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ABSTRACT: Historic sites in Thailand, many of which are recognized by UNESCO, hold immense historical 
and cultural significance. However, these invaluable structures are increasingly at risk of deterioration due to aging, 
environmental factors, vibrations, and natural disasters such as floods. Cracks and structural damage are common 
challenges, further aggravated by the inefficiencies and limitations of traditional inspection methods, which are 
labor-intensive, prone to human error, and often restricted by the inaccessibility of certain areas. To address these 
challenges, this study proposes an automated damage detection system specifically designed for heritage masonry 
structures using Faster Region Convolutional Neural Networks (FRCNN). The system efficiently detects and 
localizes structural damage with high precision, providing a reliable and cost-effective alternative to manual 
inspections. The system's performance was evaluated using five Faster R-CNN models with different backbone 
architectures: VGG16, VGG19, ResNet50, ResNet101, and ResNet152. In this comparison, the ResNet152 model 
achieved the highest accuracy of 81.29% and a recall value of 81.13%, demonstrating its capability to effectively 
detect cracks in historical structures. 
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1. INTRODUCTION 
 

Thailand's cultural heritage sites, such as Wat Si 
Phichit Kirati Kanlayaram in Sukhothai (Fig. 1), hold 
immense value in preserving the nation's historical 
and cultural identity. However, these structures are 
increasingly vulnerable to deterioration due to aging, 
human activities, and natural disasters such as floods 
and earthquakes. The ability to detect and monitor 
structural damage is crucial for maintaining their 
integrity and long-term conservation. 

Currently, visual inspection is the primary method 
used to assess the condition of historical structures. 
However, this approach is time-consuming, costly, 
and susceptible to human error. Moreover, accessing 
certain sites, particularly tall structures like stupas, 
poses significant challenges. Traditional defect 
detection methods often rely on handcrafted features, 
which have limited accuracy and adaptability. These 
methods depend heavily on the expertise of 
researchers and struggle with complex images where 
distinguishing between defects and the background 
becomes challenging. 

Most traditional damage detection techniques 
involve two main steps: (1) feature extraction using 
techniques like gray-level co-occurrence matrices 
(GLCM) [1], edge detection [2], multi-feature 
approaches [3], and principal component analysis 
(PCA) [4]; and (2) pattern recognition through 
classifiers such as  Support  Vector  Machines  (SVM)  

 
 
Fig. 1 Wat Si Phichit Kirati Kanlayaram, a temple in 
the historic province of Sukhothai, Thailand 
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[5] and Neural Networks [6]. For example, Shahid 
Kabir et al. (2010) [7] employed GLCM features and 
Artificial Neural Networks (ANN) to identify 
damages caused by alkali-aggregate reactions (AAR). 
Similarly, Abdul-Qadir (2003) [8] applied edge 
detection techniques for crack identification in 
bridges. However, edge detection algorithms often 
perform poorly on noisy images, as they are 
optimized for noise-free conditions [9]. Nishikawa 
(2012) [10] proposed sequential image filtering for 
crack detection in concrete, and German et al. (2012) 
[11] used machine vision for post-earthquake safety 
assessments, with a focus limited to concrete spalling. 
Yuem (2015) [12] developed an automated crack 
detection system for bridge inspections, while Cha 
(2016) [13] proposed a vision-based method to detect 
loosened bolts using Hough transform features and a 
Support Vector Machine classifier. Similarly, Zalama 
(2014) [14] utilized Gabor filters for feature 
extraction in road pavement damage detection. While 
these methods have been enhanced in studies such as 
those by Liao (2016) [15] and Chen (2012) [16], they 
often require computationally intensive pre- and post-
processing steps, limiting their efficiency. To address 
these challenges, deep learning methods have 
emerged as a superior alternative. 

Deep learning has been increasingly adopted for 
crack detection due to its ability to learn hierarchical 
features directly from images. Convolutional Neural 
Networks (CNNs) have demonstrated high accuracy 
in crack detection tasks. For instance, Cha (2017) [17] 
developed a CNN-based system for detecting cracks 
in concrete structures, while Zhang (2016) [18] 
applied deep convolutional networks to identify road 
cracks using smartphone images. However, while 
CNNs excel in multi-class classification, traditional 
sliding window techniques for damage localization 
remain inefficient due to variations in image size. To 
overcome these limitations, region-based CNNs (R-
CNNs) were introduced. Girshick (2014) [19] 
pioneered R-CNN, which combined CNN for feature 
extraction with SVMs for classification and 
localization. However, R-CNN was computationally 
slow. He (2014) [20] improved this with Spatial 
Pyramid Pooling (SPP-net), increasing speed while 
maintaining accuracy. Girshick (2015) [21] then 
introduced Fast R-CNN, which streamlined feature 
extraction but still relied on selective search for object 
proposals, causing inefficiencies. Finally, Ren (2016) 
[22] developed Faster R-CNN, which integrated a 
Region Proposal Network (RPN) to significantly 
reduce computational costs while maintaining high 
detection accuracy. Hacıefendioğlu (2022) [23] 
further applied Faster R-CNN to crack detection on 
concrete roads under various environmental 
conditions, analyzing the effects of different factors 
and found that weather, illumination levels, distance, 
and image height significantly influenced crack 
detection accuracy. 

Damage detection in historical structures presents 
additional challenges due to the delicate nature of 
materials and the varying surface textures of 
historical masonry. Research in this domain remains 
relatively limited compared to concrete-based crack 
detection studies. Wang (2019) [24] applied Faster R-
CNN to historical brick structures but found that 
certain types of damage remained undetectable. More 
recently, Karimi (2024) [25] compared YOLOv5’s 
performance in detecting cracks on historical 
materials such as stone, brick, cob, and tiles. The 
study concluded that YOLOv5 performed best on 
concrete, and background characteristics 
significantly influenced detection accuracy. In some 
cases, material joints were misclassified as cracks. 

The objectives and motivations of this study are 
to leverage deep learning capabilities for accurately 
and efficiently detecting structural damage. Given the 
unique characteristics of historical surfaces, 
addressing these challenges is crucial for improving 
damage detection accuracy. Additionally, no prior 
research has specifically focused on Thailand’s 
historical structures. To overcome these challenges, 
this study employs Faster R-CNN to enhance crack 
detection in Thailand’s historical structures. The 
dataset for this study consists of images collected 
using DSLR cameras from various historical sites in 
Thailand. The proposed system enables near real-time 
damage detection, which is expected to be an efficient 
and reliable alternative to traditional inspection 
methods. 

The paper is organized as follows: Section 2, 
research significance; Section 3, details the proposed 
methodology; Section 4, describes data generation 
and experimental results; Section 5, concludes and 
discusses the study; and Section 6, provides 
acknowledgments. 
 
2. RESEARCH SIGNIFICANCE 

 
This study presents an approach for detecting 

cracks in heritage masonry structures using Faster R-
CNN, addressing a critical need in cultural heritage 
preservation. The proposed method enhances the 
reliability of structural assessments by providing a 
scalable,  accurate,  and cost-effective solution for   
automated structural damage detection. Its practical 
application supports long-term conservation efforts 
and advances the state-of-the-art in inspection 
technologies for cultural heritage preservation. 
 
3. PROPOSED METHODOLOGY  
 

The framework of the damage detection system is 
depicted in Fig. 2. It comprises three primary 
components: (1) image capture via DSLR, (2) 
training the Faster R-CNN model, and (3) testing the 
system. The system's output consists of images with 
damage regions clearly identified and localized. 
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Fig. 2 The framework of the proposed system 
 
3.1 Image Acquisition  
 

In this study, images were captured using a DSLR 
camera to document the surrounding environment 
without approaching too close to the object of interest, 
as shown in Fig. 3. The original images were taken at 
a high resolution of 5184×3456 pixels. To ensure the 
dataset encompassed a variety of real-world 
conditions, images were captured under diverse 
lighting scenarios, including sunny and shaded 
environments, simulating challenges encountered 
during   on-site inspections.   The   dataset includes 
images collected from multiple heritage sites in 
Thailand, featuring a range of materials and structural 
conditions, such as bricks and mixed surfaces. Each 
image was resized to a standardized 2K resolution 
(2560×1440 pixels) to ensure uniformity across the 
dataset. This 2K resolution is sufficient to provide 
high-quality data for analysis while maintaining 
computational efficiency and conserving computer 
resources. Additionally, bounding boxes were 
manually annotated to identify regions of interest, 
which were critical for training and evaluating the 
detection model. This carefully curated and diverse 
dataset serves as a robust foundation for achieving 
reliable and accurate damage detection outcomes.  
 
3.2 Faster Region-based Convolutional Neural 
Network (Faster R-CNN) 
 

The architecture of Faster R-CNN is illustrated in 
Fig. 4. In this model, the CNN’s feature extraction 
process is utilized jointly by both the Region Proposal 
Network (RPN) and the Fast R-CNN module. A key 
advancement of Faster R-CNN compared  to  Fast  R-
CNN lies in its replacement of the selective search 
algorithm with the RPN, significantly enhancing 
processing speed and reducing computational 
demands. Moreover, the  convolutional  feature  maps  

 
 
Fig. 3 Sample images of structures captured using a 
DSLR camera 
 
are shared between the   RPN   and the detection 
network, making the RPN computationally efficient 
and nearly cost-free. 
 
3.2.1 Convolutional Neural Network 

The damage detection system utilizing Faster R-
CNN comprises two primary components: Fast R-
CNN and the Region Proposal Network (RPN). Both 
components share the same Convolutional Neural 
Network (CNN) architecture. CNNs, a type of 
multilayer feedforward artificial neural network, 
excel at solving complex real-world problems by 
learning hierarchical features from input data. In this 
study, the CNN architectures evaluated include 
VGG16, VGG19, ResNet50, ResNet101, and 
ResNet152.   VGG16    and   VGG19   [26]    are deep 
convolutional neural networks characterized by their 
simplicity and uniform architecture, with 16 and 19 
layers, respectively. Both architectures consist of 
convolutional layers for feature extraction (13 in 
VGG16 and 16 in VGG19) followed by three fully 
connected (FC) layers for classification. ResNet50, 
ResNet101, and ResNet152 [27] belong to the 
Residual Networks (ResNet) family, which addresses 
the vanishing gradient problem through the use of 
skip connections, also known as residual connections. 
These connections facilitate the smooth flow of 
gradients throughout the network, enabling effective 
training in very deep architectures. ResNet50, 
ResNet101, and ResNet152 contain 50, 101, and 152 
layers, respectively. Each ResNet architecture begins 
with a convolutional layer, followed by bottleneck 
blocks—comprising three convolutional layers 
each—and concludes with a fully connected layer for 
classification. Specifically, ResNet50 includes 16 
bottleneck blocks, ResNet101 has 33, and ResNet152 
incorporates 50 bottleneck blocks. 
 
3.2.2 Region Proposal Network (RPN) 

A Region Proposal Network (RPN) is a 
convolutional network that uses fully convolutional 
layers to generate object proposals in the form of 
rectangular bounding boxes from input images. The 
process begins with extracting feature maps using a 
CNN backbone.  A  sliding  window  is  then  applied  

Dataset
• Historical structure image

Convolutional Neural Network
• VGG16, VGG19
• ResNet50, ResNet101, ResNet152

ROI Pooling Region Proposal
Network

Fully Connected
Layer

Object Classification

Bounding Box
Regression

Faster R-CNN
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Fig. 4 The architecture of Faster R-CNN (The top portion of the figure represents region proposal network while 
the bottom portion represents Fast R-CNN) 
 
across these feature maps, where each window is 
processed by a convolutional layer with ReLU 
activation. The resulting features are subsequently fed 
into a SoftMax layer and a set of bounding box 
regressors.  The   SoftMax layer determines whether 
each region contains an object or represents 
background, while the regressors adjust the bounding 
box coordinates for greater precision. These bounding 
boxes,   referred to as anchors,   are generated by 
combining various aspect ratios (e.g., 1:1, 2:1, and 
1:2) with different scales (e.g., 128x128, 256x256, 
and 512x512). The RPN generates region proposals 
with associated probabilities and refined bounding 
box coordinates, which are subsequently passed to the 
detection network for further classification and 
precise      localization.       To      provide      a      clearer  
understanding   of   the   RPN   architecture,    Table    1 
presents the specifications of the RPN layers used in 
this study, which are implemented across five 
backbone models: VGG16, VGG19, ResNet50, 
ResNet101, and ResNet152. 

Table 1. RPN layer specifications 

Layer Name Filter size Depth stride 
conv1 3x3 64 2 

conv2_x 3x3 128 2 
Conv3_x 3x3 256 2 
Conv4_x 3x3 512 2 
rpn_conv 3x3 512 1 
rpn_cls 1x1 9 1 

rpn_bbox 1x1 36 1 
 
 

 
3.2.3 Fast Region-based Convolutional Neural 
Network (Fast R-CNN) 

The Fast R-CNN processes object proposals 
generated by the RPN by using a CNN to extract 
feature maps from these proposals, which correspond 
to specific regions of the original input image. The 
region proposals are mapped onto the feature maps, 
with the extracted features referred to as Regions of 
Interest (RoIs). During the RoI pooling process, max-
pooling is applied to the RoIs to produce fixed-size 
feature vectors for each region. These feature vectors 
are then passed through fully connected (FC) layers, 
followed by a softmax layer for classification. The 
softmax layer computes the probability of damage 
within the image, while a regression layer refines the 
bounding box coordinates and dimensions for precise 
localization. 

 
3.2.4 Loss Function and Optimization  

During the training process, loss functions are 
used to compute errors for different components of 
the model. Smooth L1 Loss (𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)  is applied for 
regression loss in both the Region Proposal Network 
(RPN) and the classifier, as defined in Equation (1). 
For classification loss in the RPN, Binary Cross 
Entropy Loss (𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵)  is used, as defined in Equation 
(2). The classifier utilizes Categorical Cross Entropy 
Loss ( 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶)  for classification loss, as defined in 
Equation (3). Additionally, Mean Absolute Error 
(MAE) is employed to compile the entire model, as 
defined in Equation (4). The computed losses are 
backpropagated through the network, allowing 
iterative parameter updates to enhance model 
performance. 
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   𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(∆) = �0.5 x (∆)2    if |∆| < 1
|∆| − 0.5    if |∆| > 1

                     (1) 
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(4) 
 
 

∆ = 𝑦𝑦 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, where N is number of samples in 
the dataset, y is true label (either 0 or 1) and 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is 
predicted probability (between 0 and 1). The 
optimization process leverages the Adam optimizer 
[28], which incorporates bias correction to stabilize 
gradient updates and improve convergence speed 
toward the optimal solution. 

 
3.2.5 Intersection over Union (IoU) 

The Intersection over Union (IoU) metric is 
employed to evaluate target detection performance by 
measuring the proximity of the predicted bounding 
box to the ground-truth bounding box. The area of 
overlap is defined as the intersection between the 
ground-truth bounding box and the predicted 
bounding box, while the area of union represents the 
combined area covered by both bounding boxes. The 
IoU value is computed as described in Eq. (5). 
 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  (5) 

 
3.2.6 Confusion matrix 

The performance of the proposed method was 
assessed using precision and recall metrics, as defined 
in Eq. (6) and (7). These metrics were calculated 
based on True Positives  (TP), True Negatives  (TN),  
False Positives (FP), and False Negatives (FN). True 
Positives (TP) refers to Instances where the model 
correctly identifies an image as containing a crack, 
and the image indeed contains a crack. True 
Negatives (TN) refers to Instances where the model 
correctly identifies an image as not containing a 
crack, and the image indeed does not contain a crack. 
False Positives (FP) refers to Instances where the 
model incorrectly identifies an image as containing a 
crack, but the image does not actually contain one. 
False Negatives (FN) refers to Instances where the 
model fails to identify an image as containing a crack,  

even though the image actually contains one. 
False Negatives are particularly concerning, as they 
may result in the oversight of significant structural 
damage, posing potential risks. 

4. EXPERIMENTS AND RESULTS 
 
4.1 Training dataset 
 

A total of 598 images from various temples, 
including Wat Mahathat Ayutthaya, Wat Mahathat 
Sukhothai, Wat Son Khao, Wat Si Chum, and Wat Sri 
Sawai, were collected to form the training dataset. 
The dataset was divided into a training set of 478 
images (80%) and a validation set of 100 images 
(20%). For testing purposes, 68 images from Wat Si 
Phichit Kirati Kanlayaram were gathered, as detailed 
in Table 2. All images were captured using a DSLR 
camera at a resolution of 5184×3456 pixels. The 
training images were resized to a uniform 2K 
resolution (2560×1440 pixels), and bounding boxes 
were annotated on each image, as illustrated in Fig. 5. 
 
Table 2. Summary of the crack image dataset 

 
Task Total of 

images 
Training 
dataset 

Validation 
dataset 

Training 598 (100%) 478 (80%) 120 (20%) 
Testing 68 - - 

 

 
 
Fig. 5 Sample bounding boxes on images for training 
 
4.2 Training models 

 
The dataset was partitioned into three subsets: 

training, validation, and testing. The training process 
spanned 70 epochs, with each epoch comprising 
1,000 iterations and a learning rate of  0.00001.  The 
CNN backbones evaluated in this study included 
VGG16, VGG19, ResNet50, ResNet101, and 
ResNet152. The training RPN classification accuracy 
graphs for all five models converge toward 1, 
indicating strong performance, as illustrated in Fig. 6. 
Meanwhile,   the   training   loss   graphs   for   all   five  

Crack
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Fig. 6 The training RPN classification accuracy graph 
 
models consistently approach 0, demonstrating 
effective learning capabilities. However, the RPN 
classification loss does not converge to 0 as 
effectively as the other losses, suggesting a reduced 
ability to predict object presence in certain regions, as 
illustrated in Fig. 7. 
 
4.3 Crack Detection  
 

The CNN backbones evaluated in this study 
included VGG16, VGG19, ResNet50, ResNet101, 
and ResNet152.  Among  them,  ResNet152  
outperforms the others, demonstrating superior 
accuracy and efficiency in detecting structural 
damage. The testing results for these models are 
illustrated in Fig. 8. The accuracy, mean IoU, 
precision, and recall metrics for all     five     backbones     
indicate     that     ResNet152 achieves    the highest 
performance, with an accuracy of 81.29, a mean IoU 
of 55.91, a precision of 63.24, and a recall of 81.13. 
These results, which are the highest among all models, 
are summarized in Table 3. 
 
Table 3. Summary of the confusion matrix results for 
the testing dataset 
 

Model Accuracy Average 
IoU 

precision recall 

VGG16 
VGG19 

ResNet50 
ResNet101 

10.38 
9.06 
29.15 
59.86 

3.29 
4.09 
10.07 
26.01 

1.47 
1.47 
7.35 
23.53 

1.64 
1.61 
9.80 

39.02 
ResNet152 81.29 55.91 63.24 81.13 

 
5. CONCLUSION AND DISCUSSIONS 
 

This study evaluates five Faster R-CNN models 
with different backbone architectures: VGG16, 
VGG19, ResNet50, ResNet101, and ResNet152. The  
accuracy and loss graphs exhibit similar trends across 
all models. The training RPN classification accuracy 

graphs for all five models converge toward 1,  
indicating strong performance, while the training loss 
graphs consistently approach 0, demonstrating 
effective learning capabilities. However, the RPN 
classification loss does not converge to 0 as 
effectively as the other losses. Among all models, the 
RPN classification loss of ResNet152 achieves the 
closest convergence to 0, yet still indicates a reduced 
ability to predict object presence in certain regions. 
This issue may stem from challenges in data 
collection, as the complex and uneven surfaces of 
historical  structures  pose  significant difficulties  in 
achieving optimal detection accuracy and reliability, 
particularly in the real world. These challenges are 
worsened by variations in lighting conditions, 
textured surfaces, and obstructions like debris or dirt, 
all of which hinder detection performance. To 
improve the system’s accuracy and applicability in 
practical scenarios, expanding the training dataset is 
essential, as existing datasets for historical structures 
remain limited. Additionally, each structure exhibits 
unique variations in materials and construction 
methods, introducing further complexity and 
necessitating data collection from multiple locations 
to capture diverse structural characteristics and 
environmental conditions.  

The testing results indicate that ResNet152 
outperforms the other models in crack detection. 
However, some areas remain undetected, with certain 
cracks falling outside the rectangular frame, as shown 
in Figure 7, Column 4, Row 6, suggesting that its 
performance is still insufficient for practical 
implementation. ResNet152 achieves the highest 
accuracy, mean IoU, precision, and recall values of 
81.29, 55.91, 63.24, and 81.13, respectively. Despite 
its superior performance, the mean IoU and precision 
remain relatively low, suggesting that further 
improvements in model architecture are required to 
enhance computational efficiency and detection 
accuracy. Recent studies [29] has proposed a new 
methodology, demonstrating that incorporating an 
improved attention-based backbone structure can 
enhance precision, leading to more reliable crack 
detection results. By implementing these 
improvements, the system’s capability to detect 
cracks in historical structures is expected to be 
significantly enhanced, improving its reliability, 
accuracy, and practicality for conservation and 
restoration efforts. 

Future research will focus on improving crack 
detection in historic structures by expanding the 
dataset with contributions from multiple sources and 
environments, including images captured in low-light 
conditions, while also incorporating a broader range 
of materials. Additionally, we plan to refine anchor 
box sizes to enhance detection precision. 
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Furthermore, an enhanced Faster R-CNN model with 
attention will be developed to improve both detection 
accuracy and on-site inspection efficiency. Prior 
research, such as [29], has shown that incorporating 
attention mechanisms can enhance crack localization 
accuracy. Additionally, studies like [30] have 
demonstrated that YOLO achieves significantly 
higher processing speeds than Faster R-CNN but at 
the cost of lower detection accuracy. While manual 
inspection remains a widely used method, it is often 
time-consuming and prone to human error, 
particularly in hard-to-access locations. Previous 
studies, such as [31][32], have highlighted the 
advantages of automated methods in addressing these 

challenges—particularly in reducing inspection time, 
minimizing human error, and improving accessibility 
to       difficult-to-reach        areas.        Given       these  
considerations, this study aims to further evaluate the 
effectiveness of different AI-driven models. A 
comparative analysis of Faster R-CNN, YOLO, and 
an attention-enhanced Faster R-CNN will be 
conducted  to  assess  their  performance  in  terms  of 
detection accuracy, processing speed, and real-world 
applicability. These improvements are expected to 
enhance the system’s resilience and reliability, 
ultimately supporting the long-term preservation of 
historic structures. 
 

 

 
 
Fig. 7 Training loss graphs for the proposed system using (a) VGG16, (b) VGG19, (c) ResNet50, (d) ResNet101, 
and (e) ResNet152
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Fig. 8 The results of the testing data of the proposed system
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