟𝑟
𝑎𝑎
� 𝑑𝑑𝑟𝑟�,        (19) 

 
The solution is then 

𝐿𝐿(𝑟𝑟, 𝑧𝑧) = 2𝑉𝑉 ∑
𝐽𝐽0�

𝑘𝑘𝑛𝑛𝑟𝑟
𝑎𝑎 � sinh�𝑘𝑘𝑛𝑛𝑧𝑧𝑎𝑎 �

𝑘𝑘𝑛𝑛𝐽𝐽1(𝑘𝑘𝑛𝑛) sinh�𝑘𝑘𝑛𝑛𝐿𝐿𝑎𝑎 �
∞
𝑛𝑛=1                      (20) 

 
The waves near 𝑧𝑧 =  𝐿𝐿 are of great importance. 

Accordingly, at 𝑟𝑟 =  𝑎𝑎, the solution must make a 
jump from 𝑉𝑉  to 0 . Because of this, the Gibbs 
phenomenon along this border affects our solution. 
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The electrostatic potential varies smoothly as we 
leave that area. 

 

 
 
Fig.4 The steady-state potential (divided by V) inside 
a cylinder with an identical radius and height a, where 
the top has potential V and the sides and bottom have 
potential 0. 
 
7. CONCLUSION 
 

The Variational Iteration Method (VIM) 
combined with the Analytic Solution technique is an 
effective and efficient way to solve the Laplace 
equation for steady groundwater flow. The VIM can 
handle diverse boundary conditions and geometries 
and produces precise and dependable results. 
Comparing the VIM with the Analytic Solution 
shows their strong agreement, validating the VIM's 
usefulness in resolving the Laplace equation. This 
method has significant implications for groundwater 
system management, including designing and 
optimizing remediation systems, predicting 
groundwater flow behavior, and evaluating the 
impact of boundary conditions. The VIM can also be 
extended to other types of partial differential 
equations, making it relevant in various domains. 
Overall, this approach is a valuable addition to 
existing methods and lays the groundwork for future 
research in groundwater flow modeling and 
optimization to improve the sustainable management 
of groundwater resources. 
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