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ABSTRACT: Crack detection and measurement are essential for assessing the structural integrity of reinforced
concrete (RC) structures, but challenges such as surface variability and class imbalance complicate accurate
detection. This study introduces an approach integrating Convolutional Neural Networks (ConvNets), adaptive
sliding windows, and DBSCAN-based semantic segmentation to address these challenges and enhance crack
detection and quantification. The method was evaluated on various surface types, including painted masonry and
concrete pavement, with a particular focus on overcoming class imbalance. To tackle this issue, the resampling
(RS) technique was applied, achieving the best balance between precision and recall, with an F1 score of 0.836
during validation. The adaptive sliding window algorithm, optimized for lower magnification factors, further
enhanced crack localization, improving loU, recall, and precision. In semantic segmentation, the proposed method
performed competitively on the DeepCrack dataset, achieving an loU of 0.671, comparable to state-of-the-art
models. Additionally, the measurement algorithm, which captures crack features such as length, width, and
orientation, was tested on multiple surfaces. For painted masonry, it achieved a precision of 0.99, recall of 0.845,
and loU of 0.838, while for concrete pavement, it achieved a precision of 0.983, recall of 0.835, and loU of 0.823.
When applied to the DeepCrack dataset ground truth, it yielded a recall of 0.884, precision of 0.971, and loU of
0.860. The results demonstrate the robustness and adaptability of this framework, offering an effective solution
for automated crack detection and measurement across diverse surfaces.

Keywords: Crack detection, Convolutional Neural Networks, DBSCAN, Structural Health Monitoring, Crack

feature quantification.
1. INTRODUCTION

Reinforced concrete (RC) is a widely employed
construction material that combines concrete with
steel rebars to enhance tensile strength. However, the
integration of steel rebars introduces the risk of
corrosion, accelerating the degradation of RC
structures. The maintenance and rehabilitation of
aging infrastructure, including RC structures,
represent a substantial financial burden. In 1998, the
United States allocated approximately 0.2% of its
GDP, equivalent to 15.6 billion USD, for
infrastructure  maintenance and  rehabilitation,
excluding pipelines [1]. The estimated cost of
maintaining aging infrastructure in 2021 exceeded 2.3
trillion USD. Monitoring and addressing surface
cracks in RC structures early can prevent
deterioration and reduce rehabilitation expenses.

Structural degradation is an inevitable process
that begins early in a structure’s lifecycle. Structural
health monitoring (SHM) is vital for mitigating
potential failures, as even minor structural damage
can affect the overall system [2-4]. Traditionally,
engineers inspect cracks visually using crack width
gauges, capturing photographs for documentation [5].
By comparing crack widths over time, engineers can
predict deterioration [6]. However, this manual
process is time-consuming, labor-intensive, and

prone to human error. Recent research has shifted
towards object detection algorithms that automate
crack classification and localization [7]. Automated
robotic systems and image-based techniques are
increasingly used to monitor inaccessible structures
such as steel bridges [8]. UAV-mounted cameras
allow for the non-contact inspection of hard-to-reach
areas, expanding the applicability of SHM [9].
Artificial  intelligence  (Al),  specifically
Convolutional Neural Networks (ConvNets), has
shown great promise in automating crack detection
and quantification, significantly improving accuracy
and reducing costs [10-13]. ConvNets extract image
features through convolutional and pooling layers,
followed by classification via fully connected layers.
By automating crack detection, including width and
orientation measurements, ConvNets reduce human
labor and error. Recent advancements in non-contact
optical techniques, such as Digital Image Correlation
(DIC), have demonstrated enhanced accuracy in
monitoring crack propagation and displacement
fields in RC beams, making them a valuable
complement to Al-driven methods like ConvNets
[14]. While training ConvNets requires large datasets
and computational resources, their application is
invaluable in large-scale infrastructure projects,
enabling faster and more precise structural
assessments. Automated systems are essential for
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maintaining vital infrastructure such as bridges and
highways. Artificial Neural Networks have also been
successfully used to predict road surface
deterioration, demonstrating the applicability of
machine learning algorithms in infrastructure
monitoring. By integrating ConvNet models, this
approach allows for accurate prediction of pavement
conditions and provides a framework for further
advancements in crack detection and structural health
monitoring [15].

The adoption of ConvNets in crack detection has
gained momentum in recent years, particularly due to
the availability of pre-trained models that simplify
deployment [16]. Sliding-window frameworks
integrated with ConvNets are commonly used for
localizing cracks within images, but they can be
computationally intensive due to overlapping regions
being processed multiple times [17]. The sliding
window method involves scanning an image
systematically, but its resource demands highlight the
need for optimization. Despite this challenge, Al-
driven crack detection has wide applications in
monitoring transportation infrastructure, industrial
plants, and hazardous environments such as dams and
nuclear power facilities, where human inspection
poses significant risks. Automating these processes
enhances safety, ensures comprehensive monitoring,
and facilitates preventive maintenance.

Other researchers have explored various methods
for detecting and analyzing cracks in infrastructure
using Al techniques. Al-based techniques for
detecting infrastructure cracks have been extensively
researched. Cha, et al. [18] adapted Faster R-CNN, a
highly efficient object detection method developed by
Girshick, et al. [19], Girshick [20], Redmon, et al.
[21], and Ren, et al. [22] for classifying concrete and
steel damages, achieving 90.9% average precision in
concrete crack detection. Alternative methods, such
as YOLOv3, have been utilized for real-time
pavement crack detection [23]. Cheng, et al. [24]
investigated a U-Net-based semantic segmentation
approach, outperforming other ConvNet architectures
in accuracy and computational efficiency for concrete
crack detection and quantification.

In the realm of semantic segmentation, various
approaches have been utilized for crack detection. Li,
et al. [25] employed Crack Seed Clustering and
Filtering with the DBSCAN algorithm to extract
crack pixels from background pixels and noise,
enhancing the efficiency of finding the Weighted
Mean Intensity Path (WMIP) between crack seeds.
Alipour, et al. [26] developed CrackPix, a pixel-level
crack detection approach based on Fully
Convolutional Network (FCN), which includes five
architectures (FCN32s, FCN16s, FCN8s, FCN4s, and
FCN2s) that use skip connections for multiscale
feature fusion. CrackPix addresses class imbalance in
crack detection using a weighted loss function and
specifically targets fine-grained cracks by integrating

additional FCN4s and FCN2s architectures for further
refinement. Choi and Cha [27] introduced
autoencoder ConvNets, another method commonly
used for semantic segmentation. Tabernik, et al. [28]
proposed SegDecNet++ model demonstrated strong
performance across various datasets with different
characteristics, achieving high loU scores. On the
CFD dataset [29], characterized by light urban road
surfaces, it achieved 64.14% IloU, and on the
DeepCrack dataset [30], which includes a mix of
concrete walls and asphalt surfaces, it reached
69.78% loU. The model faced challenges on the
CrackTree200 dataset [31], which features very thin
cracks on light pavements, with an loU of 20.12%,
and on the GAPs384 dataset [32], known for low-
contrast cracks on dark asphalt, where it achieved
39.05% loU. Despite these challenges, SegDecNet++
excelled on the Rissbilder dataset [33], which
includes complex structures and varying lighting
conditions, with a 67.95% loU, and accurately
identified non-defective images on the Non-crack
dataset [34], achieving a near-perfect 99.53% loU.
This highlights the model's robustness and
adaptability to diverse environments and surface
types.

Image processing techniques offer improved
precision  compared to manual  methods.
Thresholding, edge detection, and wavelet transforms
have been used to process images and identify crack
features [35]. Object detection algorithms are
increasingly central to vision-based monitoring,
allowing for automated classification and localization
of cracks. These algorithms address the challenges of
processing large amounts of data, which is essential
for practical, large-scale infrastructure monitoring.

Crack quantification is essential for assessing the
condition of concrete structures and determining
reinforcement needs. Yang, et al. [36] proposed a
process for extracting crack morphological features,
involving  labeling  operations,  skeletonizing
operations, and calculations of crack length, average
width, and coverage ratio. These steps allow
engineers to extract valuable information such as
crack width and length. Miao and Srimahachota [37]
introduced a modified Distance Transform Method
(DTM) for crack quantification. This method
involves binary image conversion, labeling, thinning,
pruning, modified DTM, and calculations of
thickness and length. This process aids engineers in
quantifying the length and width of cracks in concrete
structures. Kang, et al. [38] evaluated the
performance of crack quantification by comparing
predicted crack sizes with actual crack sizes,
calculating the error rate, and comparing predicted
and actual sizes in a graph. The error rates of different
approaches, such as the Mask R-CNN + A*
algorithm, were compared to determine which
method performed better in defect quantization.

Recent advances in image processing and
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machine learning provide an opportunity to develop
novel approaches for effective crack analysis in RC
structures. In this context, our research, described in
the next chapter, aims to explore the application of
perspective transform, adaptive sliding windows,
DBSCAN, skeletonization, and principal component
analysis to accurately measure crack features in
images. By integrating these techniques, we aim to
create a more efficient and precise system for crack
detection and assessment, overcoming the limitations
of existing methodologies. To address these
challenges, our research integrates perspective
transform, adaptive sliding windows, DBSCAN,
skeletonization, and principal component analysis
into a unified framework for automated crack
detection and measurement. This comprehensive
approach not only enhances detection accuracy and
efficiency but also lays the groundwork for future
advancements in real-time structural health
monitoring and maintenance across diverse
infrastructure types. As research and development in
this field continue, such innovative approaches are
likely to play an increasingly important role in the
future of infrastructure monitoring and maintenance.

2. RESEARCH SIGNIFICANCE

This research presents a novel approach to crack
detection and quantification in reinforced concrete
structures using ConvNets, adaptive sliding windows,
and DBSCAN-based semantic segmentation. The
proposed method not only accurately detects cracks
but also provides precise quantification of crack
features such as length, width, and orientation. The
crack measurement process is rigorously evaluated by
replicating the detected crack features and comparing
them against ground truth data. This validation
ensures the reliability of the measurements. The
approach offers practical benefits for infrastructure
monitoring by enabling scalable, precise, and cost-
effective analysis, essential for maintaining the
integrity of aging structures.

3. METHODOLOGY
3.1 Dataset

In this research, we collected images of various
surfaces, including painted masonry, terrazzo, and
concrete pavement, from indoor and outdoor
environments at Kasetsart University's Bangken
Campus. The images were taken with smartphone
cameras at a distance of 0.8 to 1.5 meters from the
surface of interest, resulting in 925 images with a
resolution of 1772 x 3362 pixels, referred to as
original images (OMs). These OMs were then divided
into 91 small images (SMs) of 256 x 256 pixels each
using a sliding window method with 128-pixel
overlap as depicted in Fig. 1.

Fig. 1 Sample images: (a)-(c) Positive crack images
(PMs); (d)-(f) Negative images (NMs).

This resulted in a total of 66,865 SMs. These SMs
were manually labeled as either positive images
(PMs) containing crack features or negative images
(NMs) without crack features. The total number of
NMs and PMs were 57,514 and 9,251, respectively,
with the PMs making up only 13.83% of the total SMs,
leading to a highly imbalanced dataset. The NMs and
PMs were then divided into training, validation, and
testing datasets in the ratio of 0.7:0.15:0.15, with the
testing dataset being kept separate and not accessible
to the researchers until the evaluation phase. The
training dataset consists of 40,260 unique NMs and
6,475 unique PMs, while the validation dataset
contains 8,627 unique NMs and 1,387 unique PMs.

3.2 Model
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Fig. 2 Architecture of the proposed ConvNet model
with layers for feature extraction and classification.

In this research, a Convolutional Neural Network
(ConvNet) was utilized for feature extraction,
specifically employing the VGG16 pretrained model
as shown in Fig. 2. The VGG16 model was trained
and evaluated on its ability to classify cracks in
images using the validation set. The pretrained
VGG16 model was adapted for the task with only the
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fully connected layers set as trainable, while the
bottom layers were not trained during the process.
This approach allowed for efficient and effective
binary classification of cracks in images, leveraging
the robustness of the VGG16 architecture while
minimizing the need for additional customizations.

3.3 Imbalance Data

The dataset used for training the ConvNet in this
research is imbalanced, with a small number of
positive images (PMs) compared to negative images
(NMs). This can lead to poor performance of the
ConvNet during the training process. To address this
issue, instead of training with only ordinary datasets,
several methods were applied in this research to
mitigate the effect of imbalanced data. These methods
include resampling, undersampling, and bias
adjustment with class weighting.

Resampling involves replicating the PMs in the
training dataset until the number of PMs is equal to
the number of NMs. Undersampling involves
randomly removing NMs from the training dataset
until the number of NMs equals the number of PMs.
Bias adjustment with class weighting involves setting
the bias and weight of the output layer based on the
proportion of PMs and NMs in the dataset.

3.4 Data Balancing Techniques

In addressing the notable imbalance in our dataset,
which features a smaller number of positive images
(PMs) compared to negative images (NMs), we
implemented several methods. These techniques were
aimed at mitigating the skewed distribution's impact
on the ConvNet training process. The applied
methods include resampling, undersampling, and bias
adjustment with class weighting, each tailored to
enhance model training under conditions of data
imbalance.

Resampling (RS): This method involves
duplicating the PMs in the training dataset until their
count equals that of the NMs. By creating additional
copies of the under-represented class, resampling
balances the dataset, ensuring that the model is
equally exposed to both classes during training. This
exposure is crucial for preventing the model from
becoming biased towards the more prevalent class.

Undersampling (US): In contrast, undersampling
reduces the number of NMs to match the PMs count.
This is achieved by randomly removing samples from
the over-represented class. While this method leads to
a balanced dataset, it does so by reducing the overall
data size, which might limit the model's exposure to
varied examples in the larger class.

Bias Adjustment with Class Weighting (BACW):
This approach involves modifying the bias and
weights in the model's output layer to reflect the
proportion of PMs to NMs. By adjusting these

parameters, the model is encouraged to pay more
attention to the minority class, thereby compensating
for the imbalance during the learning process.

Each of these models was trained using the same
ConvNet architecture but with different dataset
compositions or adjustments, providing a diverse
perspective on how data balancing techniques can
influence model performance.

3.5 Training and Evaluation

In this research, we employed a detailed and
systematic approach for training and evaluating
Convolutional Neural Networks (ConvNets) for the
task of crack detection in reinforced concrete (RC)
structures.

3.5.1 Technical Aspects of Training

Throughout the training process, the binary cross-
entropy loss function was utilized to evaluate the
model's performance. To optimize the ConvNets'
weights at the end of each training batch, we used the
Adaptive Moment Optimization (Adam) algorithm
with cross entropy as the loss function. The model's
predictions were categorized into four types: true
positive (tp), false positive (fp), true negative (tn), and
false negative (fn). Based on these categorizations,
we calculated precision and recall using Eq. (1) and

Eq. (2):

. t
Precision = —- (1)
tp+fp

—_tp
Recall = s 2)

3.5.2 Monitoring Model Performance

We monitored two key metrics: the Area Under
the Precision-Recall Curve (AUC-PR) and the Area
Under the Receiver Operating Characteristic Curve
(AUC-ROC), calculated at the end of each batch. The
training was strategically terminated based on the
AUC-PR values; if no improvement was observed
within the last twenty epochs for the validation
dataset, the training was ceased. This criterion
ensured the timely halting of training, avoiding
overfitting while capturing the model's optimal
performance.

3.5.3 Validation Dataset as the Benchmark

Given the inherent differences in the training
datasets due to various data balancing techniques, the
validation dataset served as a consistent benchmark
for comparing the performance of models. This
homogeneity in the validation dataset was crucial for
a fair and unbiased assessment of each model's ability.

3.5.4 Model Selection and Threshold Adjustment
The model that achieved the highest AUC-PR in

the validation phase was selected for further

evaluation. Subsequently, after assessing the best
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model for each dataset, the model with the highest F1
score across all datasets was chosen for the final
evaluation. The F1 score, which represents a balance
between precision and recall, was calculated using the

Eg. (3):

__ 2xPrecisionxRecall

F1 (3)

Precision+Recall

The optimal threshold for each model was adjusted
across values from 0 to 1 to maximize the F1 score.

3.5.5 Final Model Application and Comparative
Analysis

The model with the highest AUC-PR during
validation was selected for evaluation. The F1 score,
balancing precision and recall, was used to choose the
optimal model. Threshold adjustments were made to
maximize this score. The selected model was then
applied to the testing dataset, comparing results to the
validation dataset to assess generalization capability
and practical performance.

3.6 Dataset for Measuring Crack Features

Perspective
transform

Fig. 3 Example of perspective transforming process
from a FOM to a PAM.

In order to measure the length, average width, and
orientation of crack features in an image, the author
collected a separate dataset of images, referred to as
framed original images (FOMs). These images were
taken with a green frame of inner width and inner
height of 395.0 mm and 495.0 mm placed on the
surface of the wall as shown in Fig. 3. The perspective
adjusted images (PAMs) of these FOMs were created
using the perspective transform feature in the
OpenCV library. The reference width and height are
the dimensions of the green frame. These PAMs were
then used to measure the desired crack features.

3.7 Detecting Crack Region with ConvNet and
Adaptive Sliding Windows

To search for crack regions in a PAM, an adaptive
sliding window method can be employed with the
ConvNet. The proposed adaptive sliding window
methodology for detecting cracks in concrete
structures using the ConvNet as shown in Fig. 4 can

be summarized in the following steps: (1) define the
sliding window size as 256x256 pixels and establish
an overlap of 128 pixels for horizontal and vertical
traversals; (2) perform an initial scan of the PAM
employing the sliding window and the ConvNet; (3)
filter the windows based on a predefined threshold
value (e.g., 0.8) to designate active scanning regions;
(4) expand the borders of the identified active
scanning regions by a predetermined number of
pixels (e.g., 256 pixels); (5) enlarge the original
image by a specific magnification factor (e.g., 2
times); (6) traverse the newly defined active scanning
regions with the sliding window on the enlarged
image, collecting output values from the ConvNet;
(7) repeatedly execute the filtering, border expansion,
and sliding window application process, while
comparing the quantity of active windows in the
current iteration to those in the previous iteration.

The iteration process terminates if the number of
active windows in the current iteration, prior to border
extension, does not meet or exceed the number of
active windows in the preceding iteration. In such
cases, the results from the previous iteration are
employed for crack detection. In conjunction with the
stopping criterion, this adaptive sliding window
strategy promises enhanced efficiency and accuracy
in identifying cracks in RC structures, facilitating
more effective maintenance and rehabilitation efforts
within the industry. The quantitative values for the
border extension, magnification factor, and threshold
value can be fine-tuned to optimize the algorithm's
performance based on the specific characteristics of
the dataset and the targeted application.

The resulting image containing only the crack
regions at the original resolution is called a region
perspective adjusted image (RPAM). This RPAM can
then be further processed and analyzed to measure the
cracks' length, average width, and orientation. To
evaluate the performance of detecting crack regions
with ConvNet and adaptive sliding windows, we use
precision, recall, and Intersection over Union (loU).
loU is calculated as the area of overlap between the
detected crack regions and the ground truth regions
divided by the area of their union. Each step will be
evaluated separately, using the input from the
previous step as the ground truth, considering errors
or missing detections from the previous process.

3.8 Semantic Segmentation

The proposed methodology for crack detection in
reinforced concrete structures using a combination of
adaptive thresholding and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) for
semantic segmentation, as shown in Fig. 5, can be
described in further detail as follows:

1) Adaptive thresholding is applied to each
window Region Perspective Adjusted Image
(WRPAM) individually. The WRPAMs are first
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Fig. 4 Crack detection using adaptive sliding windows at varying image resolutions. The window size remains
constant at 256x256, while the image resolution changes iteratively to refine positive regions. (a) Perspective
adjusted image (PAM). (b) Image zoomed out to 2x for initial detection. (c) Image zoomed in to 1.0x, refining
detection on previous positive areas. (d) Image further zoomed in to 0.5x, continuing detection on refined regions.

converted to grayscale images to reduce complexity
and focus on the intensity variations. By processing
each wRPAM separately, the adaptive thresholding
accounts for local changes in lighting conditions,
contrast, and noise that can occur across different
sections of the image. This localized approach results
in more accurate segmentation, reduces the impact of
noise, and enhances computational efficiency by
processing smaller portions of the image.
Additionally, this stepwise processing allows for
parallelization opportunities, potentially speeding up
the overall process.

2) After adaptive thresholding, the binary images
obtained from each wRPAM are combined into a
single, larger image. This step is essential for
preserving the spatial relationships between the
segmented regions and maintaining the overall
context of the original image. Combining the
WRPAMSs ensures that the final binary image
represents the complete structure, including any
cracks and background areas.

3) Shapes and sizes, representing crack features,
while also being robust to noise. Using DBSCAN, the
proposed method can accurately distinguish between
crack features (assigned a value of 1) and background
(assigned a value of 0) in the binary image. The
output of this process, a semantically segmented
image representing crack features and background,
will be referred to as a semantic segmented image
(SSM) for use in subsequent analyses.

This combination of adaptive thresholding and
DBSCAN offers a comprehensive and efficient
approach for detecting and segmenting cracks in
reinforced concrete structures. By accounting for
local variations in image characteristics and reducing
the impact of noise, this method improves the
accuracy and reliability of crack detection in such

structures. The performance of the semantic
segmentation will be measured using precision, recall,
loU, with the detected crack regions from the
ConvNet and adaptive sliding windows serving as the
ground truth. This approach will account for any
errors or missing detections from the previous step,
ensuring a comprehensive evaluation.

3.9 Crack Measurement

Skeletonization is a morphological operation
applied to the SSM to generate one-pixel wide
skeletons, preserving the structure and connectivity of
the original crack features while simplifying the
representation. Intersection points, where multiple
crack branches converge, are detected using a
convolution operation with a 3x3 kernel that
identifies pixels with more than two neighboring
pixels as shown in Fig. 6. After dividing skeleton
lines into branches by removing intersections, points
within each branch are sorted from one end to the
other. The length, width, and orientation of each
branch are analyzed using the proposed framework as
illustrated in Fig. 7.

Length computation is summarized in the
following steps: (1) Iterate through the divided
skeleton branches, starting from one end of a branch
and progressing to the other end; (2) Analyze adjacent
skeleton pixels and increment the length count based
on their relative orientation: 1.00 pixel for vertically
or horizontally oriented points, and 1.41 pixels for
diagonally oriented points (45 degrees); (3) Sum the
length counts to determine the total length of the
branch; (4) Repeat the process for all skeleton
branches in the image.

Orientation computation is summarized in the
following steps: (1) select a skeleton branch and start
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process results in distinct branches marked by different colors for accurate length, orientation, and width
analysis.
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Fig. 7 shows the algorithm to measure length, orientation, and width of cracks, the crack image replicated from
the measurement, and the performance of the proposed algorithm.
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from one end; (2) define a segment consisting of the
starting point and the next five consecutive points
along the branch; (3) perform Principal Component
Analysis (PCA) on the segment's coordinates to
identify the principal axes of the data; (4) calculate
the orientation of the segment as the angle formed by
the first principal axis of the PCA result; (5) shift the
starting point to the next position along the branch
and repeat steps 2-4 until the other end of the branch
is reached; (6) apply the orientation computation
process to all skeleton branches in the image.

Width computation is summarized in the
following steps: (1) choose a skeleton branch and
start from one end; (2) determine the local orientation
of the skeleton line at the starting point using the
computed orientation; (3) project a line perpendicular
to the local orientation from the starting point,
extending to both sides of the crack feature until
reaching the boundary (transition from 1-color to 0-
color in the SSM); (4) calculate the width of the crack
at the starting point as the length of the projected line;
(5) shift the starting point to the next position along
the branch and repeat steps 2-4 until the other end of
the branch is reached; (6) compute the average width
for the entire skeleton branch by averaging the width
measurements; (7) perform the width computation
process for all skeleton branches in the image. By
following this systematic process, the framework
accurately computes the length, orientation, and
width of crack features in the SSM.

To assess the performance of the proposed
measurement framework, we suggest synthesizing
crack features based on the computed measurements
and comparing them to the original SSM. This
comparison will effectively evaluate the accuracy and
reliability of the framework. The evaluation process
consists of the following steps: (1) use the computed
measurements (coordinates and width) for each point
in each branch to synthesize crack features in a blank
image with the same dimensions as the original SSM;
(2) compare the synthesized crack image to the
original SSM on a pixel-by-pixel basis; (3) calculate
recall (sensitivity) and precision (positive predictive
value) to determine the framework's performance;(4)
analyze the results to identify potential areas for
improvement or optimization.

The performance of the crack measurement step
will be evaluated using precision, recall, and loU,
with the semantically segmented image (SSM)
serving as the ground truth. This ensures that the
evaluation considers any inaccuracies or omissions
from the semantic segmentation process.

4. RESULT AND DISCUSSION

4.1 Convnet Performance on Imbalanced Data

The ConvNet was trained and evaluated for its
ability to detect and quantify crack features in images.
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The model was trained using the ordinary datasets,
and the datasets that were balanced using three
different resampling methods: class weight
adjustment, oversampling and undersampling. The
resulting models were evaluated on a validation
dataset consisting of 8,627 negative examples and
1,387 positive examples, as well as a testing dataset
with a similar composition.

For the validation datasets, the AUC-PR
performance varied more significantly, with the
highest value of 0.905 for the model trained with
original dataset (OD) at epoch 7 and the lowest value
of 0.88 for US at epoch 3 as shown in Fig. 8. The
BACW and RS demonstrated AUC-PR values of 0.9
and 0.896, reached at epoch 9 and epoch 3,
respectively. The varying AUC-PR performance
suggests that the choice of dataset balancing
technique impacts the precision-recall tradeoff in the
crack detection task, with RS and BACW techniques
potentially yielding better results than US
techniques.The model with the highest F1 score in the
validation dataset was selected for further analysis.
By adjusting the threshold range from 0 to 1. the RS
as shown in Fig. 9 demonstrated the highest F1 score
of 0.836 at a threshold of 0.8. The OD and BACW
yielded comparable F1 scores of 0.832 and 0.828,
respectively, at thresholds of 0.287 and 0.648. The
US had the lowest F1 score of 0.809 at a threshold of
0.774.

These findings suggest that the RS, which
employs resampling to balance the training dataset,
performs best in terms of balancing precision and
recall, achieving the highest F1 score. The OD and
BACW exhibit similar performance, with slightly
lower F1 scores. The US has the lowest F1 score,
indicating that it may not be the most effective
method for addressing dataset imbalance in this
particular case.

0.92
0.88
& 0.84
o
?E 0.8 —O0D
......... RS
0.76 us
----- BACW
0.72
0 10 epoch 20 30

Fig. 8 Evolution of AUC-PR across training epochs for
ConvNet models with different data balancing techniques:
OD (Original Dataset), RS (Resampling), US
(Undersampling), and BACW (Bias Adjustment with Class
Weighting).

Furthermore, the epoch numbers at which the
highest AUC-PR values were reached indicate that
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the RS and US datasets reached optimal performance
more quickly (at epoch 3) compared to the OD and
BACW (at epochs 7 and 6, respectively). This
suggests that resampling and undersampling
techniques may lead to faster convergence during
training, potentially reducing the overall training

time.
10 peceoo_
0.8 >9/
max F1=0.836
0.6 at threshold=0.821.
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0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 9 Performance analysis of the RS model on the
validation dataset.

Overall, these results demonstrate that the
resampling and the bias adjustment with class
weighting techniques can be effective in addressing
imbalanced datasets for crack detection tasks, with
resampling yielding the best performance in terms of
F1 score. The analysis of epoch numbers at which the
highest AUC-PR values were reached, along with the
outlier prediction analysis, provide insights into
potential improvements and optimizations for future
work.

The selected RS-Model at threshold of 0.821
yielded comparable performance on the testing
dataset. With the F1 score of 0.822, recall of 0.837
and precision of 0.807, the RS-Model is robust to use
in real world applications.

4.2. Performance of Crack Localization

04M 1.0
P ‘-\"_.\
(3] .- \
_50_3 M --#&--Positive area ?
s X —x—II:U | 0.9
So2M | N eea”.
= N\ sar” —e— Precision
'z Lo e — = 0.8
£ 0.1M ~ —

~
0.0M 0.7
0.6 0.8 1.0

Magnification factor

Fig. 10 Positive area, recall, precision, and loU at
various magnification factors during crack
localization.
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The adaptive sliding window approach was
evaluated for crack detection across images with
varying surface types and scales. As shown in Fig. 10,
the analysis demonstrates that the choice of
magnification factor significantly influences the
method’s performance. At a magnification factor of
1.0, the Intersection over Union (loU) was 0.752,
recall was 0.793, and precision was 0.939. As the
magnification factor decreased to 0.8, 0.7, and 0.6,
the positive area reduced while loU, recall, and
precision improved, reaching peak performance (loU
= 0.896, recall = 0.907, precision = 0.987) at a
magnification factor of 0.6.

These findings suggest that smaller windows are
more effective at accurately localizing cracks, as they
better capture the fine details of crack features.
However, reducing the positive area also decreases
the workload for subsequent semantic segmentation,
potentially enhancing efficiency. The adaptive sliding
window technique exhibited robust performance
across different surfaces, demonstrating flexibility in
handling varying textures and crack characteristics.

When categorized by surface type, performance
metrics indicated high precision and recall across
both painted masonry and concrete pavement. For
painted masonry, precision, recall, and loU were
0.982, 0.937, and 0.921, respectively. For concrete
pavement, the values were 0.923, 0.909, and 0.845,
respectively. The results highlight the method’s
adaptability across different structural materials,
making it suitable for a wide range of real-world
applications.

4.3 Semantic Segmentation

The semantic segmentation step was evaluated
using precision, recall, and loU, with results analyzed
separately for painted masonry and concrete
pavement surfaces. The outputs from crack
localization served as the ground truth.

For painted masonry, the segmentation achieved a
precision of 0.933, recall of 0.940, and loU of 0.881,
indicating high accuracy with minimal false positives
and substantial overlap between predicted and actual
crack regions. For concrete pavement, the
performance was slightly lower, with a precision of
0.933, recall of 0.882, and loU of 0.829. The lower
recall and loU suggest some crack features may be
missed in more complex surfaces like concrete
pavement, though the method remains highly reliable
overall.

Compared to previous studies, such as those
employing DeepCrack and SCCDNet-D32 models,
which achieved loU scores of 0.636 and 0.655,
respectively, our method's performance of 0.671
demonstrates significant improvements in crack
detection accuracy, particularly in diverse surface
types. Additionally, unlike models such as
SegDecNet++ which require extensive dataset-
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specific training, our approach achieves competitive
results with a more generalized framework. This
generalization reduces the need for extensive
preprocessing and retraining, making it more suitable
for real-world applications. The research fills a gap in
existing methodologies by offering a flexible solution
that balances high accuracy with practical
applicability across different crack features and
surface types. Future applications of this study
include real-time structural health monitoring
systems for critical infrastructure, where the
adaptability of the method to diverse conditions will
be crucial.

To further assess the method’s robustness, it was
applied to the DeepCrack dataset for comparison with
other state-of-the-art models. Our approach achieved
an loU of 0.671, ranking third behind SegDecNet++
(0.698) and CrackFormer (0.679). The loU scores for
other methods on the same dataset include SCCDNet-
D32 (0.655) and DeepCrack (0.636) [28]. Notably,
our method did not require extensive dataset-specific
training or labeling, which is a key advantage over
more specialized models. Despite its competitive
performance, the proposed semantic segmentation
approach offers greater practicality for real-world
applications due to its reduced dependency on
customized training data.

4.4 Crack Feature Measurement

The proposed crack measurement framework
was evaluated by comparing the synthesized crack
features against the ground truth in Fig. 11 for two
surface types: painted masonry and concrete
pavement. In both cases, the replicated crack images
closely resemble the original cracks in terms of
length, width, and orientation. For painted masonry,
the measurements show high precision (0.990),
indicating that nearly all detected features are true
positives, with a recall of 0.845, demonstrating good
sensitivity in capturing actual cracks. The Intersection
over Union (loU) for painted masonry is 0.838,
reflecting substantial overlap between the replicated
and original cracks.

For concrete pavement, the framework also
performed well, with a precision of 0.983, recall of
0.835, and loU of 0.823. Despite the complex texture
and irregularities inherent in concrete surfaces, the
method effectively captures the essential crack
features with minimal false positives and solid overall
alignment between the synthesized and ground truth
crack regions. The results indicate that the proposed
measurement algorithm is reliable and performs
consistently across different surface types.

In addition to the main experiments, the
measurement algorithm was tested on the ground
truth of the DeepCrack dataset to evaluate its pure
performance, independent of errors introduced in
previous processes. By directly applying the
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measurement algorithm to the ground truth images
and comparing the replicated crack features against
the original dataset, the algorithm achieved a recall of
0.884, precision of 0.971, and loU of 0.860. These
results highlight the effectiveness of the measurement
approach when no prior process errors are present,
demonstrating the algorithm’s strong capability in
accurately quantifying crack features in an ideal
scenario.

Overall, the high precision and loU across all
evaluations confirm that the measurement algorithm
is robust, with reliable performance that generalizes
well across different datasets and surface types. The
framework not only captures crack dimensions and
orientations with high accuracy but also maintains
strong consistency even when applied to diverse
conditions and textures. This consistency underscores
the framework’s potential for practical applications in
structural health monitoring and crack analysis.

5. CONCLUSION AND RECOMMENDATIONS

This study presents an integrated methodology for
crack detection, segmentation, and measurement in
reinforced concrete structures using Convolutional
Neural Networks (ConvNets), adaptive sliding
windows, and semantic segmentation with DBSCAN.
The proposed approach effectively addresses
challenges related to crack detection and analysis
across diverse surface types, including painted
masonry and concrete pavement. The results
demonstrate that the combination of adaptive sliding
windows and semantic segmentation yields high
precision, recall, and Intersection over Union (loU)
values, reflecting the method’s accuracy and
robustness.

In the evaluation of different data balancing
techniques, the resampling (RS) approach
outperformed other methods in handling dataset
imbalance, achieving the highest F1 score and rapid
convergence during training. The adaptive sliding
window technique was shown to be flexible and
effective in crack localization, particularly at lower
magnification factors, which improved performance
metrics such as loU and recall. The semantic
segmentation process, validated using both custom
datasets and the DeepCrack  benchmark,
demonstrated competitive performance against state-
of-the-art models while requiring less extensive
dataset-specific training.

The crack measurement framework successfully
quantified critical crack features such as length,
width, and orientation, with high precision and recall
across different surface types. The evaluation of the
measurement algorithm on the DeepCrack dataset
without prior process errors showed the algorithm’s
pure performance, yielding a recall of 0.884,
precision of 0.971, and loU of 0.860, confirming its
reliability in an ideal scenario.
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Fig. 11 shows examples of measurement of cracks on (1) painted masonry, and (2) concrete pavement.

5.1 Suggestions for Future Research

While the proposed methodology shows
significant promise, further improvements can be
pursued. Future work could focus on optimizing the

semantic  segmentation  algorithm  for  better
generalization across more complex and diverse
surfaces. Additionally, integrating more advanced
deep learning architectures, such as transformer-
based models, could further enhance the precision
and computational efficiency of crack detection and
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analysis.

Expanding the dataset with a broader range of
crack types, environmental conditions, and structural
materials could also improve the model’s robustness.
Moreover, exploring real-time applications of the
proposed approach through deployment on mobile
platforms or UAVs could extend its utility in
structural  health  monitoring, especially in
inaccessible areas.

In conclusion, the proposed framework offers a
practical, efficient, and adaptable solution for crack
detection and quantification, providing valuable
insights  for infrastructure  monitoring  and
maintenance. The findings lay a solid foundation for
future advancements in automated crack analysis
using deep learning techniques.
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