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ABSTRACT: This study aims at applying a machine learning-based model to establish the relationship 

between different input variables to the 28-day compressive strength of normal and High-Performance 

Concrete (HPC). An Artificial Neural Network (ANN) model was trained, validated, and tested using a 

comprehensive database consisted of 361 records gathered from the previously circulated source. Various 

models with different learning algorithms and neuron numbers in the hidden layer were examined to attain the 

best performance model. The examination results revealed that the ANN model using the “trainlm” learning 

algorithm delivered the best prediction outcomes with the overall coefficient of determination (R2) of 0.9277. 

The influence of input parameters on the output was also examined by performing the sensitivity analysis. It 

was observed that the compressive strength of concrete at 28 days was more responsive to the changes in the 

cement parameter (CM) and the amount of water (WT). In contrast, the 28-day concrete compressive strength 

was found less sensitive to the variation of the fly ash (FL) parameter.  
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1. INTRODUCTION 

 

Concrete is one of the most frequently used 

building materials worldwide. Generally, concrete 

is made of aggregates, cementitious material, and 

water. When these components are mixed, the 

mixture hardens over time thanks to the chemical 

reaction between cementitious material and water 

[1]. HPC can be made by adding other components 

such as fly ash, blast furnace slag, superplasticizer 

to the ordinary concrete mix. Among many HPC 

hardened properties, the compressive strength is the 

most common characteristic employed by the 

engineer in designing concrete structures [2].  

The concrete compressive strength is affected 

by various variables including water/cement ratio, 

cement types, supplementary cementitious 

materials, aggregate, curing condition, mix 

proportions, method of testing [3]. A lower 

water/cement ratio increases the compressive 

strength due to the reduction of porosity in hardened 

concrete. Added cementitious such as silica fume 

enhance the strength of concrete [4]. The concrete 

strength is also affected by the aggregate size and 

strength, and the bond between the aggregate and 

the cement paste [3] 

  Typically, the compressive strength of 

concrete is determined through the destructive 

testing of specimens [5-7]. The method, however, is 

time-consuming and cost-intensive. Researchers 

also tried methods to predict concrete strength [8]. 

Nevertheless, these conventional prediction models 

have been proposed based on a fixed equation form 

and a limited number of data and parameters. Thus, 

it might not be adaptable for the new dataset [9]. In 

recent years, an alternative method using ANN to 

predict the concrete properties are gaining 

popularity thanks to its accuracy, adaptability, and 

effectiveness. The ANN models can establish the 

non-linear relationship between the input 

ingredients to the outputs [10]]. 

Machine learning-based techniques including 

ANN, Adaptive Network-based Fuzzy Inference 

System (ANFIS) have been successfully applied to 

predict concrete properties [11-17] as well as to 

address various engineering problems [18-24]. For 

example, Pham et al. [13] utilized 190 geopolymer 

test samples to train, validate, and test an ANN 

model for predicting the geopolymer concrete 

compressive strength. The results revealed that the 

ANN model can be used to predict the compressive 

strength of geopolymer concrete with an acceptable 

level of accuracy. In a recent study, ANN and 

ANFIS models were employed to predict the 

compressive strength of Fiber-Reinforced High 

Strength Self-Compacting concrete. The conclusion 

from the study showed that the ANN model could 

perform better in the prediction of concrete strength 

compared to that of the ANFIS model [14]. 

Regarding the application of the ANN model to 

deal with engineering issues, Nguyen and Dinh [19] 

employed ANN to predict the bridge deck condition 

ratings. A total of 2572 bridge records from the 

National Bridge Inventory was used. The proposed 
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ANN model could predict the bridge condition 

ratings with an accuracy of up to 98.5 percent. 

Guijo-Rubio et al. [20] applied ANN for predicting 

solar radiation using satellite-based data. Results 

from the study revealed that ANN could predict 

solar radiation from the satellite image data with 

extreme accuracy. The study also concluded that the 

ANN outperformed other machine learning 

approaches such as Support Vector Regressor or 

Extreme Learning Machine. Besides, the ANN 

model was utilized to predict the fire-resistance 

rating of timber structures [21], to detect structural 

damage [22], and to identify polymers [23]. 

The applications of other machine learning-

based approaches for various issues are also popular 

among researchers [25-27]. For instance, Truong et 

al, [25] used various algorithms including Gradient 

Tree Boosting, Radom Forest, Support Vector 

Machine to evaluate the safety of steel trusses. The 

conclusion from the study revealed that the 

Gradient Tree Boosting provided the best 

performance for the considered case study. In 

another study, Behnood et al. [26] successfully 

applied the N5P model tree algorithm to predict the 

compressive strength of the normal concrete and 

HPC.  

The main objective of this study is to propose a 

supervised ANN model for predicting the 28-day 

compressive strength of normal concrete and HPC 

based on the data collected from the previously 

published source [28]. Different learning 

algorithms and the number of neurons in the hidden 

layer were investigated to obtain the optimal ANN 

model. The performance of the selected ANN 

model was evaluated using various indicators. 

Additionally, the influence of input variables on the 

output was examined through sensitivity analysis. 

The ANN architecture was developed in MATLAB 

R2020a Runtime Environment. 

 

2. METHODS  

 

A description of the architecture of a simple 

ANN model and the operation of a neuron as well 

as of the back-propagation algorithm were briefly 

discussed. Furthermore, the evaluation criteria for 

the performance of the proposed model, and the 

process of constructing the proposed ANN model 

(learning algorithms, the number of neurons in the 

hidden layer) were also presented. Finally, the data 

collection and preprocessing process was described 

in detail in the subsequent sections. 

 

2.1 Artificial Neural Network Architecture 

 

The architecture of the ANN system is inspired 

by the configurations of the human brain. It includes 

a series of simple nodes/neurons working 

independently to process input data and generate 

outputs. Figure 1a illustrates the architecture of a 

neuron. The solid line represents the forward 

direction while the dashed line is the backward way. 

A neuron consists of four parts namely inputs, 

weights and bias, transfer function, activation 

function, and output. The operation of a neuron can 

be express by Eq. (1) 

𝑜 = 𝑓 (
1

𝑛
∑ 𝑤𝑖 × 𝑦𝑖

𝑛

𝑖=1

+ 𝑏)                   (1) 

where o is the output from neuron; yi, is the ith input 

values; wi, is the ith connection weights; b is the bias 

value; f is the activation function. In the first part, 

the inputs are multiplied by the corresponding 

weights assigned for those inputs. In the second part, 

the product of each input in the first step is summed 

and transferred to the activation part where the 

output is produced.  A simple and common ANN 

structure, called a feed-forward network, has an 

input layer, one hidden layer, and an output layer, 

as depicted in Fig. 1b. In this network, the 

information is processed in one forward direction 

only.  

 

 
(a) Neuron weight adjustment loop 

 

 
(b) A simple structure 

 

Fig. 1 Artificial Neural Network diagram 

 

The weight and bias of connections in the 

network are randomly selected first. These 

parameters are then adjusted during the training 

processed. After the training process is completed, 

all connection weights and bias in the entire ANN 

are fixed and ready to predict the outputs for a new 

dataset. The major goal of the training process is to 

minimize the difference (Mean Squared Error - 

MSE) between the predicted outputs and the desired 
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outputs. Among various training algorithms, the 

back-propagation algorithm is the most used for 

ANN. The back-propagation algorithm uses the 

gradient descent method to search the minimum of 

the function error in the weight space.  

The operation of the back-propagation 

algorithm is depicted in Fig. 1b. It is an iteration 

process in which the weight of input in each run is 

adjusted to obtain the minimum MSE value. The 

change of the weights during each iteration is 

expressed as in Eq. (2) 

∆𝑤𝑛 = 𝛼 ∆ 𝑤𝑛−1 − 𝜂 
𝜕𝐸

𝜕𝑤
                         (2) 

where w is the weight between any two nodes;  wn 

and wn-1 are the changes in this weight at n and n-

1 iteration;  is the momentum factor;  is the 

learning rate; E is the error function. 

 

2.2 Performance Criteria 

 

The performance of the ANN model was 

assessed using three factors: coefficient of 

determination (R2) and Mean Squared Error, and 

Mean Absolute Error (MAE), which were presented 

in Eq. (3-5), respectively.  

 

𝑅2 = 1 −  
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

                          (3) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

                      (4) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

                        (5) 

where yi is the ith actual output; 𝒚̅ is the mean of the 

actual outputs; 𝒚̂𝒊 is the ith predicted outputs; and n 

is the total number of data records. The higher value 

of R2 and the lower values of MSE and MAE 

indicate a better prediction capacity of the proposed 

models. 

 

 

Table 1 Ranges of the input and output variables 

 

Variable Sym. Unit Category Min. Mean Max. Std. 

Cement  CM  kg/m3 Input 108 274 540 102 

Blast Furnace Slag BF kg/m3 Input 0 92 359 87.9 

Fly Ash FL kg/m3 Input 0 59 195 62.5 

Water WT kg/m3 Input 121 184 247 19.6 

Superplasticizer SP kg/m3 Input 0 7 32.2 5.30 

Coarse Aggregate CA kg/m3 Input 801 952 1145 81.7 

Fine Aggregate FA kg/m3 Input 594 760 992 72.5 

28-day compressive strength f’c MPa Output 20.6 38 69.8 11.6 

2.3 Data Collection and Preprocessing 

 

The experimental data from the previously 

published source contained information about the 

strength of many concrete types at different ages 

[28]. This study focused on the application of ANN 

for predicting the 28-day concrete strength. Thus, 

only records that contained the compressive 

strength at 28 days were obtained from the original 

database. To eliminate the undesirable effects of an 

outliner, the records with the compressive strength 

smaller than 20, or larger than 70 MPa were 

removed from the extracted database. The final data 

were archived in form of a table with 361 rows and 

eight columns. The input parameters were stored 

from column one to column seven, and the output 

parameter was archived in column eight.  

Seven concrete components, namely Cement 

(CM), Blast Furnace Slag (BF), Fly Ash (FL), 

Water (WT), Superplasticizer (SP), Coarse 

Aggregate (CA), and Fine Aggregate (FA) were 

employed as the inputs of the proposed ANN model. 

The 28-day compressive strength of concrete (f’c) 

was the output. The range of the input and output 

parameters is shown in Table 1. The classification 

of the 28-day compressive strength of concrete in 

each specific interval is presented in Table 2. 

 

Table 2 Number of samples in each specific range 

of 28 days compressive strength 

 

f’c (MPa) Records 

20 - 30 95 

30 - 40 133 

40 - 50 68 

50 - 60 41 

60 - 70 24 

Total 361 

 

3. MODEL DEVELOPMENT 

 

The ANN used in this study had seven neurons, 

namely CM, BF, FL, WT, SP, CA, and FA in the 

input layer. Note that these input variables were 

selected based on the original input parameters from 

the experimental tests presented in the database. 

The output layer has one neuron which was 

presented for the 28-day compressive strength of 

concrete (f’c).  
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Sigmoid was selected as an activate function for 

the proposed ANN model. The sigmoid function 

has been widely used for ANN models in [13, 14]. 

The sigmoid function transforms the values within 

the range [0 1] using equation y(x) =1/(1 + exp(-x)). 

The original input data were normalized and 

randomly separated into three subsets at the ratio of 

0.7, 0.15, and 0.15 for training, validation, and 

testing dataset, respectively. That means 253 

records were utilized for training the proposed ANN 

model, 54 records were used for validation, and 54 

records were employed for testing the accuracy of 

the model. 

To determine the learning algorithm to be 

utilized for the experimental dataset, the proposed 

ANN model was tested using six popular learning 

algorithms including trainrp, trainlm, traincgp, 

traincgb, trainbfg, trainoss. The performance of the 

model corresponding to each training algorithm was 

evaluated based on training and validation 

performance in ten runs. Figure 2a shows the best 

performance records for each model. It can be seen 

clearly that the model with “trainlm” algorithm 

produced the best results for all performance 

categories. For this reason, the “trainlm” algorithm 

was chosen for the proposed ANN model. The 

selection was in line with the previous study [14]. 

 
(a) Change of learning algorithms 

 
(b) Change of neuron numbers in the hidden layer 

 

Fig. 2 Evaluation of prospective ANN models 

 

The proposed ANN model in this study had one 

hidden layer. The number of neurons in the hidden 

layer was selected based on the performance of the 

proposed ANN model. According to the previous 

study [30], the minimum numbers of hidden nodes 

should be larger than the number of input variables 

n, and the maximum number should not exceed 2n 

+ 1. With seven input variables in this study, the 

number of neurons in the hidden layer should be 

chosen between seven and 15.  

Different ANN models were developed with the 

number of neurons in the hidden layer varied from 

seven to 15 neurons. Ten runs were implemented 

for each ANN model to obtain the average 

performance results. The performance of ANN 

models was then evaluated and plotted based on the 

MSE values, as shown in Fig. 2b. It can be seen the 

ANN model with 11 neurons generated the best 

results. Thus, the ANN model with 11 neurons in 

the hidden layer was picked to utilize in this study. 

Table 3 provides the architecture properties of the 

chosen ANN model. 

 

Table 3 Information of ANN model 

 

Parameter Properties 

Number of neurons in 

the input layer 

7 

Number of neurons in 

the hidden layer 

11 

Number of neurons in 

the output layer 

1 

Training method Back-propagation 

Learning algorithm ‘trainlm’ 

Activation function Sigmoid 

 

4. RESULTS AND DISCUSSION 

 

As mentioned earlier, the proposed ANN model 

with seven inputs, and one output parameter was 

employed to predict the 28-day concrete 

compressive strength. The prediction ability of the 

ANN model for training, validation, and the testing 

dataset was thoroughly assessed using the 

coefficient of determination and mean squared error. 

Besides, the error evaluation and sensitivity 

analysis were also conducted, and the results were 

presented in detail in the following sections. 

 

4.1 Prediction Performance of ANN Models  

 

Table 4 presents the performance results from 

the selected ANN model. As seen, the higher value 

of R2 in training and validation datasets indicated 

that the ANN model could generate reliable outputs 

with a high degree of fitness compared to the actual 

values. Also, for the new dataset, the performance 

of the selected ANN model produced a high level of 

accuracy in predicting the output. That means the 

proposed ANN model has a high potential for the 

prediction of the concrete compressive strength. 
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(a) Training 

 
(b) Validation 

 
(c) Testing 

 
(d) Overall 

 

Fig. 3 Scatter of predicted and actual values 

Table 4 Measured performance of the selected ANN 

model 

 

Dataset R2 MSE MAE Records 

Training 0.9330 17.1 3.18 253 

Validation 0.9208 23.1 3.01 54 

Testing 0.9149 22.5 3.62 54 

Overall 0.9277 18.8 3.22 351 

 

The relationship between the concrete 

compressive strength values generated from the 

ANN model and the actual values from the database 

are shown in Fig. 3. These scatter plots are 

presented the performance results of the selected 

ANN for different phases namely, training, 

validation, testing, and overall. In these figures, the 

horizontal axis represents the actual values (values 

from the database), while the predicted values 

produced from the model are presented on the 

vertical axis.  It is worth noting that the instance that 

lies on the diagonal line would present a result from 

an ideal prediction. The fitting line in each figure 

presents the linear regression of the corresponding 

dataset 

As can be seen from Fig. 3, most concrete test 

samples were located around the diagonal line. That 

means the proposed ANN model showed a great 

ability to predict the output from the inputs. Besides, 

the ANN model showed a better prediction ability 

for the concrete samples with a compressive 

strength of less than 45 MPa, as shown in Fig. 3d. 

The performance efficiency of the proposed ANN 

model showed slightly lower for the HPC instances 

with compressive strength higher than 60 MPa. The 

potential explanation may be due to the insufficient 

records with a compressive strength larger than 

60MPa in the database, as shown in Table 2.  

 

4.2 Errors Evaluation 

 

Figure 4a shows the performance error of the 

ANN model for the testing dataset. As shown, the 

proposed ANN model can accurately predict the 28-

day concrete compressive strength from the inputs 

with the average error at around ±5 MPa. Some 

samples experienced a prediction error as large at 

around 10 MPa. The lack of test samples in the 

database could be a possible reason. Due to a 

limitation in the records, the data might not fully 

represent the properties of the variables. The 

potential solution for the issue is to employ the 

dataset with a larger number of test samples.   

To evaluate more detail about the computational 

efficiency of the selected ANN model, the SR 

coefficient was used [31]. The SR is the percentage 

of data in which the relative error is smaller or equal 

to the specified error criterion.  
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(a) For the data test set 

 
(b) SR vs. Nep for the entire database 

 

Fig. 4 Error evaluation of the proposed ANN 

model 

 

The SR can be calculated using Eq. (6) 

 

𝑒𝑟𝑟𝑖 = |
𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

| × 100%; 𝑆𝑅 =
𝑁𝑒𝑝

𝑁
 × 100% (6) 

 

where erri is the relative error; yi is the ith actual 

output; 𝑦̂𝑖  is the ith predicted outputs; Nep is the 

number of data records with the relative error is 

smaller than the restrained error bound Nep (i.e., the 

number of items within the area erri < Nep), and N is 

the total number of data in the considered set. Figure 

4b shows the calculation of SR for the performance 

of the selected ANN model. As can be seen, about 

40 percent of the data was well predicted by the 

proposed ANN model with a relative error of less 

than five percent.  

 

4.3 Sensitivity Analysis 

 

Sensitivity analysis is a technique to evaluate 

the impact of the uncertainty of one or more input 

parameters on the uncertainty of the output 

parameters. In this research, the one-at-a-time 

approach was applied to determine the influence of 

concrete input variables on the 28-day compressive 

strength of concrete. The values from each input 

variable were arranged from low to high regarding 

five groups, namely Low, ML, Mid, MH, and High, 

as presented in detail in Table 5. For each variable, 

the Low and the High are the smallest and the 

biggest value of the corresponding variable, 

respectively. The Mid value is half of the Low and 

the High. While ML is presented for the average 

value of the Low and the Mid, MH is the value 

between the Mid and the High. 

To perform the sensitivity analysis, for each 

input, the value of that corresponding input was 

moved from the Low to the High, while the value of 

other inputs remain at the Mid position. After 

completing one input, the identical process was 

repeated for each of the other inputs. Figure 5 

presents the sensitivity analysis results for all seven 

inputs in this study. This figure consists of five 

vertical axes positioned from the left to the right. 

Each axis is related to the value of all inputs at 

different value levels. 

 

Table 5 Data for sensitivity analysis of seven input variables 

 

Parameters Low ML Mid MH High 

CM 108 216 324 432 540 

BF 0 89.8 179 269 359 

FL 0 48.7 97.5 146 195 

WT 121 153 184 215 247 

SP 0 8.05 16.1 24.1 32.2 

CA 801 887 973 1059 1145 

FA 594 693 793 89 992 
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Fig. 5 Results from sensitivity analysis 

 

As can be seen clearly from Fig. 5, the change of 

cement (CM) and water (WT) variables would 

significantly affect the 28 days compressive strength 

of concrete. To be specific, the 28-days concrete 

compressive strength would increase along with the 

rise in the amount of cement and vice versa. The 

opposite trend was applied to the water variable. 

Additionally, within the context of this study, it is 

interesting to note that the change of the fly ash 

parameter (FL) would produce a minimal effect on 

the 28-day compressive strength of concrete. 

 

5. CONCLUSIONS 

 

In this paper, a feasible method of predicting the 

28-day compressive strength of concrete using data 

from previously published data was presented. Seven 

input variables including cement, blast furnace slag, 

fly ash, water, superplasticizer, coarse aggregate, 

and fine aggregate were employed to predict the 

concrete compressive strength at 28 days. A total of 

351 experimental records were utilized to train, 

validate, and test the proposed ANN model. Various 

learning algorithms and the number of hidden nodes 

were explored. The ANN model using ‘trainlm’ 

learning algorithm with 11 neurons in the hidden 

layer produced the best outcome. 

Regarding the performance of the ANN model, it 

was shown the ANN model was able to predict the 

concrete compressive strength with a high level of 

accuracy. The value of R2 for the training, validation, 

and testing dataset was 0.9330, 0.9208, and 0.9149, 

respectively. With respect to the sensitivity analysis, 

the results revealed that the concrete compressive 

strength was more sensitive with the change of 

cement and water variables and less responsive with 

the adjustment of the fly ash parameter.  

It is worth noting that the proposed ANN model 

showed great performance for the dataset. However, 

the lack of employing other unsupervised machine 

learning-based models such as Gradient Tree 

Boosting, Radom Forest for the current dataset was 

a limitation of this study. The comparison should be 

conducted in future research to obtain the best 

performance model. 
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