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ABSTRACT: Lateral spreading is one of the most common secondary earthquake effects that cause severe
damage to structures and lifelines. While there is no widely accepted approach to predicting lateral spread
displacements, challenges to the existing empirical and machine learning models include obscurity, overfitting,
and reluctance of practical users. This study reveals patterns in the available lateral displacement database,
identifying rules that describe the significant relationships among various attributes that led to lateral spreading.
Seven conditional attributes (earthquake magnitude, epicentral distance, maximum acceleration, fines content,
mean grain size, thickness of liquefiable layer, and free-face ratio) and one decision attribute (horizontal
displacement) were considered in modeling a binary class rough set machine learning. There are eighteen rules
generated in the form of if-then statements. The decision support system reveals that the severity of lateral
spreading clearly comes from the combinations of relevant attributes. Moreover, five clusters of rules were also
observed from the generated rules. Useful information regarding the different lateral spreading case scenarios
emerges from the results. Statistical validation and interpretation of rules using principles of soil mechanics and
related studies were also performed. The output of this study, a decision support system, can be very useful to
decision-makers and planners in understanding the lateral spreading phenomena. Recommendations for the model
improvement and for further studies were discussed.
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1. INTRODUCTION require further investigation. Another study that
focuses on the effects of nontectonic conditions

Lateral spreading is the finite, lateral movement highlights the relationship between depositional

of gently to steeply sloping, saturated soil deposits environment-specific geologic factors and lateral
caused by earthquake-induced liquefaction [1]. spreading by means of simple fluvial geomorphic
Because this deformation involves the lateral facies models, geotechnical engineering data (e.g.,
movement of specific soil layers, underground Cone Penetration Test data), and geospatial analytics
structures can experience great stress or pressure that [3]. Indeed, lateral spreading is a complex
could lead to cracks, breakage, and even destruction phenomenon that should be analyzed from various
of roads, pipelines, bridges, and pile foundations. perspectives, from seismic and geotechnical to

Liquefaction-induced lateral spreading is one of geologic and geomorphic complexities.

the consequences of ground shaking in earthquake- To address the impacts of lateral spreading,
prone regions. Seismic hazards are caused mainly by various methods and analyses were formulated.
uncontrollable factors such as the magnitude of Generally, there are four groups of methods for
ground shaking, the location and orientation of the analyzing ground deformation caused by
faults, and the height of waves. However, other liquefaction-induced lateral spreading: simplified
nontectonic effects like liquefaction, slope failures, analytical methods, numerical methods, empirical
and landslides can be highly dependent on the soil’s methods based on case histories, and laboratory and
dynamic behavior and its conditions. A study on the centrifuge studies [4]. The lateral spreading
devastating effects of recent earthquakes in a seismic- prediction model developed by a group of researchers
prone city in Turkey revealed massive damages such combined a simplified analytical method (i.e., the
as collapse, tilting, or sinking of buildings and Newmark sliding block method) and the seismic
deformations of train tracks caused by ground database using a neural network [5]. Moreover,
behavior such as surface deformation like soil another study applies numerical simulations to
liquefaction and lateral spreading, and loss of bearing evaluate the performance of sheet-pile retaining
capacity due to decrease in strength [2]. The field structures  under liquefaction-induced lateral
observations carried out in their study revealed that spreading [6]. In special and large projects, a more
soils, even when not meeting the recommended tedious analysis, such as experiments, may be
liquefiable criteria, still experienced liquefaction and required to investigate the effects of lateral spreading.
deformation. This suggests existing uncertainties and One study conducted two large-scale shake table
limitations in some liquefaction analysis methods that experiments to investigate the seismic pile group-
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bridge soil system failure mechanisms and study the
role of soil crust in lateral spreading caused by
liquefaction [7]. Lastly, a team of researchers used the
results from a large and reliable database of
centrifuge models and element tests to perform
validation exercises on a numerical model that can
simulate the lateral spreading phenomenon [8].

Currently, there is no widely accepted method for
evaluating lateral displacements. The most common
approach in  estimating liquefaction-induced
horizontal displacement is the application of
empirical methods such as the multilinear regression
of measurable parameters from the compilation of
lateral spreading database [9].

Recent studies further improved these models by
applying artificial intelligence (Al) and machine
learning (ML) in producing liquefaction and lateral
spreading predictive models [10,11]. A certain study
used the 2011 Christchurch earthquake database and
applied random forest machine learning for the binary
classification problem to identify lateral spread
occurrence and a multiclass classification problem to
predict the amount of displacement [12]. Another
study proposes a Gaussian process regression model
based on 247 post-liquefaction in-situ free face
ground conditions case studies for analyzing
liquefaction-induced lateral displacement [13].

Although ML translates patterns datasets into
models with very high accuracy, scientists warn of the
limitations of black-box models, especially in
decision-making [14]. Useful and interpretable
information, such as cause and effect analysis, must
be available to decision-makers to understand the
scenarios and minimize the adverse consequences.
Also, some researchers reviewed 75 publications
about the application of artificial intelligence (Al) in
predicting liquefaction [15]. They found five general
recurrent shortcomings of Al models and the reasons
why these models are ignored: (1) failure to test
against state-of-practice liquefaction models, (2)
departure from best practices in model development
and performance evaluation, (3) use of Al in the ways
that may not be useful, (4) the “woo-woo” effect (i.e.,
mathematically dense or potentially
incomprehensible papers), and (5) failure to provide
the model. Similarly, overfitting and hesitancy of
practical users in the ML models pose a challenge to
researchers to explore more interpretable and
knowledge-based decision support systems [16]. To
overcome these challenges, it is imperative to develop
Al models that are comprehensible and comparable to
the existing state-of-practice methods and models that
can beat overfitting. As observed in a study, Al or ML
is best where predictors and a target response are
correlated but not mechanistically linked or where
predictors and response should seemingly be
explainable by mechanics, but those mechanics have
not yet been well modeled [15].

This study explored the

application  of
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interpretable machine learning to uncover valuable
information from the existing database of
liquefaction-induced lateral displacements. It also
searched for patterns and relationships among the
parameters. Lastly, it aimed to bridge the empirical or
data-driven and the theory-driven domains by
validating the results of ML using principles of soil
mechanics and related studies.

2. RESEARCH SIGNIFICANCE

This research addresses the existing gaps in the
literature, including interpretability and usefulness of
the empirical models. The output of this study, a rule-
based decision support system, can be very useful to
decision-makers and planners in understanding the
lateral spreading phenomenon. The rule-based system
can also help engineers, especially geotechnical
engineers, visualize which parameters really affect
the severity of lateral displacements. For researchers,
some rules and patterns may uncover novel insights
into the complex nature of soil liquefaction that can
lead to future studies.

3. METHODS

The general research flow is shown in Fig.1. From
the database, seven conditional attributes and one
decision attribute were selected. Binary discretization
using the median value was used to categorize the
attributes into two classes, as shown in Table 2.
ROSE 2.0 software [17], a rough set-based tool, was
used to process the data. Validation statistics were
also generated from the software. This study
generated interpretable rules in terms of IF-THEN

statements.

Lateral Spreading Cases
Database

y

Binary Discretization of Attributes

v

Rule Generation Using ROSE 2.0 Software

Validation
Statistics

Interpretation of Rules

Fig.1 General framework of the study.
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3.1 Lateral Spreading Database

There are 247 free-face lateral spreading cases
[9,18,19] from 10 earthquake events, as shown in
Table 1. The field names, definitions, as well as the
discretization and frequency of the variables, are
shown in Table 2. The decision attribute (output) is
the observed lateral spread displacement (Dw).

Table 1 Lateral spreading database and references

Earthquake Event Number of Sites References
1906 San Francisco 2 [9]
1964 Alaska 4 [l
1964 Niigata 139 [l
1971 San Fernando 18 [l
1979 Imperial Valley 29 ]|
1987 Superstition Hills 6 [l
1989 Loma Prieta 2 [l
1995 Hyogo-Ken Nanbu 19 [l
1999 Chi-Chi 26 [18]
1999 Kocaeli 2 [19]

3.2 Rough Set Machine Learning

Rough set theory (RST) was developed by Pawlak
(1982) to consider the vagueness and uncertainty in
knowledge systems [20].

Typically, knowledge is represented in the form
of a decision table containing rows and columns of
attributes. Attributes can be classified as conditions
and decisions. Each row in a decision table can be
represented in the form IF (conditions) ... THEN
(decision). An inductive process is performed to
generate number rules using the data from a decision
table.

RST has been successfully used for various
machine learning applications such as clustering,
feature selection, and rule induction. For this study,
rule induction was performed in the form of IF-THEN
statements. Validation statistics that were used are as
follows: support, strength, certainty factor, and
coverage. Supports are the observations that follow a
certain rule. Strength is the ratio of supports and the
total number of observations in the database.
Certainty factor is the probability that an observation
(case history) will be classified in decision class if it
exhibits the characteristics or the conditions of a
certain rule. The coverage factor provides
information about the percentage of examples in a
decision class that have been classified because of a
particular decision rule.

Table 3 shows the decision table used in this study.

Two categories were used: high and low. This
decision table was inputted into ROSE 2.0 to generate
significant rules and validation statistics.
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Table 2 Field names, attributes, and discretization of
variables.

Binary Discretization

Field Definition i
Name Low oot 19 count
value value
Earthquake
M moment [7654) 76 [9725] 171
magnitude ' '
Epicentral
R distance [SB 94 1[%%] 153
(km)
Peak ground
- [0.15, [0.32,
Amax acceleration 0.32) 14 0.68] 233
()
Average
fines content
FC of the [1,13) 110 [13, 70] 137
liquefiable
soil (%)
Mean grain
size of [0.04, [0.25,
Do jiquefiable 025y 0 77 ¥
soil (mm)
Cumulative
thickness of
saturated
T layers with [8062) 115 {2% 132
adjusted SPT ’ ’
N-value less
than 15
Free-face [1.64, [7.89,
w ratio 7.89) 123 57.7] 124
Lateral
Dy spread 1(26) 122 {(1)?2] 125
displacement ) )
Table 3 Decision table used in this study.
No. M R Amx  FC Dso T W Dy
1 H H L L H
2 H H H H L
3 H H H H H

247 H H H L H H L H

Note: H = High, L=Low
4. RESULTS

Table 4 presents 18 rules that were extracted from
the decision table of the lateral spreading database.
Both “Low” and “High” horizontal displacement
decision classes produced nine rules, respectively.
Rule 10 can be interpreted as follows: If the
earthquake magnitude is high, the fines content is
high, the mean grain size is high, and the thickness is
low, then the horizontal displacement is high. Blank
conditional attributes in Table 4 are arbitrary and not
significant in a particular rule; that is, these variables
may either be high or low.

Important information can be deduced from this
set of generated rules. From rules 10 — 18, high values
of free-face ratio obviously led to higher lateral
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spread displacement. This is expected because a
higher free face leads to relief of confining stresses.
Similarly, the thickness of liquefiable soils varies
directly with the severity of lateral spread. However,
a few cases revealed that a soil profile with an
accumulative thickness of liquefiable soil of as thin
as 3.4m could produce severe lateral spread
displacement, as depicted by rules 14 and 18.
Previous studies suggest that this may be an
indication of the possible presence of cyclic softening
of fine-grained soils in combination with liquefaction
or the possibility of higher inertial force over the
liquefied soil that triggers larger horizontal
displacement [21,22]. On the other hand, rules 1-9
under the decision class of low horizontal
displacement reveal that earthquake magnitudes as
low as 6.6 can still produce lateral spreading.

Meanwhile, Table 5 shows the validation statistics
for each rule. Rules 13 and 17 show the highest
number of supports. These rules were backed by 32
observations from the 1964 Niigata earthquake. Rule
13 implies that a combination of high values of
attributes such as earthquake magnitude, mean grain
size, thickness of liquefiable soil, and free-face ratio
will lead to high lateral spread displacement. These
sets of rules emphasize that both seismic loads and
site characteristics are important in creating large
lateral displacements.

Moreover, it is notable that the certainty factor of
100% is recorded for all the 18 rules. This implies that
the observations satisfying the conditions of a certain
rule are all the same observations that satisfy the
decision of the decision rule. From a logical point of
view, the certainty factor can be interpreted as a
degree of truth of the decision rule, i.e., how strongly
the decision can be trusted in view of the data [20].

5. DISCUSSION

From the generated rules in Table 4, five clusters
of rules can be observed, as shown in Table 6. Each
cluster is represented by a set of observations from
respective earthquake events. Clusters A and B are
the rules from the high-horizontal-displacement
decision class, while clusters C, D, and E are the rules
from the low-horizontal-displacement decision class.

Moreover, box and whisker plots of some
attributes are shown in Fig. 2. These plots give
insights into the distribution of data for each cluster.
Fig. 2c reveals that lateral spreading can occur from
as near as 0.5km to as far as 60km from the epicenter
of the earthquake. On the other hand, Fig.2h
illustrates the big difference between the severity of
lateral spreading in clusters A and B from clusters C,
D, and E. The recorded horizontal displacements of
the severe lateral spreading (clusters A and B)
average six times those displacements recorded in
clusters C, D, and E.

Apparently, higher earthquake magnitude in
combination with higher epicentral distance produces
greater lateral spreads, as shown by clusters A and B
in Fig. 2. This can be attributed to the correlation of
magnitude to the duration of an earthquake.
Moreover, the effect of peak ground acceleration has
no greater significance to the severity of lateral
spreads, as shown in Fig. 2b. It seems that
liquefaction-induced lateral spreading can be more
devastating when the ground shaking is longer (as
depicted by the earthquake magnitude) than when the
peak ground acceleration is higher. Another
important observation is the relationship between the
moment magnitude and the thickness of the
liquefiable layer.

Table 4 Generated rules from the lateral spreading decision table using rough set machine learning.

Rule M (epicF;ntraI (m£<?ra1§um FC (fines Dso (mean T W (free (horliazgntal
(magnitude) distance) acceleration) content) grain size) (thickness) face ratio) displacement)
1 Low High Low
2 Low Low Low
3 Low High High Low
4 Low High High Low
5 Low High High Low
6 Low High High Low
7 High Low Low Low Low
8 High High Low Low Low
9 High Low Low Low Low
10 High High High Low High
11 High High High High High
12 High Low High High High
13 High High High High High
14 High High High Low High
15 High High High High High
16 High Low High High High
17 High High High High High
18 High High Low High High
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Table 5 Validation statistics for the generated rules.

Rule Support Strength (%) Certainty (%) Coverage (%) Supporting Events and Number of Sites
13 32 12.96 100 25.60 1964 Niigata — 32
17 32 12.96 100 25.60 1964 Niigata — 32
12 26 10.53 100 20.80 1964 Niigata — 26
16 26 10.53 100 20.80 1964 Niigata — 26
1964 Niigata — 10
7 13 5.26 100 10.66 1999 Chig-Chi 3
8 12 4.86 100 9.84 1964 Niigata — 12
1964 Niigata— 9
11 12 4.86 100 9.60 1964 Alaska —2
1906 San Francisco — 1
1964 Niigata— 9
15 12 4.86 100 9.60 1964 Alaska — 2
1906 San Francisco — 1
1964 Niigata — 10
9 1 445 100 9.02 1987 Supersti%ion Hills — 1
1995 Hyogo-Ken Nanbu — 8
8 9 3.64 100 7.38 1999 Kocaeli — 1
1995 Hyogo-Ken Nanbu — 8
5 9 3.64 100 7.38 1999 Kocaeli — 1.
1987 Superstition Hills — 6
! 8 3.24 100 6:56 1989 Loma Prieta - 2
1987 Superstition Hills — 6
2 8 324 100 656 1989 Loma Prieta 2
4 8 3.24 100 6.56 1995 Hyogo-Ken Nanbu — 8
6 8 3.24 100 6.56 1995 Hyogo-Ken Nanbu — 8
1964 Niigata — 3
10 6 243 100 4.80 1964 Alaska — 2
1906 San Francisco — 1
1964 Niigata — 3
14 6 243 100 4.80 1964 Alaska -2
1906 San Francisco — 1
1964 Niigata — 2
18 5 2.02 100 4.00 1964 Alaska -2

1906 San Francisco — 1

Fig. 2a and 2f reveal that higher lateral spread
displacement is expected when longer duration due to
higher magnitude and higher inertial force caused by
thicker liquefiable soils simultaneously exist.
Conversely, if both or one of these two parameters
exist in a lower range, low horizontal displacement is
also, expected as represented by clusters C, D, and E.

Table 6 Clustering of rules.

Representative Earthquake
Events and Number of Sites

1964 Niigata — 32
1964 Niigata—9

Cluster Rule Set

A {12, 13, 16, 17}

g 10 111é}14' 15, 1964 Alaska — 2
1906 San Francisco — 1
1995 Hyogo-Ken Nanbu — 8
¢ {3,4,5,6} 1999 Kocaeli — 1
1964 Niigata — 12
D {7,8,9} 1987 Superstition Hills — 1
1999 Chi-Chi -3
E {12} 1987 Superstition Hills — 6

1989 Loma Prieta — 2

Another observation is the pattern of fines
content of liquefiable soils with respect to the five
clusters. From Fig. 2d and Fig. 2h, it can be observed
that as the fines content increases, the lateral spread
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displacement decreases. This observation needs more
validation for future studies.

As for the individual examination of each array
of rules, cluster A can be summarized as the set of
rules that can cause severe (high) horizontal
displacements caused by large magnitude
earthquakes and high epicentral distance. From Fig.
2d and 2e, the liquefiable soil types fall under the
USCS designation SP-SM (i.e., sand, medium to fine
sand, and sand with some silt). The accumulated
thickness of liquefiable soils ranges from 8.6 to
16.7m, and there are high free-face ratios of 7.89 to
57.7%. These kinds of lateral spread scenarios were
prevalent in the 1964 Niigata earthquake.

Meanwhile, rules from cluster B present slightly
varied observations. While the same seismic load
characteristics were observed, variations in the
geotechnical and thickness attributes were
discovered. In the rule set of cluster B, fines content
in the liquefiable soils was higher than in the rules in
cluster A. Moreover, thicknesses of liquefiable soils
in cluster B were generally thinner and ranged from
3.4 to 12.6m. The presence of interbedded fined-
grained soils, the possibility of cyclic softening, and
the effects of overburden pressure may contribute to
the severe lateral spread observed in these sites.
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Fig.2 Box and whisker plots of various lateral spreading attributes with respect to the five clusters of rules from
the machine learning simulation.
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On the other hand, clusters C and D prove that
the absence or the reduction of one parameter affects
the output. This proves that seismic load (magnitude,
epicentral distance, and maximum acceleration) and
site (geotechnical, thickness, and free-face ratio)
conditions are both responsible for the severity of
lateral spread displacement. Cluster C rules generally
imply that lower seismic loads can still produce
lateral spread when the soil and site conditions are
highly susceptible to spreading. Conversely, cluster D
rules seem to remind the engineers that even in the
less susceptible site conditions for liquefaction and
lateral spreading, if there is a significant seismic load
present, lateral spreading can still happen.

Lastly, cluster E rules were greatly influenced by
the high earthquake magnitude and high free-face
ratios. The wide range of fines content and the
presence of a thinner liquefiable layer can also affect
the observed minimal lateral spread displacements in
this cluster.

In summary, these rules and information that
were deduced from the database can be beneficial to
engineers and planners in mitigating the effects of
liquefaction-induced lateral spreading. However, as
with other machine learning models, these rules are
data-driven, and so these rules are bounded by the
values in the database. Nevertheless, the plausibility
of the rules and clusters developed regarding soil
mechanics and related studies affirm their
interpretability and usefulness.

6. CONCLUSIONS

An interpretable machine learning technique was
applied to the lateral spreading case history database
using rough set theory. Unlike other ML models in
lateral spreading prediction, which yields a single
value parameter, the rule-based system developed in
this study uncovered significant rules and clustering
that illustrate various lateral spreading scenarios
considering combinations of conditional attributes.
This gives engineers and decision-makers a better
insight and understanding of lateral spreading
mechanics and behavior.

Significant findings of this study are the following.

The combination of parameters and conditions, as
shown by the generated rules, presents valuable
insights into the occurrence of liquefaction-induced
lateral spreading. Rule 10 states that even if the
thickness of liquefiable soils is less than 8.6m, if the
earthquake magnitude is from 7.5 to 9.2, the fines
content is from 13 to 70%, and the mean grain size is
from 0.25 to 7.7mm, then a lateral displacement to as
high as 10.16m is possible to occur. Moreover, five
clusters of rules were observed from the generated
rule set. Some patterns that arouse include: (1) the
combination of higher magnitude and longer
epicentral distance are more likely to produce higher
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lateral spreads, (2) lateral spreading is more affected
by the duration of the shaking than the highest
amplitude of the shaking, and (3) higher lateral spread
displacement is expected when longer duration due to
higher magnitude and higher inertial force caused by
thicker liquefiable soils simultaneously exist. It was
also observed that as the fines content of the
liquefiable  soils increases, the horizontal
displacement decreases. This is an insight that could
be explored more in the future.

While the present work is data-driven and
machine-learning-dependent, the bridging of
empirical and theoretical domains can be observed in
the interpretation of rules and clusters. However,
recommendations for further studies include (1)
introduction of other relevant conditional or decision
attributes in the decision table (e.g., earthquake
duration, capping layer thickness and depth, and
liquefaction manifestations), (2) application of rough
set machine learning to other decision support
engineering problems (e.g., liquefaction, landslide,
construction management, water resources), and (3)
development of sound rule-based predictive models.
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