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ABSTRACT: In structural engineering, trusses are important for covering large-span structures. However, 
imperfections are often present in the manufacture and assembly of truss structures, particularly in terms of the 
length and loading. This article presents the influence of imperfection, both in length and loading, on the dynamic 
response of trusses under harmonic loads considering geometrical nonlinearity. To analyze trusses, the hybrid 
matrix of elements of the truss is established to solve dynamic equations by applying the Newmark integration and 
Newton–Raphson iteration methods. The authors continue to develop the previous study by investigation of the 
influence of two imperfect parameters of structures in terms of element length and loading. An incremental-
iterative algorithm was developed, and a calculation programming routine in MATLAB software was written to 
illustrate the dynamic responses of trusses with imperfections under harmonic loading. The results obtained in this 
study verified the accuracy and effectiveness of the proposed approach in the analysis of trusses under harmonic 
loading. The numerical results show that when considering both length and load imperfection, the dynamic 
response of the trusses is significantly different in comparison to the case of consideration of length imperfection 
separately. With consideration of both imperfect parameters in length and loading, the critical load is significantly 
decreased. From there, it can be concluded that, in the dynamic analysis of trusses, all possible imperfect 
parameters, especially in element length and loading, must be considered.  
 
Keywords: Dynamic Response of Trusses, Hybrid Finite Element Method, Length Imperfection of Element, 
Loading Imperfection, Harmonic Loading. 
 
1. INTRODUCTION 
 

Currently, truss structures are often used in 
construction to overcome large spans because of their 
outstanding advantages of being lightweight and 
slender compared with other types of structures. 
Therefore, truss structures have become increasingly 
popular and widely used. Many trusse analysis 
studies have been performed to demonstrate the 
significant concern of scientists regarding truss 
structures [1-7]. However, in the process of 
manufacturing and assembling a truss structure 
system, errors cannot be avoided, creating various 
types of imperfections. One of the common types is 
the length imperfection. Truss systems are highly 
sensitive to length imperfections [7,8]. Therefore, this 
factor cannot be neglected in the design and analysis 
process. Many studies have been conducted 
worldwide on the influence of imperfections on the 
behavior of structures, as mentioned in previous 
studies [8-12]. It is important to note that with the 
influence of length imperfections, the behavior of the 
truss structure under the impact of dynamic loads is 
always of special concern. In [13-16], a significant 
number of studies were concerned with the problem 
of imperfect element lengths in structures. The 
authors of these studies also pointed out that the load-
bearing capacity of a space truss is significantly 
influenced by length imperfections. Various methods 
have been applied to solve specific problems. It can 

be observed that the nonlinear dynamic analysis of 
trusses subjected to dynamic loading has specific 
difficulties in treating initial imperfections. In recent 
years, researchers have been interested in the 
dynamic response of structures in general and trusses, 
particularly under harmonic and impulse loads [17-
19].  

To analyze the influence of length imperfections, 
the Finite Element Method (FEM) exhibits 
outstanding advantages when solving dynamic 
analysis problems for trusses [19,20]. In linear finite 
element analysis, length imperfections are replaced 
by equivalent external loads placed at the nodes. In 
[8-9], Dao and Vu introduced a method to solve the 
problem of nonlinear dynamic analysis of a truss. In 
these studies, the authors used a mathematical 
treatment using the Lagrange multiplier method and 
a penalty function to address the length imperfection 
of the elements. In [9], Vu et al. proposed and 
established a new formula based on the hybrid FEM 
to handle systems with length imperfections. With 
this application, the mathematical difficulties have 
been overcome relatively completely. The authors 
have used the formulation of a Hybrid FEM in several 
studies. Using Hybrid FEM to solve the dynamic 
analysis problem for trusses subjected to dynamic 
loads, a system of dynamic balance equations for 
truss elements was established by adding inertial and 
damping forces to the static balance equation based 
on D'Alembert's principle. Simultaneously, 
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Newmark's integration method and Newton-Raphson 
iteration method were used to solve the problem more 
thoroughly. Similarly, in [10,11], Vu et al. applied the 
mixed finite element method to solve the problem of 
nonlinear dynamic analysis of trusses. From these 
studies, it can be concluded that the mixed finite 
element method has both advantages and 
disadvantages. 

In this article, to overcome the mathematical 
complexity in handling the initial member length 
imperfection, the authors proposed an approach based 
on the hybrid finite element formula, in addition to 
known methods, to solve the problem of analyzing the 
nonlinear dynamics of the truss under the effect of 
harmonic load. A hybrid formula was applied to 
establish an equilibrium nonlinear dynamic equation 
of the truss using the static potential energy principle. 
The proposed hybrid finite element of the truss with 
imperfect length was initially constructed based on 
the hybrid transformation formulation, considering 
large truss deformations. In addition, this study 
applies an incremental iteration algorithm based on a 
combination of Newmark’s integration and Newton–
Raphson iteration methods. Based on the algorithm 
proposed by the authors, the calculation process was 
established and written in MATLAB to illustrate the 
dynamic response of trusses with initial length 
imperfections under the effect of harmonic loading. 
The numerical analysis results demonstrate the 
effectiveness of the hybrid finite element formula in 
solving the nonlinear dynamic problem of a truss 
system with length imperfections under the effect of 
a dynamic load. The results obtained from this study 
demonstrate that when the number of length defects 
approaches zero, the solution converges to the perfect 
length case. 

In addition, this study continued to develop the 
topic mentioned in a previous study by Dao et al. [8]. 
In [8], Dao et al. addressed the research issue of the 
influence of length imperfections on the dynamic 
response of space trusses while considering only 
length imperfections. In this study, we investigated 
the influence of both imperfect parameters in terms of 
length and loading. The obtained results illustrate the 
necessity of considering all the possible 
imperfections.  Therefore, in the next section, the 
authors will present the method and numerical 
investigation to present the influence of both 
imperfection parameters in length and loading to 
dynamic response of truss under harmonic load.  

 
2. RESEARCH SIGNIFICANCE 

 
The influence of both imperfect parameters on 

truss structures under harmonic loading was 
investigated. The approach proposed in this study 
shows certain advantages in solving the dynamic 
analysis of trusses, particularly in cases where the 
trusses have length and loading imperfections. In 

addition, the results obtained in this study show that 
it is necessary to consider more parameters of 
imperfections than only one parameter in the dynamic 
analysis of trusses. 

 
3. ANALYSIS METHOD  
 
3.1 Theoretical background 
 
3.1.1. Equilibrium equation for truss element with 
length imperfection 
 

In Fig. 1, the nodal coordinates of truss elements 
before deformation are {X1, Y1} and {X2, Y2}, Le, Δe, 
are initial element length and imperfection parameter; 
L0 and L are distances between nodes before and after 
loading; A, E, N are cross section area, elastic 
modulus and axial load of element; fi, ui, mi (i=1– 4) 
are nodal forces, displacements and lumped masses; 
fI, fD, p(t) are inertia, damped and external forces. In 
hybrid formulation, the authors considered eI and eII 
are perfect and imperfect elements [8]. 

 
Fig. 1 Truss element with length imperfection 

 
 From condition of equilibrium, it is assumed that, 
u5=fe=N, in which u5 and fe are force unknown and 
external force in the initial node after loading. The 
deformations of perfect and imperfect elements are 
determined as:  

I II
I II

(e ) (e )
(e ) (e )
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The internal and external virtual work for perfect 
elements I(e )
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The total work of the system for two types of elements 
is given by following:  
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The dynamic equation of equilibrium for perfect and 
imperfect elements can be presented as follows [8]: 
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In which, u≡{u(eI), u(eII)} is vector of unknowns.  
In matrix form, the dynamic equilibrium equation for 
truss element can be written as  
 

imperfect( )+ + = +  e,ΔM C q P Pu u u                                      (7) 
The dynamic equation of equilibrium (7) is a second- 
order non-linear differential equation.  
In this study, the authors applied the formula of 
Taylor series to expand function of Eq. (7):  
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In which,  
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M, C, ΔP, ΔPimperfect are the mass and damping 
matrices and vectors of incremental dynamic load and 
incremental imperfect dynamic, respectively, 
δ𝒖̈𝒖, δ𝒖̇𝒖, δu are the vectors of incremental acceleration, 
velocity and displacements.  
 
3.1.2. Formulation of equation for truss system with 
length and loading imperfection 

From Eqs. (7), (8), assemble all element matrices 
to global matrices of the truss system. The dynamic 
equilibrium equation can be express as following: 

imperfect( )+ + = +  e,ΔM C q P Pu u u                                  (10) 

imperfect( )δ + δ + δ = ∆ + ∆  e,Δ PK uM C Pu u u             (11)                                                                        
In which, 
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To solve the Eqs. (7), (8), in this study, the 
Newmark’s method was applied. The dynamic 
equation can be expressed in the incremental form: 

2
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t 2t

1 t
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Thus, 𝛿𝛿𝒖̈𝒖, 𝛿𝛿𝒖̇𝒖 are added from Eq. (8) to Eq. (7):   
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Eq. (14) can be written in compact form as: 

( )δ = ∆e,ΔuK Pu                                                (15) 
The authors applied Newton-Raphson iterative 
method to find the solution of Eq. (15).   

 
Fig.2 Illustration of Newton Raphson technique 
 

3.2 Solving procedure for dynamic analysis of 
truss system with length imperfection 

 
 The iterative algorithm of Newton-Raphson 
approach [8-11, 21] is applied for solving the system 
of equation nonlinear dynamic of the trusses Eq. (14) 
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as shown in Fig. 2a.  
 The adjacent equilibrium point (B, t+Δt) is 
determined from the equilibrium point (A, t). For 
every iteration, the increments from residual force are 
great, to eliminate the residual force and implement 
in many iterations as shown in Fig 2b. The authors 
built an iterative Eq. (16), Eq. (15) is a particular case 
corresponds to the first iteration of Eq. (16). The 
iterative algorithm established based on mentioned 
methods is applied to write a program to calculate the 
dynamic parameters of truss systems with 
imperfection.  
  According to Newton-Raphson iterative 
algorithm [8], the increments of are expressed as 
follows:  
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∂
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From Eq. (16) and refers to Eqs. (9), (14), (15), vector 
𝑭𝑭 � (𝒖𝒖, ∆𝒆𝒆) can be obtained as following: 
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Eq. (16) can be re-written as follows: 
( ) ( )δ = −e e,Δ ,Δu uFK u                                         (19) 

After finding the displacement and the increment of 
displacement (u+Δu) at the point B(t+∆t) in Fig. 2, 
using Newmark’s formula [21], the corresponding 
velocity and acceleration will be found as Eq. (20): 
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4. NUMERICAL EXAMPLE 
 
 The 35-element plane truss in the form of an arch 
was investigated under harmonic loading (in form of 
sinusoidal load) and static concentrated P at node 10, 
as shown in Fig. 3. in which considering imperfections 
in both the length of the element and loading as shown 
in Fig. 4. The elements had the same elastic modulus, 
E=68.964×106 kN/m2. The node coordinates of the 
truss and cross-sectional area of the elements are 
presented in Tables 1 and 2, respectively.  The truss 

with an imperfect length of elements subjected to 
imperfect dynamic loads is shown in Fig. 4. The 
imperfection factor of loading is e=0.01. The dynamic 
load in the form of sinusoidal load (Td = 0.3sec). For 
each truss node with a lumped mass m=50 kg (except 
for two nodes in the support), the influence of damping 
was neglected, and the concentrated P was applied at 
node 10.  
 The amount of imperfection in the length of the 
elements is considered in elements (1) to (10) and is 
assumed to be one-thousandth the length of the shortest 
element (in this example, the shortest element is 381 
cm in length). Thus, Δe

(1)÷(10)=0.381cm and other 
remain elements are assumed perfect Δe

(11)÷(35)=0cm. 
  The obtained results are compared with the case of 
imperfection in term of loading and length separately, 
as shown in Fig. 5, Fig. 6 and Fig. 7. 
 
Table 1. Coordinates of each node of the arch-truss                                       

 

Nodal 
number 

X -
Coordinate 

(cm) 

Y- 
Coordinate 

(cm)  
19, 1  
18, 2  
17, 3  
16, 4  
15, 5  
14, 6  
13, 7  
12, 8  
11, 9  

10 

± 3429.0  
± 3048.0  
± 2667.0  
± 2286.0  
± 1905.0  
± 1524.0  
± 1143.0  
± 762.0  
± 381.0  

0.0 

0.00 
50.65 
34.75 
83.82 
65.30 
110.85 
87.99 
128.50 
100.65 
134.62 

 
Table 2. Cross-section areas of each member of the 
arch-truss 

 
Member’s 

number  
Cross-section 

area (cm2)   
 

1–10, 35  
11, 12  
13–16  
17, 18  
19–22  
23, 24  
25, 26  
27, 28  
29–32  
33, 34 

 
51.61 
64.52 
83.87 
96.77 
103.23 
161.29 
193.55 
258.06 
290.32 
309.68 

 
 To develop the research in [8] of Dao et al., in this 
article, the 35-element plane arch-truss will be 
studied in the following cases:  
 Case 1: A truss with all perfect length of 
elements subjected to imperfect harmonic dynamic 
load is shown in Fig. 3. The imperfection factor of 
loading e=0.01. The dynamic load in the sinusoidal 
form (with period of loading Td = 0.3sec). For each 
truss node with a lumped mass m=50 kg (except for 
two nodes in the support), the influence of damping 
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was neglected, and the concentrated P was applied at 
node 10.  
 Case 2: A truss with imperfect length of elements 
and subjected to perfect harmonic dynamic load, as 
shown in Fig. 3. The amount of imperfection in the 
length of the elements is considered in elements (1) 
to (10) and is assumed to be one-thousandth the 
length of the shortest element (in this example, the 
shortest element is 0.381 cm in length). Thus, 
Δe

(1)÷(10)=0.381cm and other remain elements are 
assumed perfect Δe

(11)÷(35)=0cm. The form of dynamic 
is sinusoidal, the period of dynamic load is Td=0.3s.  
 Case 3: A truss with an imperfect length of 
elements subjected to imperfect harmonic dynamic 

load, as shown in Fig. 3. The amount of imperfection 
in the length of the elements is considered in elements 
(1) to (10) and is assumed to be one-thousandth the 
length of the shortest element (in this example, the  
shortest element is 0.381 cm in length). Thus, 
Δe

(1)÷(10)=0.381cm and other remain elements are 
assumed perfect Δe

(11)÷(35)=0cm. The imperfection 
factor of loading e=0.01. The dynamic load in the 
sinusoidal form (Td = 0.3sec). For each truss node 
with a lumped mass m=50 kg (except for two nodes 
in the support), the influence of damping was 
neglected, and the concentrated P was applied at node 
10. 

 
 

Fig. 3 Arch-truss structure 
 

      
 

Fig. 4 The arch-truss structure under ‘imperfect length and load’ 

 
Fig. 5 Maximum vertical displacements at node 10 under harmonic load 
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 c
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Fig. 6 Transient responses of the vertical displacement of the node 10 for different magnitudes of sinusoidal load 

(‘Imperfect Length and Loading’ and ‘Perfect System’) 

 
Fig. 7 Transient responses of the vertical displacement of the node 10 for different magnitudes of sinusoidal load 
(‘Imperfect Length and Loading’ and ‘Imperfect Length’) 

 
 When analyzing cases 1, 2, 3, the results are 
compared with the case of 'Perfect System' in term in 
length and loading and compared between cases to 
clearly observe how the imperfection in length of 
elements and imperfection in loading affects the static 
behavior as well as the dynamic behavior of the truss. 

Fig. 5 shows the relationship between load P and 
the maximum vertical deflection at node 10. The 

dynamic critical load value obtained in the case of a 
perfect system is 10.42kN, which converges with the 
value published in [8] by Dao et al. is 10.42kN. In 
Case 1, the imperfection in length was investigated, 
and the dynamic critical value obtained was 4.5kN. In 
case 2, with imperfections in loading, the dynamic 
critical value was 10.41kN, and in case 3, when we 
considered both imperfect parameters in length and 
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loading, the dynamic critical value obtained was only 
4.1kN. Thus, the critical value in case 3, which 
considered both imperfect parameters in length and 
loading, was 39.39% compared to case 2, which 
considered only length imperfection and 39.42% for 
the perfect system. Therefore, it can be seen that the 
influence of length imperfections is greater than that 
of imperfections in loading. In other words, it was 
demonstrated that imperfections in the loading 
insignificantly influenced the critical load value. 
When both imperfection parameters are considered, 
the influence is significantly increased. Thus, it can 
be concluded that it is necessary to consider all 
possible imperfection parameters. 

The harmonic dynamic load in the form of a 
sinusoidal load, and the dynamic response of the truss 
varies in time corresponding to different values of 
load amplitude, was investigated for the cases of 
consideration of the imperfect length and both 
imperfect parameters in length and loading. 

Fig. 6 presents a comparison of the dynamic 
response of the investigated truss between two cases: 
the perfect system and the system with perfection in 
both length and loading with different values of loads: 
a) the load value is less than the critical load value, b) 
the load value is equal to the critical load, and c) the 
load value is greater than the critical load. Fig. 6 
shows the bifurcation of the vibration that occurs 
when the load value is greater than the critical value. 
The time-displacement response curves clearly 
bifurcated with increasing time. 

Fig. 7 presents a comparison of the dynamic 
response of the investigated truss between two cases: 
a) a truss with imperfect length and a truss with 
imperfection in both length and loading with different 
load values: a) the load value is less than the critical 
load value, b) the load value is equal to the critical 
load, and c) the load value is greater than the critical 
load. Fig. 7 demonstrates that in the case of a 
sinusoidal load, corresponding to the load values of 
4.2kN and the time-displacement curves bifurcated at 
time 03s. This demonstrates the accuracy of the 
proposed method and the necessity of considering all 
possible imperfection parameters.  

 
5. CONCLUSIONS 

 
The following conclusions were drawn from the 

results of this study: 
The mathematical model based on the hybrid 

finite element formulation to solve the nonlinear 
dynamic problems of trusses with imperfect 
parameters in both length and loading shows 
outstanding advantages compared to the 
mathematical model based on displacement and 
mixed finite element formulation. 

The hybrid finite element formulation allows the 
application of displacements and forces as unknowns, 
which allows the imperfection parameters of length 

and loading into the hybrid matrix of truss elements 
and simplifies the calculation algorithm for nonlinear 
dynamic analysis of trusses under harmonic loading. 

The Hybrid FEM method proposed in this study 
was applied to perform the calculation and analysis of 
the truss, considering the factors of imperfections in 
the length of the elements and the load. The 
convergence of the numerically obtained results of 
this study compared to those of previous studies 
demonstrates the reliability and efficiency of the 
Hybrid FEM method proposed by the authors. 

The dynamic forced function is considered as a 
sinusoidal load. The ‘Load-Maximum deflection of 
Joint’ curves for this load cases are presented and the 
influence of both imperfect parameters of length of 
element as well as loading on the critical load value 
of the truss has been analyzed.  

The numerical results show that the imperfect 
length of the elements significantly affects the 
dynamic response as well as the magnitude of the 
critical load, specifically,  

When considering the imperfection in both the 
length of the elements and loading, the critical load 
value will decrease in comparison with the case of the 
truss considering only one imperfection factor.  

Therefore, imperfections in the length and loading 
of the elements must be considered in the practical 
analysis of trusses. The numerical results presented in 
this study show a certain significance level in 
developing a further understanding of the buckling 
behavior of truss structures under dynamic loading 
and the imperfection factors of the length of elements 
as well as of loads. 
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