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ABSTRACT: Cable maintenance is important for cable structures such as cable-stayed and Nielsen-Lohse 
bridges. In the current maintenance practice, cable tension is estimated from the lower mode natural frequencies 
of the cable. It is theoretically possible to estimate the bending stiffness of the cable and the parameters of the 
dampers installed on the cable if the higher mode natural frequencies, damping factors, and mode shapes are 
available. Conventionally, the natural vibration characteristics of the cables are estimated manually from the 
acceleration Fourier spectrum. The estimation accuracy of the lower mode natural frequencies is high. However, 
the estimation accuracy of the higher mode natural frequencies is not high, and the estimation accuracy of 
damping factors and mode shapes is low irrespective of modal order. In this paper, the N4SID, one of the 
subspace methods, is adopted to estimate the natural vibration characteristics of the cables. The N4SID is 
applied to numerical and experimental results of bridge cables to investigate the estimation accuracy. The 
numerical investigation found that the accuracy of the natural frequencies and damping factors is high, the 
accuracy of mode shape is high in the cable without a damper, and the accuracy of mode shape is only high for 
the limited low modes and low for the other mode in the cable with a damper. The experimental investigation 
found that the N4SID has better accuracy than the conventional estimation method. 
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1. INTRODUCTION 

 
Structural health monitoring [1][2] is a 

technique that captures structural health conditions 
based on their vibration characteristics. 
Accelerometers are generally used, and natural 
vibration characteristics such as natural frequencies, 
damping factors, and mode shapes are estimated 
from the measured accelerations, which are then 
used to evaluate the structural health condition.  

The natural frequency is the easiest to measure 
among the natural vibration characteristics. The 
natural frequency is generally estimated by reading 
the dominant frequency of the acceleration Fourier 
spectrum. In the maintenance of cable bridges, such 
as cable-stayed bridges [3][4][5][6] and Nielsen-
Lohse bridges [7][8][9], cable tension is estimated 
from the natural frequencies of the cable. The cable 
tension is sensitive to the lower mode natural 
frequencies, while the bending stiffness of the cable 
is sensitive to the higher mode natural frequencies. 
Since estimating the higher mode natural 
frequencies from acceleration responses is difficult, 
only tension is estimated and used for cable 
maintenance. If the higher mode natural frequencies 
can be estimated accurately, the bending stiffness 
can be estimated, and the detection of cable damage 
becomes possible. 

As for the damping factor, the half-power 
method [10] and the random decrement method [11] 
are well-known estimation methods. In both 

methods, only one mode of interest is extracted, and 
the theory based on a single-degree-of-freedom 
system is applied even though the structure is the 
multi-degree-of-freedom system. Therefore, the 
estimated damping factors have large variations 
[12]. Recently, dampers have been installed on 
cables of cable-stayed bridges to suppress 
aerodynamic vibration, and it has become important 
to maintain dampers. However, since damper 
parameters are insensitive to natural frequencies, 
estimation of damper parameters from natural 
frequencies is difficult [3][4][6]. If the damping 
factors of cables can be estimated accurately, the 
maintenance of dampers becomes possible. 

Mode shapes correspond to the Fourier 
amplitudes at natural frequencies and are usually 
estimated manually from the Fourier spectra. 
Estimated mode shape includes errors due to 
calculation measurement errors [13]. In cable 
maintenance, it was found that the mode shapes can 
be expected to improve the estimation accuracy of 
the cable tension and bending stiffness, and damper 
parameters [5]. 

Based on the above, if the estimation accuracy 
of natural frequencies, damping constants, and 
mode shapes can be improved, it will contribute to 
the maintenance of cable structures. 

In many studies on structural health monitoring, 
natural vibration characteristics are manually 
estimated from acceleration Fourier spectra. In 
contrast to such methods, system identification 
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based on subspace methods [14] is a method for 
obtaining the system matrices of a state space model 
directly from input-output data. Natural vibration 
characteristics can be indirectly estimated from the 
estimated system matrices. Yoshimoto et al. [15] 
and Nagano et al. [16] applied the subspace method 
to the building to identify the stiffness and dynamic 
parameters during earthquakes. Hida et al. [17] 
compared the identification accuracy of various 
subspace methods on natural frequencies and 
damping factors of super high-rise RC structures 
during the 2011 off the Pacific Coast of Tohoku 
Earthquake. Ishii et al. [18] used the subspace 
method to estimate the damping characteristics of 
an entire bridge system. 

As described above, the subspace method has 
recently been applied to buildings and bridges 
during earthquakes, but no past research exists that 
applied the subspace method to the bridge cable. 
The purpose of this study is to investigate whether 
the N4SID (Numerical algorithms for Subspace 
State Space System Identification) [19], which is 
currently the most popular subspace method, can 
estimate the natural vibration characteristics of 
cables accurately and whether the subspace method 
is superior to the conventional manual estimation 
method based on the Fourier spectrum. 
 
2. RESEARCH SIGNIFICANCE 

 
The significance of the study is that the N4SID 

is firstly applied to bridge cables, and the estimation 
accuracy of the natural vibration characteristics of 
cables is investigated through numerical simulation 
and a field experiment. The numerical investigation 
compared the estimation accuracy between cables 
with and without measurement error and with and 
without a damper. The effect of a damper on the 
estimation accuracy was investigated. In the 
experimental investigation, the estimation accuracy 
of the N4SID and the conventional method was 
compared, and the superiority of the N4SID was 
discussed. 

 
 
3. METHOD 

 
3.1 Natural Vibration Characteristics 
Estimation from State Space Model 

 
The state-space representation of an 𝑚𝑚-input 𝑙𝑙-

output discrete-time linear time-invariant system is 
described as follows. 

�
𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝑑𝑑𝑥𝑥(𝑘𝑘) + 𝐵𝐵𝑑𝑑𝑢𝑢(𝑘𝑘) + 𝑤𝑤(𝑘𝑘)

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝑑𝑑𝑥𝑥(𝑘𝑘) + 𝐷𝐷𝑑𝑑𝑢𝑢(𝑘𝑘) + 𝑣𝑣(𝑘𝑘)
 (1) 

(2) 

𝑥𝑥(𝑘𝑘) ，𝑢𝑢(𝑘𝑘), and 𝑦𝑦(𝑘𝑘)are the state vector, input 
vector, and output vector at step 𝑘𝑘. 𝑤𝑤(𝑘𝑘) and 𝑣𝑣(𝑘𝑘) 
are the process noise vector and measurement noise 

vector. 𝐴𝐴𝑑𝑑, 𝐵𝐵𝑑𝑑, 𝐶𝐶𝑑𝑑, and 𝐷𝐷𝑑𝑑 are the system matrices. 
Eq. (1) is the state equation, and Eq. (2) is the 
observation equation. System identification 
estimates the system matrices from the input vector 
𝑢𝑢(𝑘𝑘) and output vector 𝑦𝑦(𝑘𝑘). 

The system matrices are expressed as follows by 
converting an equation of motion into a state-space 
representation. 

𝐴𝐴𝑑𝑑 = exp �� 0 𝐼𝐼
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐶𝐶� 𝛥𝛥𝑡𝑡� (3) 

𝐵𝐵𝑑𝑑= � 0
𝑀𝑀−1� (4) 

𝐷𝐷𝑑𝑑=0 (5) 
𝑀𝑀,𝐶𝐶, and 𝐾𝐾  are the mass, damping, and stiffness 
matrices. The natural frequency 𝑓𝑓𝑗𝑗, damping factor 
ℎ𝑗𝑗 , and mode shape 𝜙𝜙𝑗𝑗  of the j-th mode are 
expressed as follows using the j-th eigenvalue 𝜆𝜆𝑑𝑑

𝑗𝑗  
and eigenvector 𝑉𝑉𝑑𝑑

𝑗𝑗 of matrix 𝐴𝐴𝑑𝑑, sampling period 
∆𝑡𝑡, and matrix 𝐶𝐶𝑑𝑑. 

𝐴𝐴𝑑𝑑𝑉𝑉𝑑𝑑
𝑗𝑗 = 𝜆𝜆𝑑𝑑

𝑗𝑗 𝑉𝑉𝑑𝑑
𝑗𝑗 (6) 

𝑓𝑓𝑗𝑗 = 𝐼𝐼𝐼𝐼{log (𝜆𝜆𝑑𝑑
𝑗𝑗 )} 2𝜋𝜋∆𝑡𝑡⁄  (7) 

ℎ𝑗𝑗 =
−𝑅𝑅𝑅𝑅(log (𝜆𝜆𝑑𝑑

𝑗𝑗 ))

�{𝑅𝑅𝑅𝑅(log (𝜆𝜆𝑑𝑑
𝑗𝑗 ))}2 + {𝐼𝐼𝐼𝐼(log (𝜆𝜆𝑑𝑑

𝑗𝑗 ))}2
 (8) 

𝜙𝜙𝑗𝑗 = 𝐶𝐶𝑑𝑑𝑉𝑉𝑑𝑑
𝑗𝑗 (9) 

The natural vibration characteristics of the cable are 
estimated from the system matrices, 𝐴𝐴𝑑𝑑 and 𝐶𝐶𝑑𝑑. The 
subspace method identifies the system matrices. 
 
3.2 Extended observability matrix 
 

Let us define 𝑌𝑌𝑟𝑟(𝑘𝑘) and 𝑈𝑈𝑟𝑟(𝑘𝑘) as follows. 

𝑌𝑌𝑟𝑟(𝑘𝑘) = �

𝑦𝑦(𝑘𝑘)
𝑦𝑦(𝑘𝑘 + 1)

⋮
𝑦𝑦(𝑘𝑘 + 𝑟𝑟 − 1)

� ∈ ℛ𝑝𝑝𝑝𝑝×1 (10) 

𝑈𝑈𝑟𝑟(𝑘𝑘) = �

𝑢𝑢(𝑘𝑘)
𝑢𝑢(𝑘𝑘 + 1)

⋮
𝑢𝑢(𝑘𝑘 + 𝑟𝑟 − 1)

� ∈ ℛ𝑚𝑚𝑚𝑚×1 (11) 

Then, 𝑌𝑌𝑟𝑟(𝑘𝑘) can be written as follows. 
𝑌𝑌𝑟𝑟(𝑘𝑘) = 𝑂𝑂𝑟𝑟𝑥𝑥(𝑘𝑘) + 𝑆𝑆𝑟𝑟𝑈𝑈𝑟𝑟(𝑘𝑘) + 𝑉𝑉(𝑘𝑘) (12) 

where 𝑂𝑂𝑟𝑟, 𝑆𝑆𝑟𝑟, and 𝑉𝑉(𝑘𝑘) are  

𝑂𝑂𝑟𝑟 = �

𝐶𝐶𝑑𝑑
𝐶𝐶𝑑𝑑𝐴𝐴𝑑𝑑
⋮

𝐶𝐶𝑑𝑑𝐴𝐴𝑑𝑑𝑛𝑛−1
� (13) 

𝑆𝑆𝑟𝑟

= �

𝐷𝐷𝑑𝑑 0 ⋯ 0 0
𝐶𝐶𝑑𝑑𝐵𝐵𝑑𝑑 𝐷𝐷𝑑𝑑 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐶𝐶𝑑𝑑𝐴𝐴𝑑𝑑𝑟𝑟−2𝐵𝐵𝑑𝑑 𝐶𝐶𝑑𝑑𝐴𝐴𝑑𝑑𝑟𝑟−3 ⋮ 𝐶𝐶𝑑𝑑𝐵𝐵𝑑𝑑 𝐷𝐷𝑑𝑑

� 

 
 

(14) 
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𝑉𝑉(𝑘𝑘) =  𝐶𝐶𝑑𝑑𝐴𝐴𝑑𝑑𝑟𝑟−2𝐵𝐵𝑑𝑑 𝑤𝑤(𝑘𝑘)
+ 𝐶𝐶𝐴𝐴𝑟𝑟−3𝐵𝐵 𝑤𝑤(𝑘𝑘 + 1) 

+⋯+ 𝐶𝐶𝐶𝐶(𝑘𝑘 + 𝑟𝑟 − 2) + 𝑣𝑣(𝑘𝑘 + 𝑟𝑟 − 1) 
(15) 

Assuming that 𝑢𝑢(𝑘𝑘) and 𝑦𝑦(𝑘𝑘)are available for 𝑘𝑘 =
1, 2,⋯ ,𝑁𝑁 + 𝑟𝑟 − 1 , we obtain the following 
equation. 
𝑌𝑌 = [𝑌𝑌𝑟𝑟(1) 𝑌𝑌𝑟𝑟(2) … 𝑌𝑌𝑟𝑟(𝑁𝑁)] ∈ ℛ𝑝𝑝𝑝𝑝×𝑁𝑁 (16) 
𝑋𝑋 = [𝑥𝑥(𝑘𝑘) 𝑥𝑥(2) … 𝑥𝑥(𝑁𝑁)] ∈ ℛ𝑛𝑛×(𝑁𝑁−𝑘𝑘+1) (17) 

𝑈𝑈 = [𝑈𝑈𝑟𝑟(1) 𝑈𝑈𝑟𝑟(2) … 𝑈𝑈𝑟𝑟(𝑁𝑁)] ∈ ℛ𝑚𝑚𝑚𝑚×𝑁𝑁 (18) 

𝑉𝑉 = [𝑉𝑉(1) 𝑉𝑉(2) … 𝑉𝑉(𝑁𝑁)] ∈ ℛ𝑝𝑝×𝑁𝑁 (19) 
From Eqs. (12) and (16)-(20), the following 
equation is obtained. 

𝑌𝑌 = 𝑂𝑂𝑟𝑟𝑋𝑋 + 𝑆𝑆𝑟𝑟𝑈𝑈 + 𝑉𝑉 (20) 
Next, we consider estimating the extended 
observability matrix 𝑂𝑂𝑟𝑟  and removing the 𝑈𝑈  term 
and the noise term 𝑉𝑉 from Eq. (20). 

Let be 𝛱𝛱𝑈𝑈𝑇𝑇
⊥ ∈ ℛ𝑁𝑁×𝑁𝑁 as follows. 

𝛱𝛱𝑈𝑈𝑇𝑇
⊥ = 𝐼𝐼 − 𝑈𝑈𝑇𝑇(𝑈𝑈𝑈𝑈𝑇𝑇)−1𝑈𝑈 (21) 

Multiplying 𝑈𝑈  to Eq. (21) from the left side, we 
obtain  

𝑈𝑈𝛱𝛱𝑈𝑈𝑇𝑇
⊥ = 𝑈𝑈 − 𝑈𝑈𝑈𝑈𝑇𝑇(𝑈𝑈𝑈𝑈𝑇𝑇)−1𝑈𝑈=0 (22) 

Therefore, the matrix 𝛱𝛱𝑈𝑈𝑇𝑇
⊥  is the orthogonal 

projection of the matrix 𝑈𝑈. We multiply 𝛱𝛱𝑈𝑈𝑇𝑇
⊥   to Eq. 

(20) from the right side to eliminate 𝑈𝑈. 
𝑌𝑌𝛱𝛱𝑈𝑈𝑇𝑇

⊥ = 𝑂𝑂𝑟𝑟𝑋𝑋𝛱𝛱𝑈𝑈𝑇𝑇
⊥ + 𝑉𝑉𝛱𝛱𝑈𝑈𝑇𝑇

⊥  (23) 
To eliminate the last term in Eq. (23), we use the 
matrix 𝛷𝛷 ∈ ℛ𝑠𝑠×𝑁𝑁 , where 𝛷𝛷  is defined using the 
input 𝑢𝑢(𝑘𝑘) and the output y(𝑘𝑘) as follows. 

𝜙𝜙𝑠𝑠(𝑘𝑘) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑦𝑦(𝑘𝑘 − 1)

⋮
𝑦𝑦(𝑘𝑘 − 𝑠𝑠1)
𝑢𝑢(𝑘𝑘 − 1)

⋮
𝑢𝑢(𝑘𝑘 − 𝑠𝑠2)⎦

⎥
⎥
⎥
⎥
⎤

  (𝑠𝑠 = 𝑝𝑝𝑠𝑠1 + 𝑚𝑚𝑠𝑠2) (24) 

𝛷𝛷 = [𝜙𝜙𝑠𝑠(1) 𝜙𝜙𝑠𝑠(2) … 𝜙𝜙𝑠𝑠(𝑁𝑁)] (25) 
The following equation is obtained by multiplying 
𝛷𝛷𝑇𝑇 to Eq. (23) from the right side and dividing by 
N. 

1
𝑁𝑁
𝑌𝑌𝛱𝛱𝑈𝑈𝑇𝑇

⊥ 𝛷𝛷𝑇𝑇 = 1
𝑁𝑁
𝑂𝑂𝑟𝑟𝑋𝑋𝛱𝛱𝑈𝑈𝑇𝑇

⊥ 𝛷𝛷𝑇𝑇+1
𝑁𝑁
𝑉𝑉𝛱𝛱𝑈𝑈𝑇𝑇

⊥ 𝛷𝛷𝑇𝑇 (26) 
Using Eq. (21), the second term of the right-hand 
side of Eq. (26) can be transformed as follows.  

1
𝑁𝑁
𝑉𝑉𝛱𝛱𝑈𝑈𝑇𝑇

⊥ 𝛷𝛷𝑇𝑇=1
𝑁𝑁
𝑉𝑉{𝐼𝐼 − 𝑈𝑈𝑇𝑇(𝑈𝑈𝑈𝑈𝑇𝑇)−1𝑈𝑈}𝛷𝛷𝑇𝑇 

= 1
𝑁𝑁
𝑉𝑉𝛷𝛷𝑇𝑇 − 1

𝑁𝑁
𝑉𝑉𝑈𝑈𝑇𝑇(𝑈𝑈𝑈𝑈𝑇𝑇)−1𝑈𝑈𝛷𝛷𝑇𝑇 

(27) 

Under the ergodic assumption, the sample sum 
converges to the expected value. Therefore, Eq. 
(27) can be rewritten as follows. 

lim
𝑁𝑁→∞

1
𝑁𝑁
𝑉𝑉Π𝑈𝑈𝑇𝑇

⊥ Φ𝑇𝑇 = 𝐸𝐸[𝑉𝑉(𝑘𝑘)𝜑𝜑𝑠𝑠𝑇𝑇(𝑘𝑘)]−                   
𝐸𝐸[𝑉𝑉(𝑘𝑘)𝑈𝑈𝑟𝑟𝑇𝑇(𝑘𝑘)]𝐸𝐸[𝑈𝑈𝑟𝑟(𝑘𝑘)𝑈𝑈𝑟𝑟𝑇𝑇(𝑘𝑘)]−1𝐸𝐸[𝑈𝑈𝑟𝑟(𝑘𝑘)𝜑𝜑𝑠𝑠𝑇𝑇(𝑘𝑘)] 

(28) 

Assuming that 𝑈𝑈  and 𝑉𝑉  are independent, 
𝐸𝐸[𝑉𝑉(𝑘𝑘)𝑈𝑈𝑟𝑟𝑇𝑇(𝑘𝑘)]=0 holds. Therefore, the second term 
on the right-hand side of Eq. (28) is zero. Moreover, 
if  𝑉𝑉(𝑘𝑘) and 𝜑𝜑𝑠𝑠𝑇𝑇(𝑘𝑘) are uncorrelated, the first term 
on the right-hand side is zero. Therefore, the 
following equation is obtained. 

lim
𝑁𝑁→∞

1
𝑁𝑁𝑉𝑉𝛱𝛱𝑈𝑈𝑇𝑇

⊥ Φ𝑇𝑇 = 0 (29) 

Substituting Eq.(29) to Eq.(26), 
𝑌𝑌𝛱𝛱𝑈𝑈𝑇𝑇

⊥ 𝛷𝛷𝑇𝑇 = 𝑂𝑂𝑟𝑟𝑋𝑋𝛱𝛱𝑈𝑈𝑇𝑇
⊥ 𝛷𝛷𝑇𝑇 (30) 

From the above, the extended observability matrix 
𝐺𝐺 is obtained as follows. 

𝐺𝐺 = 𝑌𝑌𝛱𝛱𝑈𝑈𝑇𝑇
⊥ 𝛷𝛷𝑇𝑇 (31) 

The extended observability matrix 𝐺𝐺  can be 
calculated from the input vector 𝑢𝑢(𝑘𝑘) and output 
vector 𝑦𝑦(𝑘𝑘) using Eqs. (16), (18), (22), (24), (25), 
and (31). System matrices can be calculated from 
the extended observability matrix 𝐺𝐺. 
 
3.3 Algorithm of N4SID 

 
Next, the following matrix is defined using 

weight matrices 𝑊𝑊1 ∈ ℛ𝑝𝑝𝑝𝑝×𝑝𝑝𝑝𝑝 and 𝑊𝑊2 ∈ ℛ𝑠𝑠×α. 
𝐺𝐺� = 𝑊𝑊1𝐺𝐺𝑊𝑊2 (32) 

In the N4SID, 𝑊𝑊1 = 𝐼𝐼  and 𝑊𝑊2 = (𝛷𝛷𝛱𝛱𝑈𝑈𝑇𝑇
⊥ 𝛷𝛷𝑇𝑇)−1𝛷𝛷 

are used. 
𝐺𝐺� = 𝑌𝑌𝛱𝛱𝑈𝑈𝑇𝑇

⊥ 𝛷𝛷𝑇𝑇(𝛷𝛷𝛱𝛱𝑈𝑈𝑇𝑇
⊥ 𝛷𝛷𝑇𝑇)−1𝛷𝛷 (33) 

Singular value decomposition of 𝐺𝐺� after truncating 
small singular values becomes 

𝐺𝐺� = [𝑈𝑈𝑠𝑠 𝑈𝑈𝑤𝑤] �𝛴𝛴𝑠𝑠 0
0 𝛴𝛴𝑤𝑤

� �𝑉𝑉𝑠𝑠
𝑇𝑇

𝑉𝑉𝑤𝑤𝑇𝑇
�

≈ 𝑈𝑈𝑠𝑠𝛴𝛴𝑠𝑠𝑉𝑉𝑠𝑠𝑇𝑇 
(34) 

where the subscripts 𝑠𝑠  and 𝑤𝑤  stand for the signal 
and noise subspaces. Σ𝑠𝑠 is a diagonal matrix of 
singular values 𝜎𝜎1,  𝜎𝜎2, … ,  𝜎𝜎𝑛𝑛  in increasing order. 
The singular values constructing Σ𝑤𝑤 are assumed to 
be sufficiently small and ignored.  

From Eqs. (30), (31), (32), and (34), we obtain 
𝑂𝑂𝑟𝑟𝑋𝑋𝛱𝛱𝑈𝑈𝑇𝑇

⊥ 𝛷𝛷𝑇𝑇＝ 𝑊𝑊1
−1𝑈𝑈𝑠𝑠𝛴𝛴𝑠𝑠𝑉𝑉𝑠𝑠𝑇𝑇𝑊𝑊2

−1 (35) 

From Eq. (35), 𝑂𝑂𝑟𝑟 is estimated as 𝑂𝑂�𝑟𝑟 = 𝑊𝑊1
−1𝑈𝑈𝑠𝑠 . 

System matrices 𝐴𝐴𝑑𝑑 and 𝐶𝐶𝑑𝑑 are estimated as 𝐴𝐴𝑑𝑑�  and 
𝐶𝐶𝑑𝑑� from Eq. (13) as  

𝐶𝐶𝑑𝑑� = 𝑂𝑂�𝑟𝑟(1:𝑝𝑝, 1:𝑛𝑛) (36) 

𝑂𝑂�𝑟𝑟(𝑝𝑝+ 1:𝑝𝑝𝑝𝑝, 1:𝑛𝑛)
= 𝑂𝑂�𝑟𝑟(1:𝑝𝑝(𝑟𝑟 − 1), 1:𝑛𝑛)𝐴𝐴𝑑𝑑�  

(37) 

 
3.4 Natural Vibration Characteristics 
Estimation using N4SID 

 
The target structures of this study are bridge 

cables. The acceleration responses at multiple 
points on the cable after striking the cable with a 
hammer are used for system identification. Since 
the system coefficient matrix 𝐷𝐷𝑑𝑑 is zero from Eq. 
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(5), only matrices 𝐴𝐴𝑑𝑑,  𝐵𝐵𝑑𝑑,  and 𝐶𝐶𝑑𝑑  are estimated. 
The natural vibration characteristics are estimated 
using acceleration responses after applying an 
external force. Therefore, the input vector 𝑢𝑢(𝑘𝑘) is 
set to 0, and acceleration responses are used as  
𝑦𝑦(𝑘𝑘).  

The estimation flow using the N4SID employed 
in this study is as follows. 
[Step 1] The input vector 𝑢𝑢(𝑘𝑘) is considered to be 

0, and the acceleration responses at 
multiple points are stored in the output 
vector 𝑦𝑦(𝑘𝑘). 

[Step 2] Select the model order by truncating the 
small singular values. 

[Step 3] Estimate the system matrices 𝐴𝐴𝑑𝑑 , 𝐵𝐵𝑑𝑑 , and  
𝐶𝐶𝑑𝑑. 

[Step 4] Estimate natural vibration characteristics 
from the system matrices 𝐴𝐴𝑑𝑑, and 𝐶𝐶𝑑𝑑. 

 
4. NUMERICAL VERIFICATION  

 
4.1 Overview 
 

This chapter verifies the N4SID for natural 
vibration characteristics estimation of a bridge 
cable. The target structure is a cable of a cable-
stayed bridge. First, natural vibration characteristics 
(natural frequencies, damping factors, and mode 
shapes) are computed by an eigenvalue analysis of 
the FEM and regarded as true values. Next, the 
acceleration responses of a cable hit by a hammer 
are computed by the dynamic analysis of the FEM 
and input into N4SID to estimate the natural 
vibration characteristics. The natural vibration 
characteristics estimated by the N4SID are 
compared with the true values to evaluate the 
estimation accuracy of the N4SID. 

 
4.2 Analysis Model  
 

An analysis model is shown in Fig. 1. The cable 
is made of steel with a density per length of 30.1 
kg/m, a tension of 3300 kN, and a bending stiffness 
of 106 kN/m2. The cable is 50 m long and divided 
into 100 elements with 101 nodes. The cable is fixed 
at both ends. The cable was modeled with a 
tensioned Euler-Bernulli beam. 

The hammering position is node No. 11. The 
measurement points are node Nos. 11, 16, 21, and 
26. A square wave with an amplitude of 1 kN and a 
duration of 1.0×10−4 s is applied at node No. 11, 
and acceleration responses at node Nos. 11, 16, 21, 
and 26 are computed and input to the N4SID. 
  In addition to the cable model shown in Fig. 1(a), 
a cable model with a damper shown in Fig. 1(b) is 
also considered. The damper is attached to node No. 
9. 

Even for the cable model without a damper, 
Rayleigh damping was introduced, assuming the 1st  

 
(a) Cable with no damper 

 

 
(b)Cable with damper 
 
Fig. 1 Analysis model  
 
Table 1 Analytical cases 

 Damper Noise  Time 
duration 

Case A1 No damper 0 % 1-20 s 
Case A2 No damper 5 % 1-20 s 
Case A3 With damper 5 % 1-20 s 

    
and 10th modes have a damping factor of 0.5%. The 
value of 0.5% was determined based on the 
measurement data of an actual cable. As for a cable 
with a damper, the damper was modeled with a 
spring and dashpot and set in parallel in the vertical 
direction. The stiffness is 237 kN/m, and the 
damping coefficient is 3.41 kN⋅s/m, so the damping 
factor of the lower mode becomes close to 3%.  
 
4.3 Analysis Case and Input Force 
 

An analysis case is shown in Table 1. In A1 and 
A2, the cable model without a damper is used. No 
measurement error is considered in A1, and a 
measurement error of 5% is considered in A2. In 
A3, the cable with a damper model is considered, 
and measurement error of 5% is considered. The 
measurement error was modeled with Gaussian 
distribution with a standard deviation of 5% of the 
standard deviation of the acceleration response 
without measurement error. 

The time interval of the dynamic analysis is 1.0
×10−4 s. The square wave with amplitude 1kN was 
input to the cable from 1.0×10−4 to 2.0×10−4 s. 
Acceleration histories for 20 s are computed using 
the FEM. The acceleration histories from 1 to 20 s 
are extracted to remove the acceleration responses 
while hitting a cable with a hammer.   
 
4.4 Results 
 
4.4.1 Acceleration histories and Fourier spectra 

The normalized acceleration histories for three 
cases are shown in Fig. 2(a). The amplitude was 
normalized by the largest value among the four 
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data.  Figure 2(b) is the Fourier spectra of the 
normalized acceleration histories. The normalized 
acceleration histories shown in Fig. 2(a) are input to 
N4SID. Figure 2(a) shows that the acceleration 

responses quickly reduce in case A3 due to the 
effect of a damper. Figure 2(b) shows that the peaks 
of the Fourier spectra of cases A1, A2, and A3 can 
be recognized up to around 100 Hz, 70 Hz, and 20 

 
(a)Normalized acceleration history 

 
(b) Fourier spectra of normalized acceleration histories 

 
(c)Ratio of estimated natural frequency to true value 

 
(d) Ratio of estimated damping factor to true value 

 
(e) Ratio of estimated mode shape to true value 
Fig.2 Results of numerical verification (left: case A1, middle: case A2, right: case A3)  
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Hz, respectively. Due to the measurement error and 
damping, the peaks of the higher modes become 
unclear. 
4.4.2 Dimension of system matrices 

In the N4SID, the dimension of the system 
matrices is determined based on the singular values. 
The singular values were listed in descending order, 
and the order of the singular value just before the 
singular value became dramatically smaller was 
used as the order of the system matrices. 
 
4.4.3 Natural frequency estimation results 

Figure 2(c) shows the result of natural frequency 
estimation. The horizontal axis is the modal order, 
and the vertical axis is the ratio of estimated natural 
frequencies to true values. The accuracy is high if 
the vertical axis value is close to 1. In cases A1, A2, 
and A3, the natural frequencies up to the 35th mode 
(about 140 Hz), the 18th mode (about 70 Hz), and 
the 7th mode (35 Hz) are estimated, respectively. It 
is difficult to identify the natural frequencies of case 
A1 up to 140 Hz by visual inspection of Fig. 2(b). 
However, the N4SID detected the natural 
frequencies up to around 140 Hz with high accuracy. 
The overall accuracy is high. The estimation 
accuracy is quite high if there is no damper.  
 
4.4.4 Damping factor estimation results 

Figure 2(d) shows the result of damping factor 
estimation. The estimation accuracy is high except 
for the maximum order. The estimation error is less 
than 1% in case A1 without measurement error and 
less than 5% in A2 and A3 with measurement error, 
except for the maximum order. 

 
4.4.5 Mode shape estimation results 

We first estimated the mode shape at the four 
nodes with the N4SID, then normalized the mode 
shape with the largest one. The mode shape 
computed by the FEM is also normalized. 
Normalized mode shapes are compared for each 
mode. Figure 2(d) shows the result of mode shape 
estimation. The estimation accuracy is high for the 
lower modes in a case with no damper.  In case A1, 
the estimation error is less than 0.01% for the modes 
lower than the 31st mode. In case A2 with 
measurement noise, the estimation error is within 
3% for the modes lower than the 7th mode. However, 
the estimation accuracy is not high for the case with 
a damper. In case A3 with measurement noise and 
the damper, the estimation error is within 1% only 
for the 1st and the 3rd modes. 
 
5. EXPERIMENTAL VERIFICATION  

 
5.1 Overview 

In this chapter, the validity of the N4SID is 
verified using the experimental results of an actual 
Nielsen-Lohse Bridge. A schematic diagram of the 

bridge is shown in Fig. 3(a). The bridge is a Nielsen-
Lohse bridge, and a clamp connects the two 
intersecting cables. Vibration tests were conducted 
on two intersecting cables (case B), shown in red in 
Fig. 3(a). The cable lengths are shown in Fig. 3(b). 
The cables consist of 19 PC steel strands with a 
diameter of 12.7 mm bundled together and covered 
with a polyethylene sheath. Table 2 shows the 
material properties of the cables. The density per 
length and mass of a clamp shown in Table 2 is the 
design value. The tension and bending stiffness 
shown in Table 2 is estimated by the higher-order 
vibration method using the natural frequencies of 
each cable after removing the intersection clamp 
[9]. 

Figure 3(c) shows the position of excitation by 
the hammer and the position of the accelerometers. 
Cable 1 was hit in the out-of-plane direction, and 
the out-of-plane acceleration responses were 
measured with four accelerometers. The 
accelerometers were placed at 0.5 m intervals and 
numbered 1 to 4 from the bottom. Figures 4(a) and 
(b) show the measured acceleration histories and 
Fourier spectra. The measurement time interval is 
0.00078125 s, and the duration is 25.6 s. 
 

 
(a)Target Nielsen-Lohse Bridge and target cables  
 

    
(b) Cable length       (c) Measurement and striking 

position 
 
Fig. 3 Experimental condition 
 
Table 2 Material properties of two cables 

Cable 
No. 

Tension 
[kN] 

Bending 
stiffness 
[kN∙m2] 

Density 
per 

length 
[kg/m] 

Mass 
of 

clamp 
[kg] 

1 378.76 83.61 17.58 19.0 2 383.61 82.40 

CaseB
120m

20m

Cable2Cable1
18.297m 16.775m

11.163m11.163m

7.134m5.612m

Strike position

Accelerometers

Intersection 
clamp

unit [m]

Cable1 Cable2

2.946

1
2
3
4
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(a)Acceleration history 

 
(b) Acceleration Fourier spectra 
Fig. 4 Acceleration responses by experiment 
 
5.2 Verification Method 

 
Natural vibration characteristics are estimated 

using the N4SID. Furthermore, the natural 
frequencies and mode shapes are manually 
estimated from the acceleration Fourier spectra. The 
mode shapes were normalized to have a maximum 
value of 1. An eigenvalue analysis of the FEM is 
also performed using the material properties listed 
in Table 2. Since the damping factors of the two-
intersecting cables were found to be very small, it 
was modeled with an undamped model. The cable 
was modeled with a tensioned Euler-Bernulli beam 
approximately 0.05 m in length. The computed 
natural frequencies and mode shapes by the FEM 
were considered true values. The mode shapes are 
normalized by dividing with the maximum value 
among the four measurement points. 
 
5.3 Results 
 
5.3.1 Natural frequency estimation results 

Figure 5(a) compares the natural frequency 
estimation error between the N4SID and the manual 
estimation from the Fourier spectra. It was found 
that the N4SID has higher accuracy for most modes. 
 
5.3.2 Mode shape estimation results 

Figures 5(b), (c), and (d) are the comparison of 
the mode shapes among FEM, N4SID, and the 

manual estimation from the Fourier spectra for the 
1st, 6th, and 7h modes. The mode shape plots by the 
N4SID are generally on the mode shape plot by the 

 
(a)Estimation error ratio of natural frequencies 

 
(b)Result of mode shape estimation (1st mode) 

 
(c)Result of mode shape estimation (6th mode) 

 
(d)Result of mode shape estimation (7th mode) 

 
(e)MAC 

Fig. 5 Estimation results from an experiment 
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FEM, whereas the mode shape plots obtained 
manually from the Fourier spectra are not always on 
the FEM mode shape plots. The above finding 
suggests that N4SID has higher accuracy.  

Next, the Modal Assurance Criterion (MAC) 
was calculated to compare the accuracy 
quantitatively. MAC takes 1 when the two-mode 
shape vectors {𝜙𝜙𝐴𝐴}  and {𝜙𝜙𝐵𝐵}  are perfectly 
coincident, and 0 when they are orthogonal. The 
estimated mode shapes are substituted into {𝜙𝜙𝐴𝐴}, 
and the mode shapes by the FEM are substituted 
into {𝜙𝜙𝐵𝐵}. 

MAC(𝜙𝜙𝐴𝐴,𝜙𝜙𝐵𝐵)

=
|{𝜙𝜙𝐴𝐴}𝑇𝑇{𝜙𝜙𝐵𝐵}|2

({𝜙𝜙𝐴𝐴}𝑇𝑇{𝜙𝜙𝐴𝐴})({𝜙𝜙𝐵𝐵}𝑇𝑇{𝜙𝜙𝐵𝐵}) (38) 

Figure 5(e) compares the MAC between the 
N4SID and the manual estimation. The lowest 
MAC of manual estimation is 0.61 for the 6th mode, 
while the lowest MAC by the N4SID is 0.9 for the 
7th mode. The N4SID tended to have a larger MAC 
and better agreement with the FEM analysis results. 
 
6.  CONCLUSIONS 
 

This study investigated the applicability of the 
N4SID for the natural vibration characteristics 
estimation of bridge cables.  

First, the applicability of the N4SID was 
investigated by the numerical simulation of a single 
cable with and without a damper. The following 
were observed.  
1) The natural frequencies can be estimated with 

high accuracy, even with a measurement error 
of 5%. In the case of a cable with a damper, only 
estimation of lower modes is possible since the 
higher modes quickly dissipate. The 
measurement noise also reduces the number of 
natural frequencies to be identified.  

2) The damping factors, except for the maximum 
order, could be accurately estimated. The 
estimation error is less than 1% in the case 
without measurement error and less than 5% in 
the case with measurement error. 

3) The estimation accuracy of the mode shapes is 
high for the lower modes in the case with no 
damper.  The estimation error is less than 0.01% 
for modes lower than the 31st mode in the case 
without measurement error and 3% for modes 
lower than the 7th mode in the case with 
measurement error. However, in the case with a 
damper, estimation error increased, and 
estimation error less than 1% was obtained only 
for the 1st and the 3rd modes. 
Next, the applicability of the N4SID was 

investigated through the field measurement of the 
two-intersecting cables connected by a clamp on an 
actual Nielsen-Lohse bridge. It was found that 
natural frequencies and mode shapes estimated by 

the N4SID have higher accuracy than those by the 
manual estimation from the acceleration Fourier 
spectra. The superiority of the N4SID over the 
manual estimation from the Fourier spectra was 
shown.  
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