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ABSTRACT: This study proposes an analytical solution for the nonlinear inelastic analysis of statically 
determinate steel-concrete composite girders. The aim is to develop an exact method that accounts for key 
factors influencing nonlinear behavior, including gradual and distributed yielding. A novel approach for 
determining the moment-curvature curves of steel-concrete composite sections is introduced, offering significant 
reductions in computational time while improving accuracy compared to the fiber method. This solution 
addresses the lack of exact methods in the literature by presenting a highly accurate analytical approach that 
eliminates the need for subdividing girders into multiple elements or solving complex systems of equations, as 
required in numerical methods. Validation is achieved through comparisons of load-displacement curves with 
advanced numerical analyses and full-scale test results from the literature, demonstrating excellent agreement. 
These findings establish the proposed method as a reliable benchmark for validating numerical models and 
provide engineers with a straightforward yet precise tool for assessing deflection and material behavior in 
statically determinate girders. 
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1. INTRODUCTION 
 

Many researchers have proposed advanced 
methods for the analysis, design, and construction of 
bridge girders to ensure their safety throughout their 
service life [1-3]. Steel-concrete composite 
structures are widely used in industrial, commercial, 
residential buildings, and bridges due to their 
inherent advantages, including high strength, 
excellent ductility, and ease of rapid fabrication and 
erection. However, linear elastic analysis cannot 
account for material and geometric nonlinearities, as 
well as imperfections such as residual stresses and 
initial geometric imperfections. When structural 
members approach their limit states, they typically 
exhibit an elasto-plastic response. Despite this, in 
limit state checks, the member forces are often 
derived from linear elastic analyses, which do not 
reflect real limit state conditions, leading to 
uncertainties in member reliability. 

In the concentrated plastic hinge theory, plastic 
deformation is assumed to occur only at the two 
ends of an element. A plastic hinge forms once the 
bending moment exceeds the maximum elastic 
moment of the section, while regions outside the 
plastic hinges are assumed to remain elastic [4-7]. 
However, this approach is limited in accurately 
modeling flexural stiffness along the beam, as it 
depends on bending moment distribution. To 
improve accuracy, a single physical element may 
need to be subdivided into multiple smaller elements, 
which can result in significantly increased 
computational time. 

In contrast, the distributed plasticity model 
allows the gradual spread of plasticity along the 
element. Two main approaches are typically used to 
model this behavior: (1) the displacement-based 
method (finite element approach) and (2) the force-
based (flexibility) method. Deng and Ghosn [8] 
proposed a method to model the nonlinear behavior 
of bridge girders by evenly distributing the effects of 
nonlinearity over an equivalent grid element’s 
plastic hinge length. In the displacement-based 
method [9], curvatures along the element are 
interpolated under the assumption of constant 
stiffness. While this approach achieves acceptable 
accuracy by using multiple elements per member, it 
becomes less efficient when stiffness changes due to 
material nonlinearity. On the other hand, the 
flexibility-based approach models gradual plasticity 
with only one element per physical member. 
However, its implementation in finite element 
programs is more complex [10]. Both approaches 
face challenges when assuming displacement 
functions, which are typically derived for prismatic 
sections [8-11]. When applied loads cause stress to 
exceed the elastic range, girders undergo gradual 
and distributed yielding, making prismatic section 
assumptions inadequate and reducing analysis 
accuracy. 

To account for material nonlinearity, cross-
sections are often discretized into fibers [6,7,10-14], 
where the uniaxial stress-strain relationship of each 
fiber models the material behavior. The moment- 
curvature relationship of the cross section is then 
developed based on this approach. The fiber method 
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is computationally intensive and can introduce errors 
in cases of highly nonlinear behavior or sharp 
transitions in material properties. 

AASHTO/NSBA recommends both hand 
analysis and finite element methods for designing 
bridge girders [15]. However, in hand analysis, there 
is no explicit method for verifying service limit state 
control for permanent deflection, leaving engineers 
reliant on analysis software or numerical methods 
like the finite element method. While finite element 
solutions improve with higher mesh density or an 
increased number of elements, engineers must 
carefully select the mesh size, as too few elements 
can lead to significant errors in bridge analysis. 

This study introduces a novel approach for 
developing an exact moment-curvature curve for 
steel-concrete composite cross-sections, offering a 
significant reduction in computational time and 
accuracy compared to the fiber method. Unlike 
previous research, which primarily benchmarked 
numerical methods against experimental data or 
other numerical approaches [6,7,10,11,14], this 
study addresses the absence of exact solutions in the 
literature by presenting a highly accurate analytical 
method. The proposed approach eliminates the need 
to subdivide girders into numerous elements or solve 
complex systems of equations, as required in 
numerical methods. 

 
2. RESEARCH SIGNIFICANCE 

 
This study introduces an innovative method to 

develop an exact moment-curvature curve for steel-
concrete composite cross-sections, offering a 
breakthrough in accuracy and efficiency. Unlike the 
traditional fiber method, this approach drastically 
reduces computational time, making it highly 
practical for engineering applications. Furthermore, 
the research presents a precise solution for 
determining girder deflection, addressing a critical 
challenge in structural analysis. By improving the 
computational efficiency and accuracy of these 
calculations, this study contributes to the 
advancement of structural design methodologies, 
enabling engineers to optimize composite structures 
with greater precision and confidence. Its findings 
have broad implications for both academia and 
industry. 

 
3. PROPOSED METHOD  
 
3.1 Cross Section 
 

The cross-section dimensions include concrete 
slab width (bs) and thickness (ts), steel I-section 
height (h), flange width (bf), flange thickness (tf), 
and web thickness (tw), as shown in Fig. 1. The 
following assumption can be made: 1) a perfect 
bond between the steel and concrete components of 

a composite concrete-steel cross-section is assumed 
then after deformation, the plane section remains 
plane; 2) no shear and torsional interaction effects 
are accounted for in the steel and concrete 
constitutive models; and 3) large displacement and 
rotation but small strain. 
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Fig. 1 Typical cross-section 
 
3.2 The Behavior of Steel 
 

The axial stress-strain relationship of steel 
material, both in tension and in compression, is 
assumed to be a multi-linear elastic-plastic [10], as 
shown in Fig. 2 and presented in Eq. (1) as follows: 
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where εs is axial strain and σs is axial stress of the 
steel section; s=s(εs) is signum function of εs, s=1 if 
εs≥0, and s=-1 if εs<0; εys, εhs, εus denote yield, 
hardening and ultimate strains, respectively; Es is 
Young’s modulus; Ehs1 and Ehs2 are hardening 
moduli, represent the slopes of the yielding 
branches; fys, fhs, and fus are yield, hardening and 
ultimate strengths, respectively. 
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Fig. 2 The stress-strain relationship of steel 
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3.3 The Behavior of Concrete 
 

Since concrete is used mostly in compression, the 
stress-strain relation in compression is of primary 
interest. The concrete stress-strain relation exhibits a 
nearly linear elastic response up to about 30% of the 
compressive strength then is followed by gradual 
hardening up to the concrete compressive strength 
when the material stiffness drops to zero. Beyond 
the compressive strength, the concrete stress-strain 
relation exhibits strain-softening until failure takes 
place by crushing. The monotonic envelope curve 
introduced by Kent and Park was adopted in this 
study for its simplicity and computational efficiency 
[16]. The monotonic stress-strain relation for 
concrete under compression is depicted in Eq. (2) as: 
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where εc is axial strain and σc is axial stress of 
the concrete; fc is prism compressive strength in 
uniaxial loading, taken as 0.76fuc, where fuc 
represents the cubic compressive strength and can be 
approximately evaluated as 1.25f0c where f0c 
represents the cylinder compressive strength; Ec 
denoted Young’s modulus of the concrete, can be 
computed by using ACI318-08 [17] equation as 

4700 ( )c cE f MPa=  (MPa) for normal weight 
concrete; ε0c is a corresponding strain to fc, 

0 2c c cf Eε = ; εuc is ultimate strain; and η is residual 
stress factor. 
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Fig. 3 The stress-strain relationship of concrete 
 

The stress-strain relationship of concrete in 
tension developed by Vebo and Ghali [18] was 
adopted in this study, given in the following forms: 
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where fcr represents the tensile strength of 
concrete; ε1c is strain corresponding to cracking 
stress; ε2c is strain corresponding to tensile stress 
reducing to half of cracking stress after cracking, ε2c 
=2.625fcr/Ec; ε3c is strain corresponding to zero 
tensile stress; and Ecr1=0.8Ec and Ecr2=0.075Ec are 
cracking moduli. The stress-strain curve of the 
concrete for both compression and tension is 
illustrated in Fig. 3. The number inside the circle 
indicates the segment number that is used to 
establish equation of stress to determine moment-
curvature curve. 
 
3.4 The Behavior of Steel Rebar 
 

In the tensile region of concrete, the stress-strain 
relationship of an embedded rebar differs 
significantly from that of a bare bar due to the bond 
between the rebar and the surrounding cracked 
concrete. Upon the formation of cracks in the 
concrete, the stress on a steel bar decreases from its 
maximum value at the crack to its minimum at the 
midpoint between two adjacent cracks. When 
approaching yielding, the rebar at the crack typically 
yields first, while the one at the midpoint between 
two adjacent cracks remains under lower stress. This 
will result in nonuniform stress distribution along 
the rebar in the crack zone. Berlabi and Hsu 
proposed an average stress-strain curve to represent 
stress-strain relationship of the embedded rebar in 
tension [19], as shown in Fig. 4. This stress-strain 
curve can be expressed as the following equation: 
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Where εr is axial strain and σr is axial stress of 
the rebar; Er and fyr are Young’s modulus and yield 
strength of the rebar material, respectively; fnr and εnr 
is the average yield stress and yield strain, 
respectively; εur is the ultimate strain; B=(fcr/fyr)1.5/ρ; 
ρ is longitudinal steel rebar ratio (ρ≥0.25%); and 
β=0.91-2B+(0.02+0.25B)εr/εyr. 

Berlabi and Hsu also proposed the average yield 
strain as [19]: 

( )0.93 2nr yr Bε ε= −    (5) 

nr r nrf E ε=      (6) 
The ultimate strain can be derived from Eq. (4): 
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The slope of the strain hardening branch of the 
rebar is obtained from derivation of Eq. (4) as: 

( )0.02 0.25hr rE E B= +     (8) 
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Fig. 4 The stress-strain relationship of rebar 
 
3.5 Moment-Curvature Curve 
 

Previously, most researchers utilized the fiber 
method to construct the moment-curvature curve [5-
7,10,13,14]. A novel method for accurately 
obtaining this curve is described in this section [20].  
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b) Stress distribution 
Fig. 5 Strain and stress distributions 
 

Figure 5a displays a portion of a steel-concrete 
composite girder with the cross-section depicted in 
Fig. 1. When subjected to a bending moment, M, 
curvature of the section is ϕ. The neutral axis shifts 
from X to X' upon loading with distance of two axes 

is y0 to satisfy the equilibrium condition in the axial 
direction. The axial strain is assumed to be uniform 
horizontally and linearly varying vertically, as 
illustrated in Fig. 5a and determined as follows: 
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where: εc, εs, and εr are axial strains in concrete 
slab, steel section, and rebar, respectively; yc, ys, and 
yr are distances in the vertical direction (Y) from 
neutral axis X-X to the location that need to 
determine strains in concrete slab, steel section, and 
rebar, respectively, as shown in Fig. 5b. The stresses 
distributed along the cross section (Fig. 5b) are then 
derived from the stress-strain curves of concrete, 
steel section and rebar depending on the strain level 
(Figs. 2 to 4). Utilizing this stress distribution, the 
axial forces in the concrete slab (Fc), steel section 
(Fs) and rebars (Fr) can be formulated as: 
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where: j is segment index on the stress-strain 
curves as displayed in circles shown in Figs. 2 to 4; 
Ari is area of the ith rebar; nc and ns are number of 
sub-ranges of concrete slab and steel section, 
respectively; nr is number of the rebars; b=bf if  sub-
range is in the flange, and b=tw if sub-range is in the 
web; σcj, σsj, and σrj are stress functions of concrete 
slab, steel section and rebar, respectively, as 
presented in Table 1 to Table 3 by adopting Eqs. (1) 
to (4); k is index of boundaries of sub-ranges, 
defined by the boundaries of the concrete slab, the 
flange and web of the steel section, and any 
discontinuities on the stress-strain curves. By 
applying the corresponding strains at the boundaries 
of these sub-ranges to the stress-strain curves, the 
stress in each sub-range can be determined. Since no 
external axial force is applied to the girder, the 
resultant force of the cross-section should be zero as 
follows: 

0c s rF F F+ + =     (11) 
The distance y0 between X and X’ is determined 

iteratively. Initially, y0 is set to zero and then 
adjusted to satisfy Eq. (11). Once Eq. (11) is 
satisfied, the bending moments are calculated as 
follows: 

c s rM M M M= + +    (12) 
where Mc, Ms, and Mr are bending moments 

about neutral axis in concrete slab, steel section, and 
rebars, respectively and determined as follows: 
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Table 1. Stress functions for concrete slab 
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Table 2. Stress functions for steel section 
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Table 3. Stress functions for rebar 
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3.6 Displacements of The Girders 
 

Since these girders are statically determinate, the 
bending moment can be determined solely from 
equilibrium equations. Based on bending moments 
along the girder and moment-curvature curve, the 
curvature along the girder can be obtained as: 

( )Mφ φ=      (14) 
The rotation and displacement of the girders can 

then be calculated based on the moment-curvature 
curve as follows: 

dx C

w dxdx Cx D

θ φ

φ

= +

= + +
∫
∫ ∫

   (15) 

where θ and w are rotation and displacement of 
the girder; C and D are constants of integrations 
determined from boundary conditions. Equation (15) 
can be implemented using the Riemann integral, 
which is defined as a limit of sums. This approach, 
as described by Bear [21], allows for the calculation 
of the integral by summing the contributions from 
each small segment of the girder and taking the limit 
as the segment size approaches zero.  
 
4. EXAMPLES AND DISCUSSIONS 
 
4.1 The Cantilever Beam 
 

The accuracy of the proposed method for 
analyzing the steel-concrete composite beam was 
validated using the cantilever beam model of Ngo-
Huu [5]. This beam comprised a W12x27 steel 
section and a concrete slab measuring 0.102 m x 
1.219 m, illustrated in Fig. 6a. 
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a) Geometry and cross section 

 
b) Developed moment-curvature curve 

 
c) Load-displacement curves 
Fig. 6. The cantilever steel-concrete composite beam 
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The compressive strength of the concrete slab 
was 16 MPa, from which the tensile strength 
fcr=2.48 MPa, Young’s modulus Ec=16016 MPa, and 
ε0c=0.002 of the concrete slab were derived. The 
residual strength factor η was set to 1.00 to align 
with the concrete model used in Ngo-Huu [5]. The 
effect of the rebars were ignored in this analysis. 
The Young’s modulus, yield strength and hardening 
modulus of structural steel were determined to be 
Es=2x105 MPa. fsy=252.4 MPa and Esh=750 MPa, 
respectively. 

Based on the section properties, the moment-
curvature curve was developed, as shown in Fig. 6b. 
The proposed method was compared with the 
ABAQUS shell and solid models, as well as the 
fiber hinge model from Ngo-Huu [5], as illustrated 
in Fig. 6c. The results from the proposed method 
demonstrated excellent agreement with the 
ABAQUS shell and solid models. However, the 
fiber hinge model slightly underpredicted the results 
beyond the yield point. The proposed method, being 
analytical and simple, provides more accurate 
predictions compared to the plastic hinge model in 
this example. 
 
4.2 The Simply Supported Girder 

 
Two simply supported steel-concrete composite 

girders, SCB-1 and SCB-3, subjected to sagging 
moments were tested by Nie and Cai [22] and 
analyzed numerically using an advanced mixed 
finite-element approach by Nie et al. [23].  
Additionally, Chiorean [10] analyzed the girders 
using a girder finite-element approach. The 
geometry, materials and section properties of the test 
girders are depicted in Figs. 7a and 8a. The cubic 
compressive strength of the concrete in compression 
is fcu=27.7 MPa. The following properties were 
computed: fc= 210.52 MPa, Ec=21564.76 MPa, 
fcr=2.84 MPa, ε0c=0.00195. The tensile strength of 
the concrete is considered according to the model 
described in Fig. 3. The behavior of the reinforced 
bars, both in tension and compression, are modelled 
according to the model described in Fig. 4 with the 
yield strength fyr=290 MPa. The yield stress of the 
structural steel is fsy=310 MPa, Young’s modulus is 
Es=20000MPa, Esh1=0, and the strain hardening 
modulus is Esh2=100 MPa, the corresponding strains 
are εsy=0.025, εsh=0.1, and εsu=0.2. 

The moment-curvature curves for the cross 
sections are illustrated in Figs. 7b and 8b, with 
maximum bending moments of approximately 210 
kN.m and 250 kN.m for the SCB-1 and SCB-3 
girders, respectively. These values are close to the 
maximum bending moments reported by Nie et al. 
[23]. The comparison of load-displacement curves 
between the proposed method, numerical methods 
and test results for SCB-1 girder is plotted in Fig. 7c. 
The proposed method matches perfectly the 

numerical methods but all of them slightly 
unpredicted the capacity of the girder. The 
maximum difference of the capacity is about 5 kN 
(3.8%) at the displacement of 0.04 m, considered an 
acceptable error. 
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c) Load-displacement curves at mid-span 
Fig. 7. The test girder SCB-1 [22,23] 
 

Figure 8c presents the load-displacement curves 
from the analyses and the test results for the SCB-3 
girder. The proposed method and the beam finite 
element method [10] show excellent agreement with 
the test results [22], whereas the mixed finite 
element method [23] overestimates the girder's 
capacity. 
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a) Geometry and cross section 

 b) Developed moment-curvature curve 

 
c) Load-displacement curves at mid-span 
Fig. 8. The test girder SCB-3 [22,23] 
 

All analyses neglect the shear slip effect 
between the concrete slab and the steel girder, the 
load-deflection curves projected by the proposed 
method and other methods exhibit slightly greater 
stiffness compared to the test results, particularly 
immediately after yielding as shown in Figs. 7c and 
8c. 

The plastic hinge method [4-7,24] was employed 
for additional analyses to ensure the reliability and 
high accuracy of the proposed method. In the plastic 
hinge method, the girders are divided into number of 
elements and the plastic hinges are assumed to form 
at the ends of the elements only. The comparisons of 

the load-displacement curves in Figs. 9a and 9b 
reveal no discrepancies between the methods. It can 
be concluded that the proposed method is efficient, 
straightforward, and highly accurate. 

 

 
a) SCB-1 girder 

 
b) SCB-3 girder 
Fig. 9. Comparison of the proposed method with the 
plastic hinge method 
 
5. CONCLUSIONS 
 

This study introduces a novel approach for 
determining moment-curvature curves and provides 
an exact analytical solution for the nonlinear 
behavior of statically determinate steel-concrete 
composite girders. The following conclusions can be 
drawn: 
• The proposed method achieves higher accuracy 

compared to the mixed finite element method 
and the plastic hinge method when the latter uses 
a single element. 

• The analysis results of the proposed method align 
perfectly with those obtained from beam element 
and plastic hinge methods that account for 
gradual and distributed yielding. 

• Validation through comparisons with two full-
scale test results from the literature, showing 
either acceptable discrepancies or high accuracy 
in determining the girder capacities, 
demonstrates strong consistency and confirms 
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the robustness of the proposed method. 
The proposed method combines simplicity with 

high accuracy, making it a practical and reliable tool 
for analyzing statically determinate girders. 
Additionally, this approach can be extended to 
analyze reinforced concrete and prestressed 
reinforced concrete girders, provided the moment-
curvature curves for these sections are available. 
This versatility enhances its utility for both research 
applications and engineering practice. 
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