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ABSTRACT: The study aims to develop an earthquake forecasting model based on Long Short-Term Memory 
(LSTM) networks with an embedded attention mechanism to improve the accuracy and reliability of forecasts that 
can be used in earthquake warning and mitigation applications. The objective is to explore and justify how this 
model can analytically improve the identification and interpretation of hidden patterns and anomalies in earthquake 
data to improve forecasting accuracy in seismically active regions such as Indonesia. The study used modeling 
techniques, analytical computations, and computer experimentation. The emphasis was placed on deep learning 
analysis to identify implicit indicators that could radically change the surveillance strategy and improve human 
safety. As a result, a model was built to illustrate the ability of LSTM networks with an embedded attention 
mechanism to improve earthquake forecasting by more accurately recognizing seismic patterns. This confirms the 
assumption that such networks can more effectively adapt to the identification of temporal dependencies in 
earthquake data. The model can detect and isolate seismic anomalies and precursors of major seismic events more 
effectively than standard forecasting approaches based on statistics and probability. The practical significance of 
the study lies in the opening of new opportunities for creating more accurate earthquake forecasting systems. 
 
Keywords: Seismic forecasting, Deep learning, Anomaly data, Attention models, Neural architectures 
 
1. INTRODUCTION 
 

Earthquakes are extremely destructive natural 
phenomena that cause serious loss of life and 
significant property damage [1,2]. Being located in 
the zone of intense seismic activity of the Pacific 
Ocean’s Ring of Fire, Indonesia experiences more 
than 90% of the world’s earthquakes. This makes it 
one of the most earthquake-prone countries in the 
world. Indonesia often experiences loss of life and 
property caused by seismic activity [3-6]. This leads 
to significant social and economic impact, creating an 
urgent need for accurate earthquake forecasting. 

In today’s environment, the research relevance is 
further determined by the continuous development 
and progress of machine learning and artificial 
intelligence technologies. These innovative 
technologies generate powerful algorithms that can 
be applied to data sets to recognize hidden patterns 
and correlations. This opens up new possibilities for 
understanding and predicting various processes, 
including earthquakes. Neural networks, such as 
Long Short-Term Memory (LSTM) (Fig. 1), stand out 
among other machine learning technologies due to 
their ability to process and understand temporal 
sequences of data. 

The attention mechanisms implemented in the 
LSTM networks enable the system to concentrate on 
the most relevant data elements, which improves the 
accuracy of forecasts [7]. These technologies have 
already proved to be effective tools in other areas of 
complex forecasting, including time series 
forecasting in finance, economics, weather, and other 
fields. In the case of earthquake forecasting, they can 
make a significant contribution by providing high 
accuracy and reliability of forecasts, which can help 
reduce risks and minimize losses. 

 
 
Fig.1. Long Short-Term Memory 
 

The study by Apriani et al. [8] proposed an 
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alternative methodology for determining earthquake 
magnitude based on machine learning for an early 
warning system. The researchers used data on seismic 
activity in Indonesia and developed a model based on 
a deep neural network (DNN) and a Random Forest 
(RF) machine learning algorithm. The results of 
statistical analysis showed that waveforms can be 
modelled using DNN models. Murti et al. [9] 
presented a proposal for multi-class earthquake 
detection using machine learning algorithms that can 
distinguish between vibrations caused by earthquakes 
and vibrations generated by other sources, including 
vandalism. Machine learning algorithms such as 
Support Vector Machine (SVM), Random Forest 
(RF), Decision Tree (DT), and Artificial Neural 
Network (ANN) were used to develop the most 
efficient multi-class earthquake detection algorithm. 

Wibowo et al. [10] proposed a new model for an 
early warning system for earthquakes in East Java, 
Indonesia. To determine the hypocenter and 
magnitude of an earthquake, the authors use the 
Ncheck noise processing algorithm and a deep 
learning-based multiobjective regression method. 
Wijaya et al. [11] proposed an artificial intelligence-
based earthquake prediction model to mitigate the 
effects of seismic activity in Indonesia. The model, 
developed using a random forest algorithm, was 
trained on earthquake data recorded in Indonesia from 
January 1900 to January 2022. In recent years, due to 
the development of machine learning and artificial 
intelligence technologies, it has become possible to 
create more complex and accurate forecasting 
models. In this context, the study aims to create a 
forecasting model for earthquakes based on LSTM 
neural networks with an embedded attention function 
to improve the accuracy and reliability of forecasts. 

The paper is structured to systematically explore 
the application of LSTM neural networks for 
earthquake prediction. In the introduction, the authors 
provide an overview of the seismic activity in 
Indonesia, emphasizing the critical need for advanced 
forecasting methods due to the country's high 
susceptibility to earthquakes. The Materials and 
Methods section details the theoretical modeling of 
the LSTM network, analytical calculations, and the 
preprocessing of the earthquake dataset for LSTM 
analysis. In the Results section, the effectiveness of 
the LSTM model is demonstrated through its ability 
to predict real earthquake events accurately, 
minimizing false alarms while recognizing a majority 
of seismic activities. The Discussion elaborates on the 
superiority of the proposed LSTM model over 
traditional methods. The Conclusion summarizes the 
LSTM model's advantages in handling long-term data 
dependencies for earthquake prediction and suggests 
directions for future research. 
 
2. RESEARCH SIGNIFICANCE 

 

The research holds significant implications for 
earthquake prediction by showcasing the 
effectiveness of LSTM networks in modeling 
temporal dependencies and detecting hidden patterns 
in earthquake data. It underscores the superiority of 
LSTMs over alternative methods, with the added 
advantage of the attention mechanism enhancing their 
predictive accuracy. While LSTMs excel in handling 
long-term data dependencies, there are still 
challenges like the “time gap problem” and the need 
for extensive data. 
 
3. MATERIALS AND METHODS 
 

The research design was based on a set of 
methodological approaches, including modelling, 
analytical calculations, and computer 
experimentation. Modelling methods were used to 
develop a theoretical model of an LSTM network 
with an attention mechanism capable of predicting 
earthquakes. The model is based on standard 
analytical methods used to mathematically formalize 
the principles of LSTM networks and create an 
algorithm for identifying and interpreting hidden 
patterns and anomalies in earthquake data. 

Two main types of data were used in the study. 
Seismological data is information about earthquakes 
that have occurred in Indonesia over a while. Tectonic 
data describes the structure and dynamics of the 
earth’s crust in Indonesia. The data is compiled from 
information on earthquakes in Indonesia (Fig. 2) and 
surrounding areas over 20 years. Information on 
20,622 earthquakes is included. 
 

 
Fig.2. Earthquakes in Indonesia 
 

Given that Indonesia is one of the most seismic 
zones in the world, the sample contains data on 
earthquakes of various sizes and intensities. The 
dataset contains the following key attributes for the 
development and training of LSTM networks with an 
attention mechanism: earthquake epicenter 
coordinates, focal depth, earthquake magnitude and 
time of occurrence. The data used for this study were 
obtained from the comprehensive catalogue of the 
USGS Advanced National Seismic System (ANSS) 
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[12]. The data were collected as part of an analysis of 
Indonesian seismic activity and offered free access to 
detailed and thoroughly verified earthquake 
information [13]. Only earthquakes that occurred on 
the territory of Indonesia or in the immediate vicinity 
are considered. Only events with a magnitude of 4.6 
and above are included in the sample. This threshold 
allows to focus on events that have the greatest impact 
on the public and infrastructure. All earthquakes had 
to have complete and accurate data on all necessary 
parameters – geographical coordinates, time, depth, 
and magnitude. Лey metrics were used in this study 
to evaluate the quality of the earthquake prediction 
model: accuracy, completeness, and F1-measure. The 
metrics were calculated using a deferred test sample 
with the help of specialized statistical methods and 
tools of the Python library scikit-learn. 
 
4. RESULTS 
 

For effective use in LSTM networks, this dataset 
of earthquakes in Indonesia has been carefully 
processed and prepared. The data were structured in 
a time series format, which is especially convenient 
for analysis by LSTM networks and allows capturing 
dependencies in the dynamics of earthquakes. It is 
important to emphasize that the time series show 
nonlinear and complex patterns, which is ideal for 
analysis by LSTM networks. To fully predict 
earthquakes, four key parameters need to be 
determined: the expected magnitude of the 
earthquake, the estimated time of its onset, the spatial 
location of the epicenter, and the probability of the 
forecast being realized [14]. In addition to tracking 
the key parameters, earthquake data were also 
processed to identify numerical and categorical 
variables that included time intervals between 
consecutive earthquakes and analyzing historical 
seismological data. Considerable efforts were made 
in the pre-processing of earthquake data in Indonesia. 
Numerous experiments were conducted in the process 
of tuning the earthquake data model, which resulted 
in the optimal preprocessing scheme (Table 1). 

To achieve maximum accuracy in earthquake 
prediction, the numerical data attributes were 
normalized using the Min-Max method. This process 
of levelling the scales of numerical data leads to a 
situation where all attributes are in the same range, 
which is important because LSTM networks are 
sensitive to feature scaling and by bringing them to a 
single scale, the dominance of some features over 
others are minimized. All earthquakes were 
chronologically ordered, which made it possible to 
accurately track and analyze the dynamics and 
relationships between individual earthquakes. As for 
the categorical attributes, they were transcoded into a 
format suitable for training the LSTM system. 

This enhancement increases the ability to 
recognize important temporal patterns and sequences, 

resulting in improved earthquake prediction accuracy. 
The ‘Timestep’ column did not require any additional 
training, as it represents sequence numbers that define 
the sequence of earthquakes in time and serves to 
organize the data. The time of each earthquake 
(Timestamp) was presented in the Unix Timestamp 
format, which reflects the number of seconds that 
have passed since 1 January 1970, which simplifies 
the processing and presentation of temporal data. The 
latitude and longitude coordinates of each earthquake 
(Latitude_Scaled and Longitude_Scaled) were scaled 
using the StandardScaler tool from the scikit-learn 
library to improve the model training results on this 
data. The earthquake depth attribute (Depth_Scaled) 
was also scaled using StandardScaler. The 
magnitudes of each earthquake (Magnitude_Scaled) 
and the magnitude of the previous earthquake 
(Previous_Magnitude_Scaled) were scaled and added 
to the model as a new feature to improve the accuracy 
of the predictions. The earthquake mechanisms 
(Mechanism_Category) were converted to numerical 
values using the Label Encoding technique to 
facilitate model training. The model is based on 
recurrent neural networks LSTM. The main 
difference between LSTMs and standard recurrent 
neural networks (RNNs) is that they have gates 
(Fig. 3). 

 
 
Fig.3. Recurrent neural networks 

 
The LSTM network, or LSTM Network, was 

specifically designed to handle time series forecasting 
tasks, considering long-term dependencies in the data 
due to its ability to remember and use information 
from previous time steps [15]. The key elements of 
LSTM are the input, forgetting, and output gates, 
which determine what information should be stored, 
forgotten, or used at each time step. The state of each 
LSTM level includes not only the output but also its 
current state, which is updated at each time step and 
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allows for the creation of long-term memory [16]. 
 

Table 1. Complex dataset 

Timestep Timestamp Latitude_Scal
ed 

Longitude_Sc
aled Depth_Scaled Magnitude_S

caled 

Previous_Ma
gnitude_Scale

d 

Mechanism_
Category 

0 631152000 -0.6 -0.12 0.6 1.2 N/A 1 
1 631243200 -0.55 -0.08 0.6 1.1 1.2 1 
2 631334400 -0.5 -0.05 0.52 0.9 1.1 2 
3 631425600 -0.57 -0.15 0.7 0.85 0.9 1 
4 631516800 -0.66 -0.2 0.5 0.79 0.85 2 

 
The attention mechanism works in the following 

way: it assigns weights to each element of the input 
data that correspond to their “importance” for the 
final forecast. These weights are used to generate the 
context vector for the current forecast step. The 
context vector is a weighted sum of the inputs, where 
contribution of each input element to the final result. 
In the study, the attention mechanism is used in 
combination with LSTM layers to process the input 
data. This approach optimizes the learning of 
complex dependencies and circumvents the problem 
of gradient decay commonly encountered in recurrent 
neural networks. The attention mechanism 
significantly improves the quality of model 
predictions and allows the structural and meaningful 
combination of high-level properties of the neural 
network architecture, specific training algorithms, 
and input data modelling [17,18]. 

After processing the data with LSTM and using 
the attention mechanism, the data is transferred to the 
full connection layers. In these layers, each neuron 
has connections to all its predecessors, which allows 
it to integrate all the information accumulated in the 
previous stages of the model. During processing in 
this layer, each neuron performs a scalar product of 
its inputs and weights, adds a bias, and applies an 
activation function. A new value is generated at the 
output, which is fed to the next stage or, in the case of 
the final layer, becomes the final output of the model. 
In this model, Rectified Linear Unit (ReLU) is used 
as an activation function (Fig. 4). 
 

 
 
Fig.4. Rectified Linear Unit (ReLU) 
 

This function speeds up training due to its high 
computational efficiency and ensures efficient 
distribution of gradients, keeping them unchanged 
when the input signals are positive. In the case of 
negative activation, ReLU reduces them to zero, 

which allows for filtering out unnecessary signals. 
The monotonicity and unlimited activation of ReLU 
preserve the sequence of input values and do not 
impose an upper limit on the output. The use of full 
connectivity layers after LSTM and the attention 
mechanism ensures deep data processing and the 
formation of a balanced prediction. At the end of the 
workflow, the data passes through an output layer. 
This layer provides the final calculations and 
generates the final predictive score. In the model 
architecture, the SoftMax function was chosen to 
perform the classification task as the output layer 
activation function (Fig. 5). 
 

 
 
Fig.5. SoftMax function 
 

The main advantage of this function is that it 
converts a set of numbers into a probability 
distribution, which makes the model’s performance 
more interpretable. The number of neurons in the 
output layer corresponds to the number of classes in 
the classification task so that each neuron can 
generate a probability of a particular class, and the 
sum of such probabilities for each sample is equal to 
one, which facilitates interpretation. Thus, the final 
predictive model used in the study effectively 
combines the advantages of the recurrent LSTM 
architecture, attention mechanism, full-connection 
layers, and SoftMax output activation for accurate 
and interpretable class prediction. 

The sample was divided into training, validation, 
and test samples in the ratio of 70:15:15. In the course 
of the study, the prepared sample was divided into 
training, validation and test samples in the ratio of 
70:15:15. 70% of the total data was used to train the 
model – this is the main dataset on which the model 
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was trained to recognize patterns and regularities 
typical of earthquakes. The remaining 15% of the data 
was used as a validation sample. This data set was 
used to fine-tune the model parameters and regularly 
check its performance during the training process. 
The validation set helps to guide the training process 
to avoid overfitting and to make sure that the model 
generalizes the learned patterns and does not just 
“memorize” the training set [19]. The remaining 15% 
of the data was set aside for post-training testing and 
evaluation of the model’s performance. This sample 
is critical because it allows to assess how well the 
model will cope with new data that it has not seen 
before. The model training was an iterative process 
that optimized neuron weights and eliminations based 
on the data (Table 2). 

 
Table 2 Iterative training process for LSTM network 

 
Stage Description 

Initialization Neuronal weights are initialized with random 
numbers to start the training process 

Training 
Neuronal weights are continuously adjusted to 
minimize the overall loss estimate calculated 
from the loss function for the provided data 

Loss 
estimation 

The loss function measures the disparity 
between the actual data and the model 
predictions, providing a metric for the 
effectiveness of the model 

Prediction 

The learning model predicts outcomes based 
on the current state of neuronal weights, 
allowing evaluation of the model's 
performance 

Back-
propagation 

The back-propagation algorithm calculates 
gradients, indicating the direction and 
magnitude of weight adjustments necessary for 
minimizing loss 

Optimization 
(Adam) 

The Adam optimizer utilizes the calculated 
gradients to update neuronal weights, guiding 
the model towards improved performance 

Sequence 
training 

The LSTM network is trained on sequential 
data, establishing relationships between 
current and past data points, crucial for 
capturing temporal dependencies 

 
To prevent overfitting, the study used the 

technique of controlling the model parameters, or 
“early stopping” [20]. The learning rate was 
controlled by feedback at each training epoch, and as 
soon as it became apparent that the model was no 
longer significantly improving its results on the 
validation sample, training was interrupted. The 
checkpoint function was used to preserve the best 
performance of the model at each training epoch. It 
automatically saves the model parameters that lead to 
the best results on the validation data. This enables 
the best model to be loaded and used for evaluation 
on the test dataset. To increase the training capacity 
of the model and further improve its classification 
ability, a data augmentation technique was used. It 
involves creating new synthetic training examples by 
applying various random transformations to existing 
training examples. 

The model was tested on a deferred sample of data 

that the model had not seen during training. The 
model used its trained architecture and parameters to 
predict the seismic activity classes of this data. The 
model’s predictions were then compared to real-
world values to assess accuracy. The metrics were 
calculated using a deferred test sample with the help 
of specialized statistical methods and tools of the 
Python library scikit-learn. 

The test results showed that the model correctly 
classified 90% of all earthquakes. This means that for 
the most part, the model correctly predicts seismic 
activity. In addition, in 88% of the cases where an 
earthquake occurred, the model correctly guessed it. 
This confirms that the model does a good job not only 
of correctly identifying earthquakes but also of 
dealing with the tricks of false alarms. Overall, this 
gives an overall impression of the model’s success, 
with 89% balanced performance in combining these 
two aspects confirmed (Fig. 5). 
 

 
 
Fig.5. Earthquake prediction model quality metrics 
 

The results obtained indicate the high quality of 
the model in earthquake prediction, which 
emphasizes the effectiveness of the architecture 
described in this study. The model proves to be 
capable of identifying real earthquake events with a 
minimum of false alarms. At the same time, it 
effectively recognizes the majority of real seismic 
events, reducing the risk of not detecting a real threat. 
The overall performance of the model demonstrates 
its balance and stability, providing a high ratio of 
accuracy and completeness in predictions. 
 
5. DISCUSSION 
 

The earthquake forecasting method developed in 
this study based on LSTM with an integrated 
attention mechanism demonstrated high accuracy and 
reliability of forecasts. The results of the analysis 
show a significant improvement in the quality of 
earthquake forecasts using the proposed approach. 
LSTMs with an attention function help to reveal key 
differences in the data and detect hidden patterns and 
anomalies. Johnson et al. [21] used Google’s machine 
learning platform, Kaggle, to run an earthquake 
prediction competition based on data from laboratory 
tests. They used innovative strategies, including 
scaling the fracture time as a fraction of the seismic 
cycle and comparing the distribution of the input data 

90%

88%
89%

87%
88%
89%
90%
91%

Accuracy Recall F1-score
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for training and testing. Al Banna et al. [22] presented 
a model of earthquake prediction based on a 
bidirectional long-term memory network (Bi-LSTM) 
with an attention mechanism. The LSTM is used to 
build this model because of its long-term memory 
capability. The model was trained on seismic data 
from the Bangladesh earthquake catalogue and 
showed an earthquake prediction accuracy of 
74.67%. In addition, a regression model was 
developed to predict the earthquake epicenter as a 
distance from a given point. Both methods proposed 
in these two studies have their strengths. 

Chittora et al. [23] conducted an experimental 
analysis of earthquake prediction using machine 
learning classifiers, approximation curves and neural 
modelling. The study used six different machine 
learning classifiers on six datasets from different 
regions of India to predict the early impact of 
earthquakes. The results showed that the XGBoost 
Tree classifier often showed the best accuracy. The 
study provides a broader approach by applying 
different types of classifiers on different datasets from 
different regions. Wang et al. [24] also use LSTM 
neural networks to predict earthquakes, confirming 
the potential of this approach. Their early warning 
system detects destructive S-waves from initial P-
waves and issues warnings at the onset of strong 
shocks. This deep learning approach creates a highly 
nonlinear neural network and calculates the 
probability of an alert at each time step. Using test 
data from three recent earthquakes, the LSTM 
network showed 0% missed alarms and 2.01% false 
alarms, demonstrating encouraging results. 

Salam et al. [25] propose earthquake prediction 
models based on seven seismic indicators and hybrid 
machine learning techniques. Combinations of 
different machine learning techniques are used, 
including the color pollination algorithm (FPA), 
extreme learning machine (ELM) and least squares 
support vector machine (LS-SVM) to predict 
earthquake magnitude over fifteen days [26]. Based 
on the simulation results, the FPA-LS-SVM model 
outperformed the FPA-ELM, LS-SVM, and ELM 
models in terms of prediction accuracy. Jena et al. 
[27] propose an earthquake vulnerability assessment 
for the Indian subcontinent using a long-term memory 
model with LSTM. This study is the first to apply the 
LSTM model with appropriate geospatial information 
systems methods to assess earthquake vulnerability in 
India. The factors affecting vulnerability include land 
use, geology, geomorphology, fault distribution, 
transport conditions, and population density [28]. The 
results of the analysis help to identify priority regions 
for timely response to risks. Abri and Artuner [29] 
proposed LSTM-based deep learning methods for 
earthquake prediction using ionospheric data. The 
study examines the relationship between earthquakes 
and ionospheric parameters (especially total electron 
content or TEC) collected by GPS stations. Their 

LSTM models analyze the TEC values of recent days 
to classify “earthquake” days, comparing the results 
with classifiers such as SVM, LDA and Random 
Forest. Both studies confirm the power of LSTMs to 
process time series and predict natural phenomena but 
apply them to different types of data to reveal 
different aspects of earthquakes. 

Bilal et al. [30] propose an ensemble learning 
model based on a stack of normalized recurrent neural 
networks (SNRNN) for earthquake detection. Their 
model uses three recurrent neural network models 
(RNN, GRU, and LSTM) with batch and layer 
normalization. After preprocessing the wave data, the 
RNN, GRU, and LSTM models sequentially extract a 
feature map. The study proposes a more complex 
ensemble approach using several different types of 
recurrent neural networks. For complex earthquake 
forecasts that depend on various parameters, a 
systematic analysis of ionospheric data, as proposed 
in the Abri and Artuner study, may be very 
appropriate. On the other hand, earthquake 
forecasting based on the analysis of specific seismic 
data, as the existing study does, may be effective for 
more direct and simplified forecasting scenarios. 

Yousefzadeh et al. [31] presented the results of 
using a deep neural network to predict earthquakes in 
Iran. They comprehensively analyze both temporal 
and spatial parameters, unlike many studies that focus 
mainly on temporal parameters. In addition, they 
introduce a new parameter, Fault Density, and 
demonstrate its effectiveness for predicting large-
magnitude earthquakes [32]. Both approaches 
confirm the importance of using spatial and temporal 
data for earthquake forecasting. For a more 
comprehensive analysis of the various factors 
affecting earthquakes, the approach proposed by the 
study could be extremely useful. For studies focused 
on analyzing patterns in seismic data, the use of 
LSTM, as in any study, may be more appropriate 
[33]. The current study, along with other research, 
confirms the significant potential of LSTM and other 
deep-learning methods in geophysical science and 
earthquake prediction. Despite the limitations and 
difficulties identified, the current results have already 
had a significant impact on the development of the 
field and confirm the potential for further efforts. 
 
6. CONCLUSION 
 

1. The model achieved a 90% accuracy rate in 
classifying all earthquakes, indicating a high level of 
precision in its predictions. 

2. For cases where an earthquake occurred, the 
model accurately predicted the event 88% of the time, 
demonstrating its effectiveness in recognizing actual 
seismic activities. 

3. The balanced performance of the model was 
assessed at 89%, showcasing its capability to 
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accurately predict earthquakes while minimizing 
false alarms. 

4. The use of LSTM networks with an embedded 
attention mechanism contributed significantly to the 
model's ability to capture complex temporal 
dependencies, enhancing its forecasting accuracy. 

5. Early stopping, checkpoint functions, and data 
augmentation techniques were instrumental in 
optimizing model training, preventing overfitting, 
improving the model’s generalization on unseen data. 

In future research, it is necessary to deepen the 
analysis of the application of LSTM and the attention 
mechanism to improve the accuracy of earthquake 
forecasting. Promising areas for further research 
include combining LSTM with other deep learning 
methods such as GRU or bidirectional networks. In 
addition, factors such as population density, 
geomorphology, or other social and technical 
parameters can be incorporated into models to 
improve the quality of earthquake forecasts. 
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