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ABSTRACT: Lateral spreading is one of the most common secondary earthquake effects that cause severe 

damage to structures and lifelines. While there is no widely accepted approach to predicting lateral spread 

displacements, challenges to the existing empirical and machine learning models include obscurity, overfitting, 

and reluctance of practical users. This study reveals patterns in the available lateral displacement database, 

identifying rules that describe the significant relationships among various attributes that led to lateral spreading. 

Seven conditional attributes (earthquake magnitude, epicentral distance, maximum acceleration, fines content, 

mean grain size, thickness of liquefiable layer, and free-face ratio) and one decision attribute (horizontal 

displacement) were considered in modeling a binary class rough set machine learning. There are eighteen rules 

generated in the form of if-then statements. The decision support system reveals that the severity of lateral 

spreading clearly comes from the combinations of relevant attributes. Moreover, five clusters of rules were also 

observed from the generated rules. Useful information regarding the different lateral spreading case scenarios 

emerges from the results. Statistical validation and interpretation of rules using principles of soil mechanics and 

related studies were also performed. The output of this study, a decision support system, can be very useful to 

decision-makers and planners in understanding the lateral spreading phenomena. Recommendations for the model 

improvement and for further studies were discussed.   
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1. INTRODUCTION 

 

Lateral spreading is the finite, lateral movement 

of gently to steeply sloping, saturated soil deposits 

caused by earthquake-induced liquefaction [1]. 

Because this deformation involves the lateral 

movement of specific soil layers, underground 

structures can experience great stress or pressure that 

could lead to cracks, breakage, and even destruction 

of roads, pipelines, bridges, and pile foundations. 

Liquefaction-induced lateral spreading is one of 

the consequences of ground shaking in earthquake-

prone regions. Seismic hazards are caused mainly by 

uncontrollable factors such as the magnitude of 

ground shaking, the location and orientation of the 

faults, and the height of waves. However, other 

nontectonic effects like liquefaction, slope failures, 

and landslides can be highly dependent on the soil’s 

dynamic behavior and its conditions. A study on the 

devastating effects of recent earthquakes in a seismic-

prone city in Turkey revealed massive damages such 

as collapse, tilting, or sinking of buildings and 

deformations of train tracks caused by ground 

behavior such as surface deformation like soil 

liquefaction and lateral spreading, and loss of bearing 

capacity due to decrease in strength [2]. The field 

observations carried out in their study revealed that 

soils, even when not meeting the recommended 

liquefiable criteria, still experienced liquefaction and 

deformation. This suggests existing uncertainties and 

limitations in some liquefaction analysis methods that 

require further investigation. Another study that 

focuses on the effects of nontectonic conditions 

highlights the relationship between depositional 

environment-specific geologic factors and lateral 

spreading by means of simple fluvial geomorphic 

facies models, geotechnical engineering data (e.g., 

Cone Penetration Test data), and geospatial analytics 

[3]. Indeed, lateral spreading is a complex 

phenomenon that should be analyzed from various 

perspectives, from seismic and geotechnical to 

geologic and geomorphic complexities. 

To address the impacts of lateral spreading, 

various methods and analyses were formulated. 

Generally, there are four groups of methods for 

analyzing ground deformation caused by 

liquefaction-induced lateral spreading: simplified 

analytical methods, numerical methods, empirical 

methods based on case histories, and laboratory and 

centrifuge studies [4]. The lateral spreading 

prediction model developed by a group of researchers 

combined a simplified analytical method (i.e., the 

Newmark sliding block method) and the seismic 

database using a neural network [5]. Moreover, 

another study applies numerical simulations to 

evaluate the performance of sheet-pile retaining 

structures under liquefaction-induced lateral 

spreading [6]. In special and large projects, a more 

tedious analysis, such as experiments, may be 

required to investigate the effects of lateral spreading. 

One study conducted two large-scale shake table 

experiments to investigate the seismic pile group-
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bridge soil system failure mechanisms and study the 

role of soil crust in lateral spreading caused by 

liquefaction [7]. Lastly, a team of researchers used the 

results from a large and reliable database of 

centrifuge models and element tests to perform 

validation exercises on a numerical model that can 

simulate the lateral spreading phenomenon [8]. 

Currently, there is no widely accepted method for 

evaluating lateral displacements. The most common 

approach in estimating liquefaction-induced 

horizontal displacement is the application of 

empirical methods such as the multilinear regression 

of measurable parameters from the compilation of 

lateral spreading database [9].  

Recent studies further improved these models by 

applying artificial intelligence (AI) and machine 

learning (ML) in producing liquefaction and lateral 

spreading predictive models [10,11]. A certain study 

used the 2011 Christchurch earthquake database and 

applied random forest machine learning for the binary 

classification problem to identify lateral spread 

occurrence and a multiclass classification problem to 

predict the amount of displacement [12]. Another 

study proposes a Gaussian process regression model 

based on 247 post-liquefaction in-situ free face 

ground conditions case studies for analyzing 

liquefaction-induced lateral displacement [13]. 

Although ML translates patterns datasets into 

models with very high accuracy, scientists warn of the 

limitations of black-box models, especially in 

decision-making [14]. Useful and interpretable 

information, such as cause and effect analysis, must 

be available to decision-makers to understand the 

scenarios and minimize the adverse consequences. 

Also, some researchers reviewed 75 publications 

about the application of artificial intelligence (AI) in 

predicting liquefaction [15]. They found five general 

recurrent shortcomings of AI models and the reasons 

why these models are ignored: (1) failure to test 

against state-of-practice liquefaction models, (2) 

departure from best practices in model development 

and performance evaluation, (3) use of AI in the ways 

that may not be useful, (4) the “woo-woo” effect (i.e., 

mathematically dense or potentially 

incomprehensible papers), and (5) failure to provide 

the model.  Similarly, overfitting and hesitancy of 

practical users in the ML models pose a challenge to 

researchers to explore more interpretable and 

knowledge-based decision support systems [16]. To 

overcome these challenges, it is imperative to develop 

AI models that are comprehensible and comparable to 

the existing state-of-practice methods and models that 

can beat overfitting. As observed in a study, AI or ML 

is best where predictors and a target response are 

correlated but not mechanistically linked or where 

predictors and response should seemingly be 

explainable by mechanics, but those mechanics have 

not yet been well modeled [15]. 

This study explored the application of 

interpretable machine learning to uncover valuable 

information from the existing database of 

liquefaction-induced lateral displacements. It also 

searched for patterns and relationships among the 

parameters. Lastly, it aimed to bridge the empirical or 

data-driven and the theory-driven domains by 

validating the results of ML using principles of soil 

mechanics and related studies. 

 

2. RESEARCH SIGNIFICANCE 

 

This research addresses the existing gaps in the 

literature, including interpretability and usefulness of 

the empirical models. The output of this study, a rule-

based decision support system, can be very useful to 

decision-makers and planners in understanding the 

lateral spreading phenomenon. The rule-based system 

can also help engineers, especially geotechnical 

engineers, visualize which parameters really affect 

the severity of lateral displacements. For researchers, 

some rules and patterns may uncover novel insights 

into the complex nature of soil liquefaction that can 

lead to future studies. 

 

3. METHODS  

 

The general research flow is shown in Fig.1. From 

the database, seven conditional attributes and one 

decision attribute were selected. Binary discretization 

using the median value was used to categorize the 

attributes into two classes, as shown in Table 2. 

ROSE 2.0 software [17], a rough set-based tool, was 

used to process the data. Validation statistics were 

also generated from the software. This study 

generated interpretable rules in terms of IF-THEN 

statements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig.1 General framework of the study.  
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3.1 Lateral Spreading Database 

 

There are 247 free-face lateral spreading cases 

[9,18,19] from 10 earthquake events, as shown in 

Table 1. The field names, definitions, as well as the 

discretization and frequency of the variables, are 

shown in Table 2. The decision attribute (output) is 

the observed lateral spread displacement (DH).  

 

Table 1 Lateral spreading database and references 

 

Earthquake Event Number of Sites References 

1906 San Francisco 2 [9] 

1964 Alaska 4 [9] 

1964 Niigata 139 [9] 

1971 San Fernando 18 [9] 

1979 Imperial Valley 29 [9] 

1987 Superstition Hills 6 [9] 

1989 Loma Prieta 2 [9] 

1995 Hyogo-Ken Nanbu 19 [9] 

1999 Chi-Chi 26 [18] 

1999 Kocaeli 2 [19] 

 

3.2 Rough Set Machine Learning 

 

Rough set theory (RST) was developed by Pawlak 

(1982) to consider the vagueness and uncertainty in 

knowledge systems [20].  

Typically, knowledge is represented in the form 

of a decision table containing rows and columns of 

attributes. Attributes can be classified as conditions 

and decisions. Each row in a decision table can be 

represented in the form IF (conditions) … THEN 

(decision). An inductive process is performed to 

generate number rules using the data from a decision 

table. 

RST has been successfully used for various 

machine learning applications such as clustering, 

feature selection, and rule induction. For this study, 

rule induction was performed in the form of IF-THEN 

statements.  Validation statistics that were used are as 

follows: support, strength, certainty factor, and 

coverage. Supports are the observations that follow a 

certain rule. Strength is the ratio of supports and the 

total number of observations in the database. 

Certainty factor is the probability that an observation 

(case history) will be classified in decision class if it 

exhibits the characteristics or the conditions of a 

certain rule. The coverage factor provides 

information about the percentage of examples in a 

decision class that have been classified because of a 

particular decision rule. 

Table 3 shows the decision table used in this study. 

Two categories were used: high and low. This 

decision table was inputted into ROSE 2.0 to generate 

significant rules and validation statistics. 

Table 2 Field names, attributes, and discretization of 

variables.  

 

Field 

Name 
Definition 

Binary Discretization 

Low 

value 
Count 

High 

value 
Count 

M 

Earthquake 

moment 
magnitude 

[6.4, 

7.5) 
76 

[7.5, 

9.2] 
171 

R 

Epicentral 

distance 
(km) 

[0.5, 

21) 
94 

[21, 

100] 
153 

Amax 

Peak ground 

acceleration 
(g) 

[0.15, 

0.32) 
14 

[0.32, 

0.68] 
233 

FC 

Average 

fines content 
of the 

liquefiable 
soil (%) 

[1, 13) 110 [13, 70] 137 

D50 

Mean grain 

size of 
liquefiable 

soil (mm) 

[0.04, 
0.25) 

110 
[0.25, 
7.7] 

137 

T 

Cumulative 
thickness of 

saturated 

layers with 
adjusted SPT 

N-value less 

than 15 

[0.2, 

8.6) 
115 

[8.6, 

16.7] 
132 

W 
Free-face 

ratio 

[1.64, 

7.89) 
123 

[7.89, 

57.7] 
124 

DH 

Lateral 

spread 

displacement 

(0, 

1.56) 
122 

[1.56, 

10.16] 
125 

 

Table 3 Decision table used in this study. 

 

No. M R Amax FC D50 T W DH 

1 H H L H H L H H 

2 H H H H H H L L 

3 H H H L H H H H 

… … … … ... ... ... ... ... 

247 H H H L H H L H 

Note: H = High, L=Low 

 

4. RESULTS 

 

Table 4 presents 18 rules that were extracted from 

the decision table of the lateral spreading database. 

Both “Low” and “High” horizontal displacement 

decision classes produced nine rules, respectively. 

Rule 10 can be interpreted as follows: If the 

earthquake magnitude is high, the fines content is 

high, the mean grain size is high, and the thickness is 

low, then the horizontal displacement is high. Blank 

conditional attributes in Table 4 are arbitrary and not 

significant in a particular rule; that is, these variables 

may either be high or low. 

Important information can be deduced from this 

set of generated rules. From rules 10 – 18, high values 

of free-face ratio obviously led to higher lateral 
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spread displacement. This is expected because a 

higher free face leads to relief of confining stresses. 

Similarly, the thickness of liquefiable soils varies 

directly with the severity of lateral spread. However, 

a few cases revealed that a soil profile with an 

accumulative thickness of liquefiable soil of as thin 

as 3.4m could produce severe lateral spread 

displacement, as depicted by rules 14 and 18. 

Previous studies suggest that this may be an 

indication of the possible presence of cyclic softening 

of fine-grained soils in combination with liquefaction 

or the possibility of higher inertial force over the 

liquefied soil that triggers larger horizontal 

displacement [21,22]. On the other hand, rules 1-9 

under the decision class of low horizontal 

displacement reveal that earthquake magnitudes as 

low as 6.6 can still produce lateral spreading. 

Meanwhile, Table 5 shows the validation statistics 

for each rule. Rules 13 and 17 show the highest 

number of supports. These rules were backed by 32 

observations from the 1964 Niigata earthquake. Rule 

13 implies that a combination of high values of 

attributes such as earthquake magnitude, mean grain 

size, thickness of liquefiable soil, and free-face ratio 

will lead to high lateral spread displacement. These 

sets of rules emphasize that both seismic loads and 

site characteristics are important in creating large 

lateral displacements. 

Moreover, it is notable that the certainty factor of 

100% is recorded for all the 18 rules. This implies that 

the observations satisfying the conditions of a certain 

rule are all the same observations that satisfy the 

decision of the decision rule.  From a logical point of 

view, the certainty factor can be interpreted as a 

degree of truth of the decision rule, i.e., how strongly 

the decision can be trusted in view of the data [20].   

5. DISCUSSION 

 

From the generated rules in Table 4, five clusters 

of rules can be observed, as shown in Table 6. Each 

cluster is represented by a set of observations from 

respective earthquake events.  Clusters A and B are 

the rules from the high-horizontal-displacement 

decision class, while clusters C, D, and E are the rules 

from the low-horizontal-displacement decision class.  

Moreover, box and whisker plots of some 

attributes are shown in Fig. 2. These plots give 

insights into the distribution of data for each cluster. 

Fig. 2c reveals that lateral spreading can occur from 

as near as 0.5km to as far as 60km from the epicenter 

of the earthquake. On the other hand, Fig.2h 

illustrates the big difference between the severity of 

lateral spreading in clusters A and B from clusters C, 

D, and E. The recorded horizontal displacements of 

the severe lateral spreading (clusters A and B) 

average six times those displacements recorded in 

clusters C, D, and E. 

Apparently, higher earthquake magnitude in 

combination with higher epicentral distance produces 

greater lateral spreads, as shown by clusters A and B 

in Fig. 2. This can be attributed to the correlation of 

magnitude to the duration of an earthquake. 

Moreover, the effect of peak ground acceleration has 

no greater significance to the severity of lateral 

spreads, as shown in Fig. 2b. It seems that 

liquefaction-induced lateral spreading can be more 

devastating when the ground shaking is longer (as 

depicted by the earthquake magnitude) than when the 

peak ground acceleration is higher. Another 

important observation is the relationship between the 

moment magnitude and the thickness of the 

liquefiable layer. 

 

Table 4 Generated rules from the lateral spreading decision table using rough set machine learning. 

 

Rule 
M 

(magnitude) 

R 

(epicentral 
distance) 

Amax 

(maximum 
acceleration) 

FC (fines 

content) 

D50 (mean 

grain size) 

T 

(thickness) 

W (free 

face ratio) 

DH 

(horizontal 
displacement) 

1 Low High           Low 

2 Low   Low         Low 

3 Low     High High     Low 

4 Low     High   High   Low 

5   Low   High High     Low 

6   Low   High   High   Low 

7 High       Low Low Low Low 

8   High High   Low Low   Low 

9   High     Low Low Low Low 

10 High     High High Low   High 

11 High     High High   High High 

12 High     Low   High High High 

13 High       High High High High 

14   High   High High Low   High 

15   High   High High   High High 

16   High   Low   High High High 

17   High     High High High High 

18       High High Low High High 
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Table 5 Validation statistics for the generated rules. 

 
Rule Support Strength (%) Certainty (%) Coverage (%) Supporting Events and Number of Sites 

13 32 12.96 100 25.60 1964 Niigata – 32 

17 32 12.96 100 25.60 1964 Niigata – 32 

12 26 10.53 100 20.80 1964 Niigata – 26 

16 26 10.53 100 20.80 1964 Niigata – 26 

7 13 5.26 100 10.66 
1964 Niigata – 10 
1999 Chi-Chi – 3 

8 12 4.86 100 9.84 1964 Niigata – 12 

11 12 4.86 100 9.60 
1964 Niigata – 9 
1964 Alaska – 2  

1906 San Francisco – 1 

15 12 4.86 100 9.60 

1964 Niigata – 9 

1964 Alaska – 2  
1906 San Francisco – 1 

9 11 4.45 100 9.02 
1964 Niigata – 10 

1987 Superstition Hills – 1  

3 9 3.64 100 7.38 
1995 Hyogo-Ken Nanbu – 8  

1999 Kocaeli – 1 

5 9 3.64 100 7.38 
1995 Hyogo-Ken Nanbu – 8  

1999 Kocaeli – 1 

1 8 3.24 100 6.56 
1987 Superstition Hills – 6  

1989 Loma Prieta – 2  

2 8 3.24 100 6.56 
1987 Superstition Hills – 6  

1989 Loma Prieta – 2 

4 8 3.24 100 6.56 1995 Hyogo-Ken Nanbu – 8 

6 8 3.24 100 6.56 1995 Hyogo-Ken Nanbu – 8 

10 6 2.43 100 4.80 
1964 Niigata – 3 
1964 Alaska – 2 

1906 San Francisco – 1 

14 6 2.43 100 4.80 

1964 Niigata – 3 

1964 Alaska – 2 
1906 San Francisco – 1 

18 5 2.02 100 4.00 

1964 Niigata – 2 

1964 Alaska – 2 
1906 San Francisco – 1 

 

Fig. 2a and 2f reveal that higher lateral spread 

displacement is expected when longer duration due to 

higher magnitude and higher inertial force caused by 

thicker liquefiable soils simultaneously exist. 

Conversely, if both or one of these two parameters 

exist in a lower range, low horizontal displacement is 

also, expected as represented by clusters C, D, and E. 

 

Table 6 Clustering of rules. 

 

Cluster Rule Set 
Representative Earthquake 

Events and Number of Sites 

A {12, 13, 16, 17} 1964 Niigata – 32 

B 
{10, 11, 14, 15, 

18} 

1964 Niigata – 9 

1964 Alaska – 2 
1906 San Francisco – 1 

C {3, 4, 5, 6} 
1995 Hyogo-Ken Nanbu – 8  

1999 Kocaeli – 1 

D {7, 8, 9} 
1964 Niigata – 12 

1987 Superstition Hills – 1 

1999 Chi-Chi – 3 

E {1, 2} 
1987 Superstition Hills – 6  

1989 Loma Prieta – 2 

 

Another observation is the pattern of fines 

content of liquefiable soils with respect to the five 

clusters. From Fig. 2d and Fig. 2h, it can be observed 

that as the fines content increases, the lateral spread 

displacement decreases. This observation needs more 

validation for future studies. 

As for the individual examination of each array 

of rules, cluster A can be summarized as the set of 

rules that can cause severe (high) horizontal 

displacements caused by large magnitude 

earthquakes and high epicentral distance. From Fig. 

2d and 2e, the liquefiable soil types fall under the 

USCS designation SP-SM (i.e., sand, medium to fine 

sand, and sand with some silt). The accumulated 

thickness of liquefiable soils ranges from 8.6 to 

16.7m, and there are high free-face ratios of 7.89 to 

57.7%. These kinds of lateral spread scenarios were 

prevalent in the 1964 Niigata earthquake.  

Meanwhile, rules from cluster B present slightly 

varied observations. While the same seismic load 

characteristics were observed, variations in the 

geotechnical and thickness attributes were 

discovered. In the rule set of cluster B, fines content 

in the liquefiable soils was higher than in the rules in 

cluster A. Moreover, thicknesses of liquefiable soils 

in cluster B were generally thinner and ranged from 

3.4 to 12.6m. The presence of interbedded fined-

grained soils, the possibility of cyclic softening, and 

the effects of overburden pressure may contribute to 

the severe lateral spread observed in these sites.  
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Fig.2 Box and whisker plots of various lateral spreading attributes with respect to the five clusters of rules from 

the machine learning simulation. 
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On the other hand, clusters C and D prove that 

the absence or the reduction of one parameter affects 

the output. This proves that seismic load (magnitude, 

epicentral distance, and maximum acceleration) and 

site (geotechnical, thickness, and free-face ratio) 

conditions are both responsible for the severity of  

lateral spread displacement. Cluster C rules generally 

imply that lower seismic loads can still produce 

lateral spread when the soil and site conditions are 

highly susceptible to spreading. Conversely, cluster D 

rules seem to remind the engineers that even in the 

less susceptible site conditions for liquefaction and 

lateral spreading, if there is a significant seismic load 

present, lateral spreading can still happen. 

Lastly, cluster E rules were greatly influenced by 

the high earthquake magnitude and high free-face 

ratios. The wide range of fines content and the 

presence of a thinner liquefiable layer can also affect 

the observed minimal lateral spread displacements in 

this cluster. 

In summary, these rules and information that 

were deduced from the database can be beneficial to 

engineers and planners in mitigating the effects of 

liquefaction-induced lateral spreading. However, as 

with other machine learning models, these rules are 

data-driven, and so these rules are bounded by the 

values in the database. Nevertheless, the plausibility 

of the rules and clusters developed regarding soil 

mechanics and related studies affirm their 

interpretability and usefulness.  

 

6. CONCLUSIONS 

 

An interpretable machine learning technique was 

applied to the lateral spreading case history database 

using rough set theory. Unlike other ML models in 

lateral spreading prediction, which yields a single 

value parameter, the rule-based system developed in 

this study uncovered significant rules and clustering 

that illustrate various lateral spreading scenarios 

considering combinations of conditional attributes. 

This gives engineers and decision-makers a better 

insight and understanding of lateral spreading 

mechanics and behavior. 

Significant findings of this study are the following. 

The combination of parameters and conditions, as 

shown by the generated rules, presents valuable 

insights into the occurrence of liquefaction-induced 

lateral spreading. Rule 10 states that even if the 

thickness of liquefiable soils is less than 8.6m, if the 

earthquake magnitude is from 7.5 to 9.2, the fines 

content is from 13 to 70%, and the mean grain size is 

from 0.25 to 7.7mm, then a lateral displacement to as 

high as 10.16m is possible to occur. Moreover, five 

clusters of rules were observed from the generated 

rule set. Some patterns that arouse include: (1) the 

combination of higher magnitude and longer 

epicentral distance are more likely to produce higher 

lateral spreads, (2) lateral spreading is more affected 

by the duration of the shaking than the highest 

amplitude of the shaking, and (3) higher lateral spread 

displacement is expected when longer duration due to 

higher magnitude and higher inertial force caused by 

thicker liquefiable soils simultaneously exist. It was 

also observed that as the fines content of the 

liquefiable soils increases, the horizontal 

displacement decreases. This is an insight that could 

be explored more in the future. 

While the present work is data-driven and 

machine-learning-dependent, the bridging of 

empirical and theoretical domains can be observed in 

the interpretation of rules and clusters. However, 

recommendations for further studies include (1) 

introduction of other relevant conditional or decision 

attributes in the decision table (e.g., earthquake 

duration, capping layer thickness and depth, and 

liquefaction manifestations), (2) application of rough 

set machine learning to other decision support 

engineering problems (e.g., liquefaction, landslide, 

construction management, water resources), and (3) 

development of sound rule-based predictive models.  
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