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ABSTRACT: Crack detection and measurement are essential for assessing the structural integrity of reinforced 
concrete (RC) structures, but challenges such as surface variability and class imbalance complicate accurate 
detection. This study introduces an approach integrating Convolutional Neural Networks (ConvNets), adaptive 
sliding windows, and DBSCAN-based semantic segmentation to address these challenges and enhance crack 
detection and quantification. The method was evaluated on various surface types, including painted masonry and 
concrete pavement, with a particular focus on overcoming class imbalance. To tackle this issue, the resampling 
(RS) technique was applied, achieving the best balance between precision and recall, with an F1 score of 0.836 
during validation. The adaptive sliding window algorithm, optimized for lower magnification factors, further 
enhanced crack localization, improving IoU, recall, and precision. In semantic segmentation, the proposed method 
performed competitively on the DeepCrack dataset, achieving an IoU of 0.671, comparable to state-of-the-art 
models. Additionally, the measurement algorithm, which captures crack features such as length, width, and 
orientation, was tested on multiple surfaces. For painted masonry, it achieved a precision of 0.99, recall of 0.845, 
and IoU of 0.838, while for concrete pavement, it achieved a precision of 0.983, recall of 0.835, and IoU of 0.823. 
When applied to the DeepCrack dataset ground truth, it yielded a recall of 0.884, precision of 0.971, and IoU of 
0.860. The results demonstrate the robustness and adaptability of this framework, offering an effective solution 
for automated crack detection and measurement across diverse surfaces. 

 
Keywords: Crack detection, Convolutional Neural Networks, DBSCAN, Structural Health Monitoring, Crack 
feature quantification. 
 
1. INTRODUCTION 

 
Reinforced concrete (RC) is a widely employed 

construction material that combines concrete with 
steel rebars to enhance tensile strength. However, the 
integration of steel rebars introduces the risk of 
corrosion, accelerating the degradation of RC 
structures. The maintenance and rehabilitation of 
aging infrastructure, including RC structures, 
represent a substantial financial burden. In 1998, the 
United States allocated approximately 0.2% of its 
GDP, equivalent to 15.6 billion USD, for 
infrastructure maintenance and rehabilitation, 
excluding pipelines [1]. The estimated cost of 
maintaining aging infrastructure in 2021 exceeded 2.3 
trillion USD. Monitoring and addressing surface 
cracks in RC structures early can prevent 
deterioration and reduce rehabilitation expenses. 

Structural degradation is an inevitable process 
that begins early in a structure’s lifecycle. Structural 
health monitoring (SHM) is vital for mitigating 
potential failures, as even minor structural damage 
can affect the overall system [2-4]. Traditionally, 
engineers inspect cracks visually using crack width 
gauges, capturing photographs for documentation [5]. 
By comparing crack widths over time, engineers can 
predict deterioration [6]. However, this manual 
process is time-consuming, labor-intensive, and 

prone to human error. Recent research has shifted 
towards object detection algorithms that automate 
crack classification and localization [7]. Automated 
robotic systems and image-based techniques are 
increasingly used to monitor inaccessible structures 
such as steel bridges [8]. UAV-mounted cameras 
allow for the non-contact inspection of hard-to-reach 
areas, expanding the applicability of SHM [9]. 

Artificial intelligence (AI), specifically 
Convolutional Neural Networks (ConvNets), has 
shown great promise in automating crack detection 
and quantification, significantly improving accuracy 
and reducing costs [10-13]. ConvNets extract image 
features through convolutional and pooling layers, 
followed by classification via fully connected layers. 
By automating crack detection, including width and 
orientation measurements, ConvNets reduce human 
labor and error. Recent advancements in non-contact 
optical techniques, such as Digital Image Correlation 
(DIC), have demonstrated enhanced accuracy in 
monitoring crack propagation and displacement 
fields in RC beams, making them a valuable 
complement to AI-driven methods like ConvNets 
[14]. While training ConvNets requires large datasets 
and computational resources, their application is 
invaluable in large-scale infrastructure projects, 
enabling faster and more precise structural 
assessments. Automated systems are essential for 
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maintaining vital infrastructure such as bridges and 
highways. Artificial Neural Networks have also been 
successfully used to predict road surface 
deterioration, demonstrating the applicability of 
machine learning algorithms in infrastructure 
monitoring. By integrating ConvNet models, this 
approach allows for accurate prediction of pavement 
conditions and provides a framework for further 
advancements in crack detection and structural health 
monitoring [15]. 

The adoption of ConvNets in crack detection has 
gained momentum in recent years, particularly due to 
the availability of pre-trained models that simplify 
deployment [16]. Sliding-window frameworks 
integrated with ConvNets are commonly used for 
localizing cracks within images, but they can be 
computationally intensive due to overlapping regions 
being processed multiple times [17]. The sliding 
window method involves scanning an image 
systematically, but its resource demands highlight the 
need for optimization. Despite this challenge, AI-
driven crack detection has wide applications in 
monitoring transportation infrastructure, industrial 
plants, and hazardous environments such as dams and 
nuclear power facilities, where human inspection 
poses significant risks. Automating these processes 
enhances safety, ensures comprehensive monitoring, 
and facilitates preventive maintenance. 

Other researchers have explored various methods 
for detecting and analyzing cracks in infrastructure 
using AI techniques. AI-based techniques for 
detecting infrastructure cracks have been extensively 
researched. Cha, et al. [18] adapted Faster R-CNN, a 
highly efficient object detection method developed by 
Girshick, et al. [19], Girshick [20], Redmon, et al. 
[21], and Ren, et al. [22] for classifying concrete and 
steel damages, achieving 90.9% average precision in 
concrete crack detection. Alternative methods, such 
as YOLOv3, have been utilized for real-time 
pavement crack detection [23]. Cheng, et al. [24] 
investigated a U-Net-based semantic segmentation 
approach, outperforming other ConvNet architectures 
in accuracy and computational efficiency for concrete 
crack detection and quantification. 

In the realm of semantic segmentation, various 
approaches have been utilized for crack detection. Li, 
et al. [25] employed Crack Seed Clustering and 
Filtering with the DBSCAN algorithm to extract 
crack pixels from background pixels and noise, 
enhancing the efficiency of finding the Weighted 
Mean Intensity Path (WMIP) between crack seeds. 
Alipour, et al. [26] developed CrackPix, a pixel-level 
crack detection approach based on Fully 
Convolutional Network (FCN), which includes five 
architectures (FCN32s, FCN16s, FCN8s, FCN4s, and 
FCN2s) that use skip connections for multiscale 
feature fusion. CrackPix addresses class imbalance in 
crack detection using a weighted loss function and 
specifically targets fine-grained cracks by integrating 

additional FCN4s and FCN2s architectures for further 
refinement. Choi and Cha [27] introduced 
autoencoder ConvNets, another method commonly 
used for semantic segmentation. Tabernik, et al. [28] 
proposed SegDecNet++ model demonstrated strong 
performance across various datasets with different 
characteristics, achieving high IoU scores. On the 
CFD dataset [29], characterized by light urban road 
surfaces, it achieved 64.14% IoU, and on the 
DeepCrack dataset [30], which includes a mix of 
concrete walls and asphalt surfaces, it reached 
69.78% IoU. The model faced challenges on the 
CrackTree200 dataset [31], which features very thin 
cracks on light pavements, with an IoU of 20.12%, 
and on the GAPs384 dataset [32], known for low-
contrast cracks on dark asphalt, where it achieved 
39.05% IoU. Despite these challenges, SegDecNet++ 
excelled on the Rissbilder dataset [33], which 
includes complex structures and varying lighting 
conditions, with a 67.95% IoU, and accurately 
identified non-defective images on the Non-crack 
dataset [34], achieving a near-perfect 99.53% IoU. 
This highlights the model's robustness and 
adaptability to diverse environments and surface 
types. 

Image processing techniques offer improved 
precision compared to manual methods. 
Thresholding, edge detection, and wavelet transforms 
have been used to process images and identify crack 
features [35]. Object detection algorithms are 
increasingly central to vision-based monitoring, 
allowing for automated classification and localization 
of cracks. These algorithms address the challenges of 
processing large amounts of data, which is essential 
for practical, large-scale infrastructure monitoring. 

Crack quantification is essential for assessing the 
condition of concrete structures and determining 
reinforcement needs. Yang, et al. [36] proposed a 
process for extracting crack morphological features, 
involving labeling operations, skeletonizing 
operations, and calculations of crack length, average 
width, and coverage ratio. These steps allow 
engineers to extract valuable information such as 
crack width and length. Miao and Srimahachota [37] 
introduced a modified Distance Transform Method 
(DTM) for crack quantification. This method 
involves binary image conversion, labeling, thinning, 
pruning, modified DTM, and calculations of 
thickness and length. This process aids engineers in 
quantifying the length and width of cracks in concrete 
structures. Kang, et al. [38] evaluated the 
performance of crack quantification by comparing 
predicted crack sizes with actual crack sizes, 
calculating the error rate, and comparing predicted 
and actual sizes in a graph. The error rates of different 
approaches, such as the Mask R-CNN + A* 
algorithm, were compared to determine which 
method performed better in defect quantization. 

Recent advances in image processing and 



International Journal of GEOMATE, Nov., 2024 Vol.27, Issue 124, pp.1-15 

3 
 

machine learning provide an opportunity to develop 
novel approaches for effective crack analysis in RC 
structures. In this context, our research, described in 
the next chapter, aims to explore the application of 
perspective transform, adaptive sliding windows, 
DBSCAN, skeletonization, and principal component 
analysis to accurately measure crack features in 
images. By integrating these techniques, we aim to 
create a more efficient and precise system for crack 
detection and assessment, overcoming the limitations 
of existing methodologies. To address these 
challenges, our research integrates perspective 
transform, adaptive sliding windows, DBSCAN, 
skeletonization, and principal component analysis 
into a unified framework for automated crack 
detection and measurement. This comprehensive 
approach not only enhances detection accuracy and 
efficiency but also lays the groundwork for future 
advancements in real-time structural health 
monitoring and maintenance across diverse 
infrastructure types. As research and development in 
this field continue, such innovative approaches are 
likely to play an increasingly important role in the 
future of infrastructure monitoring and maintenance. 

 
2. RESEARCH SIGNIFICANCE 

 
This research presents a novel approach to crack 

detection and quantification in reinforced concrete 
structures using ConvNets, adaptive sliding windows, 
and DBSCAN-based semantic segmentation. The 
proposed method not only accurately detects cracks 
but also provides precise quantification of crack 
features such as length, width, and orientation. The 
crack measurement process is rigorously evaluated by 
replicating the detected crack features and comparing 
them against ground truth data. This validation 
ensures the reliability of the measurements. The 
approach offers practical benefits for infrastructure 
monitoring by enabling scalable, precise, and cost-
effective analysis, essential for maintaining the 
integrity of aging structures. 

 
3. METHODOLOGY 
 
3.1 Dataset 
 

In this research, we collected images of various 
surfaces, including painted masonry, terrazzo, and 
concrete pavement, from indoor and outdoor 
environments at Kasetsart University's Bangken 
Campus. The images were taken with smartphone 
cameras at a distance of 0.8 to 1.5 meters from the 
surface of interest, resulting in 925 images with a 
resolution of 1772 x 3362 pixels, referred to as 
original images (OMs). These OMs were then divided 
into 91 small images (SMs) of 256 x 256 pixels each 
using a sliding window method with 128-pixel 
overlap as depicted in Fig. 1. 

 
 
Fig. 1 Sample images: (a)-(c) Positive crack images 
(PMs); (d)-(f) Negative images (NMs). 
 

This resulted in a total of 66,865 SMs. These SMs 
were manually labeled as either positive images 
(PMs) containing crack features or negative images 
(NMs) without crack features. The total number of 
NMs and PMs were 57,514 and 9,251, respectively, 
with the PMs making up only 13.83% of the total SMs, 
leading to a highly imbalanced dataset. The NMs and 
PMs were then divided into training, validation, and 
testing datasets in the ratio of 0.7:0.15:0.15, with the 
testing dataset being kept separate and not accessible 
to the researchers until the evaluation phase. The 
training dataset consists of 40,260 unique NMs and 
6,475 unique PMs, while the validation dataset 
contains 8,627 unique NMs and 1,387 unique PMs. 
 
3.2 Model 

 

 
 

In this research, a Convolutional Neural Network 
(ConvNet) was utilized for feature extraction, 
specifically employing the VGG16 pretrained model 
as shown in Fig. 2. The VGG16 model was trained 
and evaluated on its ability to classify cracks in 
images using the validation set. The pretrained 
VGG16 model was adapted for the task with only the 

22x224x64 

112x112x128 

28x28x512 

56x56x25 

1x1x1 
7x7x512 

14x14x512 
1x1x512 

Conv.+ReLU 
Max Pooling 
Fully Connected+ReLU 
Fully Connected+Softmax 

Fig. 2 Architecture of the proposed ConvNet model 
with layers for feature extraction and classification. 
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fully connected layers set as trainable, while the 
bottom layers were not trained during the process. 
This approach allowed for efficient and effective 
binary classification of cracks in images, leveraging 
the robustness of the VGG16 architecture while 
minimizing the need for additional customizations. 
 
3.3 Imbalance Data 

 
The dataset used for training the ConvNet in this 

research is imbalanced, with a small number of 
positive images (PMs) compared to negative images 
(NMs). This can lead to poor performance of the 
ConvNet during the training process. To address this 
issue, instead of training with only ordinary datasets, 
several methods were applied in this research to 
mitigate the effect of imbalanced data. These methods 
include resampling, undersampling, and bias 
adjustment with class weighting. 

Resampling involves replicating the PMs in the 
training dataset until the number of PMs is equal to 
the number of NMs. Undersampling involves 
randomly removing NMs from the training dataset 
until the number of NMs equals the number of PMs. 
Bias adjustment with class weighting involves setting 
the bias and weight of the output layer based on the 
proportion of PMs and NMs in the dataset. 
 
3.4 Data Balancing Techniques 

 
In addressing the notable imbalance in our dataset, 

which features a smaller number of positive images 
(PMs) compared to negative images (NMs), we 
implemented several methods. These techniques were 
aimed at mitigating the skewed distribution's impact 
on the ConvNet training process. The applied 
methods include resampling, undersampling, and bias 
adjustment with class weighting, each tailored to 
enhance model training under conditions of data 
imbalance.  

Resampling (RS): This method involves 
duplicating the PMs in the training dataset until their 
count equals that of the NMs. By creating additional 
copies of the under-represented class, resampling 
balances the dataset, ensuring that the model is 
equally exposed to both classes during training. This 
exposure is crucial for preventing the model from 
becoming biased towards the more prevalent class. 

Undersampling (US): In contrast, undersampling 
reduces the number of NMs to match the PMs count. 
This is achieved by randomly removing samples from 
the over-represented class. While this method leads to 
a balanced dataset, it does so by reducing the overall 
data size, which might limit the model's exposure to 
varied examples in the larger class. 

Bias Adjustment with Class Weighting (BACW): 
This approach involves modifying the bias and 
weights in the model's output layer to reflect the 
proportion of PMs to NMs. By adjusting these 

parameters, the model is encouraged to pay more 
attention to the minority class, thereby compensating 
for the imbalance during the learning process. 

Each of these models was trained using the same 
ConvNet architecture but with different dataset 
compositions or adjustments, providing a diverse 
perspective on how data balancing techniques can 
influence model performance. 

 
3.5 Training and Evaluation 

  
In this research, we employed a detailed and 

systematic approach for training and evaluating 
Convolutional Neural Networks (ConvNets) for the 
task of crack detection in reinforced concrete (RC) 
structures. 

 
3.5.1 Technical Aspects of Training 

Throughout the training process, the binary cross-
entropy loss function was utilized to evaluate the 
model's performance. To optimize the ConvNets' 
weights at the end of each training batch, we used the 
Adaptive Moment Optimization (Adam) algorithm 
with cross entropy as the loss function. The model's 
predictions were categorized into four types: true 
positive (tp), false positive (fp), true negative (tn), and 
false negative (fn). Based on these categorizations, 
we calculated precision and recall using Eq. (1) and 
Eq. (2): 

 

 
 

3.5.2 Monitoring Model Performance 
We monitored two key metrics: the Area Under 

the Precision-Recall Curve (AUC-PR) and the Area 
Under the Receiver Operating Characteristic Curve 
(AUC-ROC), calculated at the end of each batch. The 
training was strategically terminated based on the 
AUC-PR values; if no improvement was observed 
within the last twenty epochs for the validation 
dataset, the training was ceased. This criterion 
ensured the timely halting of training, avoiding 
overfitting while capturing the model's optimal 
performance. 

 
3.5.3 Validation Dataset as the Benchmark 

Given the inherent differences in the training 
datasets due to various data balancing techniques, the 
validation dataset served as a consistent benchmark 
for comparing the performance of models. This 
homogeneity in the validation dataset was crucial for 
a fair and unbiased assessment of each model's ability. 

 
3.5.4 Model Selection and Threshold Adjustment 

The model that achieved the highest AUC-PR in 
the validation phase was selected for further 
evaluation. Subsequently, after assessing the best 
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model for each dataset, the model with the highest F1 
score across all datasets was chosen for the final 
evaluation. The F1 score, which represents a balance 
between precision and recall, was calculated using the 
Eq. (3): 

 

 
 
The optimal threshold for each model was adjusted 
across values from 0 to 1 to maximize the F1 score. 
 
3.5.5 Final Model Application and Comparative 
Analysis 

The model with the highest AUC-PR during 
validation was selected for evaluation. The F1 score, 
balancing precision and recall, was used to choose the 
optimal model. Threshold adjustments were made to 
maximize this score. The selected model was then 
applied to the testing dataset, comparing results to the 
validation dataset to assess generalization capability 
and practical performance. 
 
3.6 Dataset for Measuring Crack Features 
 

 
 
In order to measure the length, average width, and 

orientation of crack features in an image, the author 
collected a separate dataset of images, referred to as 
framed original images (FOMs). These images were 
taken with a green frame of inner width and inner 
height of 395.0 mm and 495.0 mm placed on the 
surface of the wall as shown in Fig. 3. The perspective 
adjusted images (PAMs) of these FOMs were created 
using the perspective transform feature in the 
OpenCV library. The reference width and height are 
the dimensions of the green frame. These PAMs were 
then used to measure the desired crack features. 

 
3.7 Detecting Crack Region with ConvNet and 
Adaptive Sliding Windows 
 

To search for crack regions in a PAM, an adaptive 
sliding window method can be employed with the 
ConvNet. The proposed adaptive sliding window 
methodology for detecting cracks in concrete 
structures using the ConvNet as shown in Fig. 4 can 

be summarized in the following steps: (1) define the 
sliding window size as 256x256 pixels and establish 
an overlap of 128 pixels for horizontal and vertical 
traversals; (2) perform an initial scan of the PAM 
employing the sliding window and the ConvNet; (3) 
filter the windows based on a predefined threshold 
value (e.g., 0.8) to designate active scanning regions; 
(4) expand the borders of the identified active 
scanning regions by a predetermined number of 
pixels (e.g., 256 pixels); (5) enlarge the original 
image by a specific magnification factor (e.g., 2 
times); (6) traverse the newly defined active scanning 
regions with the sliding window on the enlarged 
image, collecting output values from the ConvNet; 
(7) repeatedly execute the filtering, border expansion, 
and sliding window application process, while 
comparing the quantity of active windows in the 
current iteration to those in the previous iteration. 

The iteration process terminates if the number of 
active windows in the current iteration, prior to border 
extension, does not meet or exceed the number of 
active windows in the preceding iteration. In such 
cases, the results from the previous iteration are 
employed for crack detection. In conjunction with the 
stopping criterion, this adaptive sliding window  
strategy promises enhanced efficiency and accuracy 
in identifying cracks in RC structures, facilitating 
more effective maintenance and rehabilitation efforts 
within the industry. The quantitative values for the 
border extension, magnification factor, and threshold 
value can be fine-tuned to optimize the algorithm's 
performance based on the specific characteristics of 
the dataset and the targeted application. 

The resulting image containing only the crack 
regions at the original resolution is called a region 
perspective adjusted image (RPAM). This RPAM can 
then be further processed and analyzed to measure the 
cracks' length, average width, and orientation. To 
evaluate the performance of detecting crack regions 
with ConvNet and adaptive sliding windows, we use 
precision, recall, and Intersection over Union (IoU). 
IoU is calculated as the area of overlap between the 
detected crack regions and the ground truth regions 
divided by the area of their union. Each step will be 
evaluated separately, using the input from the 
previous step as the ground truth, considering errors 
or missing detections from the previous process. 

 
3.8 Semantic Segmentation 
 
The proposed methodology for crack detection in 
reinforced concrete structures using a combination of 
adaptive thresholding and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) for 
semantic segmentation, as shown in Fig. 5, can be   
described in further detail as follows: 

1) Adaptive thresholding is applied to each 
window Region Perspective Adjusted Image 
(wRPAM) individually. The wRPAMs are first

FOM PAM 
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Fig. 3 Example of perspective transforming process 
from a FOM to a PAM. 
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converted to grayscale images to reduce complexity 
and focus on the intensity variations. By processing 
each wRPAM separately, the adaptive thresholding 
accounts for local changes in lighting conditions, 
contrast, and noise that can occur across different 
sections of the image. This localized approach results 
in more accurate segmentation, reduces the impact of 
noise, and enhances computational efficiency by 
processing smaller portions of the image. 
Additionally, this stepwise processing allows for 
parallelization opportunities, potentially speeding up 
the overall process. 

2) After adaptive thresholding, the binary images 
obtained from each wRPAM are combined into a 
single, larger image. This step is essential for 
preserving the spatial relationships between the 
segmented regions and maintaining the overall 
context of the original image. Combining the 
wRPAMs ensures that the final binary image 
represents the complete structure, including any 
cracks and background areas. 

3) Shapes and sizes, representing crack features, 
while also being robust to noise. Using DBSCAN, the 
proposed method can accurately distinguish between 
crack features (assigned a value of 1) and background 
(assigned a value of 0) in the binary image. The 
output of this process, a semantically segmented 
image representing crack features and background, 
will be referred to as a semantic segmented image 
(SSM) for use in subsequent analyses. 

This combination of adaptive thresholding and 
DBSCAN offers a comprehensive and efficient 
approach for detecting and segmenting cracks in 
reinforced concrete structures. By accounting for 
local variations in image characteristics and reducing 
the impact of noise, this method improves the 
accuracy and reliability of crack detection in such 

structures. The performance of the semantic 
segmentation will be measured using precision, recall, 
IoU, with the detected crack regions from the 
ConvNet and adaptive sliding windows serving as the 
ground truth. This approach will account for any 
errors or missing detections from the previous step, 
ensuring a comprehensive evaluation. 

 
3.9 Crack Measurement 
 

Skeletonization is a morphological operation 
applied to the SSM to generate one-pixel wide 
skeletons, preserving the structure and connectivity of 
the original crack features while simplifying the 
representation. Intersection points, where multiple 
crack branches converge, are detected using a 
convolution operation with a 3x3 kernel that 
identifies pixels with more than two neighboring 
pixels as shown in Fig. 6. After dividing skeleton 
lines into branches by removing intersections, points 
within each branch are sorted from one end to the 
other. The length, width, and orientation of each 
branch are analyzed using the proposed framework as 
illustrated in Fig. 7. 

Length computation  is summarized in the 
following steps: (1) Iterate through the divided 
skeleton branches, starting from one end of a branch 
and progressing to the other end; (2) Analyze adjacent 
skeleton pixels and increment the length count based 
on their relative orientation: 1.00 pixel for vertically 
or horizontally oriented points, and 1.41 pixels for 
diagonally oriented points (45 degrees); (3) Sum the 
length counts to determine the total length of the 
branch; (4) Repeat the process for all skeleton 
branches in the image. 

Orientation computation is summarized in the 
following steps: (1) select a skeleton branch and start
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(a) (b) (d) (c) 

Fig. 4 Crack detection using adaptive sliding windows at varying image resolutions. The window size remains 
constant at 256x256, while the image resolution changes iteratively to refine positive regions. (a) Perspective 
adjusted image (PAM). (b) Image zoomed out to 2x for initial detection. (c) Image zoomed in to 1.0x, refining 
detection on previous positive areas. (d) Image further zoomed in to 0.5x, continuing detection on refined regions. 
 



International Journal of GEOMATE, Nov., 2024 Vol.27, Issue 124, pp.1-15 

7 
 

 

The perspective adjusted images (PAM) 

Detect positive region with the adaptive sliding 
windows and the ConvNet. 

wRPAM 

Binary-wRPAM 

Convert to binary pixels with the adaptive thresholding. 

Filter crack pixels from background with DBSCAN 

A large binary 
image 

Combine all binary-wRPAM into a large binary image 

255 0 Color Code 255 0 Color code 

25
0 

14
,0

00
 

Crack pixel image Background pixel image 

255 0 Color Code 

14
,0

00
 

R
G

B
 in

te
ns

ity
 

R
G

B
 in

te
ns

ity
 

R
G

B
 in

te
ns

ity
 

Fig. 5 Semantic segmentation process combining adaptive thresholding and DBSCAN: The Perspective 
Adjusted Image (PAM) is analyzed with ConvNet and adaptive sliding windows. Crack regions are converted to 
binary images through thresholding, then refined using DBSCAN to segment crack pixels from the background. 
The final segmented cracks are validated by comparing RGB intensity distributions. 
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A skeletonized image (red pixels) with 
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Fig. 6 Skeletonization and decomposition of crack features: (1) Convolution with intersection and crop kernels 
to detect and segment intersections; (2) Filtering intersection points with a threshold to isolate intersection and 
adjacent pixels; (3) Decomposing skeletonized crack branches into clusters for sorting and reconstruction. The 
process results in distinct branches marked by different colors for accurate length, orientation, and width 
analysis. 
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2nd pixel 
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3rd pixel = (1,2) 
4th pixel = (1,3) 
5th pixel = (2,4) 
6th pixel = (2,5) 
7th pixel = (2,6) 
8th pixel = (3,7) 

Angle = 64.44° 
Angle = 73.74° 
Angle = 73.74° 
Angle = 64.24° 

Length from pixel to pixel Orientation on pixels 

Crack width on pixels 

1st pixel to 2rd pixel = 1.41 pixel, Angle = 64.44°, Width = 4.3 pixel (equal to 3rd to 4th pixel) 
2nd pixel to 3rd pixel = 1 pixel, Angle = 64.44°, Width = 4.3 pixel (equal to 3rd to 4th pixel) 
3rd pixel to 4th pixel = 1 pixel, Angle = 64.44°, Width = 4.3 pixel  
4th pixel to 5th pixel = 1.41 pixel, Angle = 73.44°, Width = 4.3 pixel  
5th pixel to 6th pixel = 1 pixel, Angle = 73.44°, Width = 5.7 pixel  
6th pixel to 7th pixel = 1 pixel, Angle = 64.24°, Width = 4.3 pixel  
7th pixel to 8th pixel = 1.41 pixel, Angle = 64.24°, Width = 4.3 pixel (equal to 6th to 7th pixel) 

Summary of length, orientation and width by pixels  

Calculate from 1st principal 
axis of the PCA of its pixel 
and 4 adjacent pixels 

Replicated crack image Total crack length by orientation Crack width color map 

True positive 
False positive 
True negative 
False negative 

Measurement presentation and evaluation 

Length (pixel) 

Fig. 7 shows the algorithm to measure length, orientation, and width of cracks, the crack image replicated from 
the measurement, and the performance of the proposed algorithm. 
 

width (pixel) 
6 4 2 
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from one end; (2) define a segment consisting of the 
starting point and the next five consecutive points 
along the branch; (3) perform Principal Component 
Analysis (PCA) on the segment's coordinates to 
identify the principal axes of the data; (4) calculate 
the orientation of the segment as the angle formed by 
the first principal axis of the PCA result; (5) shift the 
starting point to the next position along the branch 
and repeat steps 2-4 until the other end of the branch 
is reached; (6) apply the orientation computation 
process to all skeleton branches in the image. 

Width computation is summarized in the 
following steps: (1) choose a skeleton branch and 
start from one end; (2) determine the local orientation 
of the skeleton line at the starting point using the 
computed orientation; (3) project a line perpendicular 
to the local orientation from the starting point, 
extending to both sides of the crack feature until 
reaching the boundary (transition from 1-color to 0-
color in the SSM); (4) calculate the width of the crack 
at the starting point as the length of the projected line; 
(5) shift the starting point to the next position along 
the branch and repeat steps 2-4 until the other end of 
the branch is reached; (6) compute the average width 
for the entire skeleton branch by averaging the width 
measurements; (7) perform the width computation 
process for all skeleton branches in the image. By 
following this systematic process, the framework 
accurately computes the length, orientation, and 
width of crack features in the SSM. 

To assess the performance of the proposed 
measurement framework, we suggest synthesizing 
crack features based on the computed measurements 
and comparing them to the original SSM. This 
comparison will effectively evaluate the accuracy and 
reliability of the framework. The evaluation process 
consists of the following steps: (1) use the computed 
measurements (coordinates and width) for each point 
in each branch to synthesize crack features in a blank 
image with the same dimensions as the original SSM; 
(2) compare the synthesized crack image to the 
original SSM on a pixel-by-pixel basis; (3) calculate 
recall (sensitivity) and precision (positive predictive 
value) to determine the framework's performance;(4) 
analyze the results to identify potential areas for 
improvement or optimization. 

The performance of the crack measurement step 
will be evaluated using precision, recall, and IoU, 
with the semantically segmented image (SSM) 
serving as the ground truth. This ensures that the 
evaluation considers any inaccuracies or omissions 
from the semantic segmentation process.  
 
4. RESULT AND DISCUSSION 

 
4.1 Convnet Performance on Imbalanced Data 

 
 

The ConvNet was trained and evaluated for its 
ability to detect and quantify crack features in images. 

The model was trained using the ordinary datasets, 
and the datasets that were balanced using three 
different resampling methods: class weight 
adjustment, oversampling and undersampling. The 
resulting models were evaluated on a validation 
dataset consisting of 8,627 negative examples and 
1,387 positive examples, as well as a testing dataset 
with a similar composition.  

For the validation datasets, the AUC-PR 
performance varied more significantly, with the 
highest value of 0.905 for the model trained with 
original dataset (OD) at epoch 7 and the lowest value 
of 0.88 for US at epoch 3 as shown in Fig. 8. The 
BACW and RS demonstrated AUC-PR values of 0.9 
and 0.896, reached at epoch 9 and epoch 3, 
respectively. The varying AUC-PR performance 
suggests that the choice of dataset balancing 
technique impacts the precision-recall tradeoff in the 
crack detection task, with RS and BACW techniques 
potentially yielding better results than US 
techniques.The model with the highest F1 score in the 
validation dataset was selected for further analysis. 
By adjusting the threshold range from 0 to 1. the RS 
as shown in Fig. 9 demonstrated the highest F1 score 
of 0.836 at a threshold of 0.8. The OD and BACW 
yielded comparable F1 scores of 0.832 and 0.828, 
respectively, at thresholds of 0.287 and 0.648. The 
US had the lowest F1 score of 0.809 at a threshold of 
0.774.  

These findings suggest that the RS, which 
employs resampling to balance the training dataset, 
performs best in terms of balancing precision and 
recall, achieving the highest F1 score. The OD and 
BACW exhibit similar performance, with slightly 
lower F1 scores. The US has the lowest F1 score, 
indicating that it may not be the most effective 
method for addressing dataset imbalance in this 
particular case. 
 

 
Fig. 8 Evolution of AUC-PR across training epochs for 
ConvNet models with different data balancing techniques: 
OD (Original Dataset), RS (Resampling), US 
(Undersampling), and BACW (Bias Adjustment with Class 
Weighting). 
 

Furthermore, the epoch numbers at which the 
highest AUC-PR values were reached indicate that 
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the RS and US datasets reached optimal performance 
more quickly (at epoch 3) compared to the OD and 
BACW (at epochs 7 and 6, respectively). This 
suggests that resampling and undersampling 
techniques may lead to faster convergence during 
training, potentially reducing the overall training 
time. 
 

 
Fig. 9 Performance analysis of the RS model on the 
validation dataset. 
 

Overall, these results demonstrate that the 
resampling and the bias adjustment with class 
weighting techniques can be effective in addressing 
imbalanced datasets for crack detection tasks, with 
resampling yielding the best performance in terms of 
F1 score. The analysis of epoch numbers at which the 
highest AUC-PR values were reached, along with the 
outlier prediction analysis, provide insights into 
potential improvements and optimizations for future 
work. 

The selected RS-Model at threshold of 0.821 
yielded comparable performance on the testing 
dataset. With the F1 score of 0.822, recall of 0.837 
and precision of 0.807, the RS-Model is robust to use 
in real world applications. 
 
4.2. Performance of Crack Localization 
 

 
Fig. 10 Positive area, recall, precision, and IoU at 
various magnification factors during crack 
localization. 

The adaptive sliding window approach was 
evaluated for crack detection across images with 
varying surface types and scales. As shown in Fig. 10, 
the analysis demonstrates that the choice of 
magnification factor significantly influences the 
method’s performance. At a magnification factor of 
1.0, the Intersection over Union (IoU) was 0.752, 
recall was 0.793, and precision was 0.939. As the 
magnification factor decreased to 0.8, 0.7, and 0.6, 
the positive area reduced while IoU, recall, and 
precision improved, reaching peak performance (IoU 
= 0.896, recall = 0.907, precision = 0.987) at a 
magnification factor of 0.6. 

These findings suggest that smaller windows are 
more effective at accurately localizing cracks, as they 
better capture the fine details of crack features. 
However, reducing the positive area also decreases 
the workload for subsequent semantic segmentation, 
potentially enhancing efficiency. The adaptive sliding 
window technique exhibited robust performance 
across different surfaces, demonstrating flexibility in 
handling varying textures and crack characteristics. 

When categorized by surface type, performance 
metrics indicated high precision and recall across 
both painted masonry and concrete pavement. For 
painted masonry, precision, recall, and IoU were 
0.982, 0.937, and 0.921, respectively. For concrete 
pavement, the values were 0.923, 0.909, and 0.845, 
respectively. The results highlight the method’s 
adaptability across different structural materials, 
making it suitable for a wide range of real-world 
applications. 

 
4.3 Semantic Segmentation 
 

The semantic segmentation step was evaluated 
using precision, recall, and IoU, with results analyzed 
separately for painted masonry and concrete 
pavement surfaces. The outputs from crack 
localization served as the ground truth. 

For painted masonry, the segmentation achieved a 
precision of 0.933, recall of 0.940, and IoU of 0.881, 
indicating high accuracy with minimal false positives 
and substantial overlap between predicted and actual 
crack regions. For concrete pavement, the 
performance was slightly lower, with a precision of 
0.933, recall of 0.882, and IoU of 0.829. The lower 
recall and IoU suggest some crack features may be 
missed in more complex surfaces like concrete 
pavement, though the method remains highly reliable 
overall. 

Compared to previous studies, such as those 
employing DeepCrack and SCCDNet-D32 models, 
which achieved IoU scores of 0.636 and 0.655, 
respectively, our method's performance of 0.671 
demonstrates significant improvements in crack 
detection accuracy, particularly in diverse surface 
types. Additionally, unlike models such as 
SegDecNet++ which require extensive dataset-
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specific training, our approach achieves competitive 
results with a more generalized framework. This 
generalization reduces the need for extensive 
preprocessing and retraining, making it more suitable 
for real-world applications. The research fills a gap in 
existing methodologies by offering a flexible solution 
that balances high accuracy with practical 
applicability across different crack features and 
surface types. Future applications of this study 
include real-time structural health monitoring 
systems for critical infrastructure, where the 
adaptability of the method to diverse conditions will 
be crucial. 

To further assess the method’s robustness, it was 
applied to the DeepCrack dataset for comparison with 
other state-of-the-art models. Our approach achieved 
an IoU of 0.671, ranking third behind SegDecNet++ 
(0.698) and CrackFormer (0.679). The IoU scores for 
other methods on the same dataset include SCCDNet-
D32 (0.655) and DeepCrack (0.636) [28]. Notably, 
our method did not require extensive dataset-specific 
training or labeling, which is a key advantage over 
more specialized models. Despite its competitive 
performance, the proposed semantic segmentation 
approach offers greater practicality for real-world 
applications due to its reduced dependency on 
customized training data. 

 
4.4 Crack Feature Measurement 
 

 The proposed crack measurement framework 
was evaluated by comparing the synthesized crack 
features against the ground truth in Fig. 11 for two 
surface types: painted masonry and concrete 
pavement. In both cases, the replicated crack images 
closely resemble the original cracks in terms of 
length, width, and orientation. For painted masonry, 
the measurements show high precision (0.990), 
indicating that nearly all detected features are true 
positives, with a recall of 0.845, demonstrating good 
sensitivity in capturing actual cracks. The Intersection 
over Union (IoU) for painted masonry is 0.838, 
reflecting substantial overlap between the replicated 
and original cracks. 

For concrete pavement, the framework also 
performed well, with a precision of 0.983, recall of 
0.835, and IoU of 0.823. Despite the complex texture 
and irregularities inherent in concrete surfaces, the 
method effectively captures the essential crack 
features with minimal false positives and solid overall 
alignment between the synthesized and ground truth 
crack regions. The results indicate that the proposed 
measurement algorithm is reliable and performs 
consistently across different surface types. 

In addition to the main experiments, the 
measurement algorithm was tested on the ground 
truth of the DeepCrack dataset to evaluate its pure 
performance, independent of errors introduced in 
previous processes. By directly applying the 

measurement algorithm to the ground truth images 
and comparing the replicated crack features against 
the original dataset, the algorithm achieved a recall of 
0.884, precision of 0.971, and IoU of 0.860. These 
results highlight the effectiveness of the measurement 
approach when no prior process errors are present, 
demonstrating the algorithm’s strong capability in 
accurately quantifying crack features in an ideal 
scenario. 

Overall, the high precision and IoU across all 
evaluations confirm that the measurement algorithm 
is robust, with reliable performance that generalizes 
well across different datasets and surface types. The 
framework not only captures crack dimensions and 
orientations with high accuracy but also maintains 
strong consistency even when applied to diverse 
conditions and textures. This consistency underscores 
the framework’s potential for practical applications in 
structural health monitoring and crack analysis. 
 
5. CONCLUSION AND RECOMMENDATIONS 

 
This study presents an integrated methodology for 

crack detection, segmentation, and measurement in 
reinforced concrete structures using Convolutional 
Neural Networks (ConvNets), adaptive sliding 
windows, and semantic segmentation with DBSCAN. 
The proposed approach effectively addresses 
challenges related to crack detection and analysis 
across diverse surface types, including painted 
masonry and concrete pavement. The results 
demonstrate that the combination of adaptive sliding 
windows and semantic segmentation yields high 
precision, recall, and Intersection over Union (IoU) 
values, reflecting the method’s accuracy and 
robustness. 

In the evaluation of different data balancing 
techniques, the resampling (RS) approach 
outperformed other methods in handling dataset 
imbalance, achieving the highest F1 score and rapid 
convergence during training. The adaptive sliding 
window technique was shown to be flexible and 
effective in crack localization, particularly at lower 
magnification factors, which improved performance 
metrics such as IoU and recall. The semantic 
segmentation process, validated using both custom 
datasets and the DeepCrack benchmark, 
demonstrated competitive performance against state-
of-the-art models while requiring less extensive 
dataset-specific training. 

The crack measurement framework successfully 
quantified critical crack features such as length, 
width, and orientation, with high precision and recall 
across different surface types. The evaluation of the 
measurement algorithm on the DeepCrack dataset 
without prior process errors showed the algorithm’s 
pure performance, yielding a recall of 0.884, 
precision of 0.971, and IoU of 0.860, confirming its 
reliability in an ideal scenario. 
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5.1 Suggestions for Future Research 

 
While the proposed methodology shows 

significant promise, further improvements can be 
pursued. Future work could focus on optimizing the 

semantic segmentation algorithm for better 
generalization across more complex and diverse 
surfaces. Additionally, integrating more advanced 
deep learning architectures, such as transformer-
based models, could further enhance the precision 
and computational efficiency of crack detection and 

Recall: 80.52% 
Precision: 98.94% 
IoU: 79.83% 

Recall: 87.53% 
Precision: 93.56% 
IoU: 82.56% 

Recall: 90.34% 
Precision: 80.34% 
IoU: 73.89% 

Recall: 91.55% 
Precision: 89.34% 
IoU: 82.53% 

Recall: 92.11% 
Precision: 94.59% 
IoU: 87.50% 

Recall: 81.82% 
Precision: 100.00% 
IoU: 81.82% 

Length (pixel) Length (pixel) 

Fig. 11 shows examples of measurement of cracks on (1) painted masonry, and (2) concrete pavement. 

width (pixel) width (pixel) 
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analysis. 
Expanding the dataset with a broader range of 

crack types, environmental conditions, and structural 
materials could also improve the model’s robustness. 
Moreover, exploring real-time applications of the 
proposed approach through deployment on mobile 
platforms or UAVs could extend its utility in 
structural health monitoring, especially in 
inaccessible areas. 

In conclusion, the proposed framework offers a 
practical, efficient, and adaptable solution for crack 
detection and quantification, providing valuable 
insights for infrastructure monitoring and 
maintenance. The findings lay a solid foundation for 
future advancements in automated crack analysis 
using deep learning techniques. 
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