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ABSTRACT: Geosynthetics, including geogrids, geotextiles, and geocomposites, have become increasingly 

popular as a more sustainable and cost-effective alternative to traditional chemical and mechanical treatments. 

Geosynthetics could improve pavement performance by providing separation, filtration, and tensile reinforcement, 

by effectively distributing loads across the pavement structure. This study examines the interface properties of 

geocomposites used with subgrade and subbase materials. Pullout tests were conducted to assess the interlocking 

and frictional resistance between the geosynthetics and soils, considering both sides of the geosynthetic in contact 

with different soil materials. The results indicated that geosynthetic performance varied with soil type, with the 

weakest interaction occurring in the subgrade-subgrade condition and the strongest in the subbase-subbase 

condition. The study further quantified the shear stress and friction angle for various soil-geosynthetic 

combinations, finding that the simulated field conditions fell between the extremes of subbase-subbase and 

subgrade-subgrade interactions. The measured peak shear stresses exceeded the calculated values by 15% for 

geocomposites. This discrepancy suggests the need for a correction factor to enhance the accuracy of design 

predictions, thereby ensuring safer and more reliable geosynthetic applications in pavement construction. The 

obtained interface shear properties can be applied to develop reliable finite element models. Moreover, the testing 

methodology can be used to establish reliable numerical models for evaluating the shear behaviour of various 

geosynthetic materials. 
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1. INTRODUCTION 

 

Australia has the fifth-largest road network 

globally, spanning approximately 800,000 km [1]. 

Over 90% of this network comprises granular roads, 

critical in connecting remote and regional areas [2]. 

However, the construction and maintenance of these 

roads face significant challenges due to the limited 

availability of high-quality materials [3-8]. 

Consequently, marginal materials have been 

increasingly employed, necessitating innovative 

approaches to enhance performance. Optimising 

layer thickness, integrating waste materials for 

sustainability, and adopting advanced road design 

methodologies are used to minimise resource usage 

and improve efficiency [9-17]. 

Expansive soil presents an additional challenge in 

Australia, with approximately 20% of the country’s 

soils and up to 50% of soils in Queensland exhibiting 

expansive properties. These subgrade soils require 

stabilisation to improve strength and durability [18-

25]. Conventional techniques such as lime 

stabilisation [26-28], novel sustainable binders, and 

gravel replacement often raise environmental 

concerns [29-31]. This has driven the need for 

sustainable materials and advanced pavement design 

methods to enhance performance while reducing 

reliance on finite resources [32-36]. 

Geosynthetics have gained significant traction in 

the industry as a solution for reducing material usage, 

improving efficiency, and stabilising subgrades. In 

pavement engineering, geosynthetics play a critical 

role in separation, filtration, and reinforcement [37-

43]. Among these, geogrids and geocomposites are 

particularly effective in stabilising weak subgrades 

[44-50]. Their utilisation increases stiffness, 

minimises deformation, and enhances the resilience 

of pavements constructed on soft subgrades [51-53]. 

Despite their widespread use, there is a notable 

research gap in comparative studies evaluating the 

performance of geogrids and geocomposites, 

necessitating further investigation.  

Early research investigated the interactions 

between cohesive-frictional soils and geogrid 

reinforcements, making substantial contributions to 

our understanding of pullout resistance processes. 

Notably, the adoption of specialist pullout test 

equipment aims to standardise experimental 

methodologies and provide a foundation for future 

study. Geogrid or geomembrane pullout performance 

was found to be influenced by confining pressure, soil 

density, boundary conditions, and geotextile 

properties. Understanding these factors is still crucial 

for appropriately understanding interface behaviour 

during pullout testing and assuring the reliability and 

repeatability of test results. 

This study investigates the interface friction 

characteristics of geosynthetics, which are critical for 

assessing their performance in subgrade stabilisation. 

Controlled pullout tests were conducted with 
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geocomposite samples positioned at the subgrade-

subbase interface, interacting with fine-grained 

subgrade and granular subbase soils. The analysis 

focused on determining frictional interface properties 

between geosynthetics and subbase material, 

followed by evaluations with subgrade soil. These 

properties were used to calculate pullout resistance, 

and the results were validated against experimental 

observations. 

The findings provide a foundation for 

incorporating these characteristics into constitutive 

models used in numerical analysis software. The 

findings provide a foundation for incorporating these 

characteristics into constitutive models used in 

numerical analysis software. These experimentally 

determined properties can substantially improve the 

accuracy of finite element models used for pavement 

design, thereby enhancing the predictability and 

reliability of pavement performance analyses. Thus, 

the present research provides critical data to facilitate 

more accurate modelling of geosynthetic-reinforced 

pavement systems, contributing significantly to the 

field of sustainable pavement engineering. 

 

2. RESEARCH SIGNIFICANCE 

 

This study aims to assess the performance of 

biaxial polypropylene geocomposite within the 

context of low-strength Queensland expansive clay 

soils. Given the proven efficacy of geocomposite in 

enhancing the stability of soft soils, it is crucial to 

generate quantitative evidence that validates their 

performance under such conditions. Key properties 

under examination include the geocomposite's 

interlocking capabilities and the frictional interaction 

between the geosynthetic material and the 

surrounding soil, which are critical determinants of 

overall system strength. By focusing on these vital 

factors, this study establishes the foundation for 

future, more comprehensive laboratory and field 

studies.  The significance of this small-scale model 

lies in its capacity to illustrate the interaction 

dynamics between various geocomposite types and 

different soil materials, which is vital for optimising 

pavement design strategies.  

 

3. TEST MATERIALS  

 

3.1 Geocomposites 

 

The biaxial geocomposite employed in this study 

is fabricated from commercially available 

polypropylene to make it accessible for widespread 

use. The design comprises a grid pattern of flat bars 

intersecting securely at welded points. These bars are 

designed with a width of 12 mm and a depth of 1.4 

mm. The square grid has an aperture size of 

approximately 32 mm. A local supplier provided 

geocomposite samples, which are manufactured in 

Germany. The physical properties of geocomposites 

in the Machine Direction (MD) and Cross Machine 

Direction (CMD) are detailed in Table 1. The selected 

geocomposites comply with the current technical 

standards outlined in the " Queensland Department of 

Transport and Main Roads (QDTMR) Specifications 

MRTS58 - Subgrade Reinforcement using Pavement 

Geosynthetics"[54].  

 

Table 1. Physical properties of geocomposites 

Property 
MD/ 

CMD 

MTRS58 

Specification 

Complain/ 

Non-

compliant 

Nominal Strength 

(kN/m) 
30/30 - - 

Maximum Tensile 

Strength (kN/m) 
32/32 - - 

Tensile Strength  

at 2% Elongation 

(kN/m) 

11/12 ≥ 10.5 Compliant 

Aperture Size 

(mm) 

 

 

32/32 Min ≥ D50 ≈ 9.5mm 

Max ≥ 2 × D85 ≈ 

38mm 

Compliant 

Thickness (mm) 1.4/1.4 - - 

 

3.2 Subbase and Subgrade Materials 

 

The unbound granular material (UGM) used for 

this study was obtained from a local quarry.  The 

materials are classified as Type 2.3 UGM according 

to the current specification of the QDTMR for 

pavement designs in Southeast Queensland. Fig. 1 

illustrates the particle shapes and textures of the 

materials used in this study.  

 

 
Fig.1 Granular material samples (a) Subbase 

materials; (b) Subgrade materials 

 

Fig.2 Grain size distribution of subbase material  

Figure 2 illustrates the particle size distribution, 

adhering to the QDTMR MRTS05 Unbound 
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Pavements. The gradation curve falls within the 

designated upper and lower thresholds of QDTMR 

MRTS05.  

A comprehensive series of compaction tests were 

performed on subgrade and subbase materials at 

moisture content ranges of 19% to 34% and 6% to 8%, 

respectively, by using the standard compaction 

method according to the AS 1289.5.1.1 - 2017. 

 

 

Fig.3 Compaction curve (a) Subbase materials; (b) 

Subgrade materials  

 

Figure 3 shows the optimum moisture content 

(OMC) and maximum dry density (MDD) for 

subgrade and subbase materials. The subgrade soil 

has an OMC of 27.65% and a MDD of 1.48 g/cm³, 

while the subbase material demonstrated an OMC of 

8.5% and a MDD of 2.08 g/cm³. 

 

4. METHODOLOGY 

 

This pullout test series assessed the interface 

friction properties of geocomposite materials in 

interaction with subbases and subgrade soils. These 

properties were employed to compute the pullout 

resistance of the geocomposite at the subgrade-

subbase interface. The computed pullout resistance 

values were subsequently compared with 

experimental results to verify the reliability of the 

testing methodology and calculation procedures. The 

pullout test method followed, where possible, was 

ASTM D6706 [55]. A large direct shear apparatus, 

which can conduct a geogrid pullout test, was used in 

this study. The apparatus features two 100 kN load 

cells to measure vertical and horizontal forces; the 

setup includes two 50mm Linear Variable 

Displacement Transducers. Calibration entailed 

frequent verification of load cell accuracy and 

displacement readings with standard weights and 

precision gauges.   Further, it consists of a manually 

adjustable shear box, and operations can be managed 

through a custom user interface developed by the 

manufacturer.  

However, the large direct shear apparatus has 

intrinsic limitations, such as boundary effects caused 

by the finite dimensions of the pullout box, which 

may influence interface shear stress distribution at 

greater displacements. Additionally, the small sample 

size may impact particle-geosynthetic interactions, 

particularly with coarser materials.  The manual 

operation of the shear box, although well-regulated, 

may create slight variations in displacement rates. 

The schematic diagram in Fig. 4 illustrates the 

pullout test setup and the specimen dimensions are 

150 mm (W) x 150 mm (L) x 200 mm (H). This 

configuration provided 70 mm of soil material on 

either side of the test specimen, while 30 mm thick, 

porous plates were placed at both top and bottom 

surfaces. Testing was conducted at a horizontal pull-

out displacement rate of 1 mm/min across all normal 

stress levels. 

 

 
Fig.4 Pullout box test setup 

 

The mechanical behaviour observed in 

geosynthetic-soil interactions during pullout testing 

can be explained through Mohr-Coulomb shear 

strength theory. According to this theory, shear stress 

at the geosynthetic-soil interface is primarily 

dependent on the effective normal stress, interface 

friction angle, and adhesion.  

A series of pull-out tests were conducted on 

geocomposites under varying normal stress levels (50 

kPa, 100 kPa, 200 kPa, and 400 kPa) across three 

distinct interface conditions:  subgrade-

Geocomposite-subgrade, subbase-Geocomposite -

subbase, and subbase-Geocomposite-subgrade. To 
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evaluate the interface shear strength properties of the 

geosynthetics with both the subgrade and subbase 

materials, a series of tests were conducted in which 

the subgrade was placed above and below the 

geocomposite samples. A similar test series was also 

performed with the other two configurations.  

Pull-out load and horizontal displacement plots 

were used to determine the peak pull-out load for a 

given vertical stress. The pull-out shear strength 

(Peak pull-out shear stress) at a constant normal stress 

was calculated by dividing the peak pull-out force by 

the effective contact area, which was twice the 

geocomposite sample’s plan area due to the two 

contact surfaces. The peak pull-out shear stress values 

were then plotted against the corresponding vertical 

normal stress values, and the interface friction angle 

and adhesion were obtained by fitting the data to a 

linear trendline. 

The measured interface shear strength properties 

between the geocomposite and subgrade soil/base 

layer materials were used to estimate the peak pull-

out force when the geocomposite is pulled by placing 

it between subgrade soil and subbase gravel. These 

estimated values were then compared with 

experimental results to validate and verify the 

experimental procedure for determining the 

geocomposite interface shear strength properties. 

When the soft subgrade is typically placed on top of 

the soft subgrade, followed by a capping gravel layer 

to improve the subgrade. 

 

5. RESULTS AND DISCUSSIONS 

 

Figures 5(a) and 5(b) show the pull-out 

horizontal) load versus horizontal displacement 

behaviour when the geocomposite was embedded in 

subbase material (subbase-subbase) and subgrade 

material (subgrade-subgrade), respectively. 

Furthermore, it was subjected to pull-out under 

various constant vertical stresses. The pull-out 

resistance shows an increasing trend with the vertical 

(normal) stress increases. When there is no distinct 

peak in the horizontal load (peak pull-out force), the 

maximum pull-out load within 25 mm of horizontal 

displacement is considered the peak horizontal (pull-

out) load. This peak load was then divided by the 

effective contact area to calculate the peak shear 

stress for the corresponding vertical (normal) stress. 

Following the same methodology, four pull-out tests 

were conducted by embedding the geocomposite in 

subgrade soil (subgrade subgrade) under the same 

constant vertical stresses. The peak pull-out 

(horizontal) shear stress for each vertical stress was 

calculated using the same procedure applied to the 

subbase-subbase tests. 

Figure 6 demonstrates the peak interface shear 

stress variation with normal vertical stress increased 

when the geocomposite was pulled out after being 

embedded in subbase gravel (subbase-subbase) and 

subgrade soil (subgrade-subgrade). Each dataset was 

fitted to a linear trendline to determine the interface 

friction angle (slope of the line) and adhesion (Y-axis 

intercept), with the corresponding values in Table 2. 

 

 
Fig.5 Relationship between the pull-out (horizontal) 

load vs horizontal displacement for geocomposite (a) 

(subbase-subbase); (b) subgrade- subgrade) 

 

Fig.6 Normal and peak shear stress for geocomposite 

pullout testing 

 

Table 2. Interface shear strength properties for 

geocomposite 

Property 
Subgrade - 

Subgrade 

Subbase - 

Subbase 

Interface Friction Angle, δ 

(degrees) 
0.74 4.33 

Adhesion, cα (kPa) 8.09 33.57 

Four pull-out tests were conducted by placing 

geocomposite between subbase material (above) and 
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subgrade soil (below) (subbase-subgrade) under 

vertical normal stresses. The peak horizontal load was 

plotted against the corresponding normal stress, as 

shown in Figure 7 (Measured). The peak pull-out 

(horizontal) force (FPull) for the geocomposite 

embedded between subbase gravel and subgrade soil 

was then calculated using the following formula (1): 
𝑭𝒑𝒖𝒍𝒍 = 𝑨((𝝈𝒕𝒂𝒏(𝜹) + 𝒄𝜶)𝒔𝒖𝒃𝒃𝒂𝒔𝒆 + (𝝈𝒕𝒂𝒏(𝜹) + 𝒄𝜶)𝒔𝒖𝒃𝒈𝒓𝒂𝒅𝒆)      (𝟏)   

 

 
Fig.7 Comparison of measured and calculated peak 

pull-out loads at varying normal stress for 

geocomposite pull-out (subbase-subgrade) 

 

The measured peak pull-out load is approximately 

15% higher than the calculated value at the same 

normal (vertical) stress. This discrepancy can be 

attributed mainly to non-uniform stress distributions 

arising from localised interactions at geosynthetic 

apertures and soil particle heterogeneity, unlike the 

uniform stresses assumed theoretically. Similar 

deviations were reported in previous studies, such as 

those by Farrag et al. [49], who identified that soil-

geosynthetic interlocking and non-uniform boundary 

stresses contribute significantly to higher measured 

resistance. Despite these variations, the consistently 

higher measured values suggest an inherent safety 

factor in the design process. Therefore, it is 

recommended that the pull-out force calculated using 

Equation (1) be multiplied by 1.15 to account for 

these discrepancies and provide more realistic 

estimates.   

 

6. CONCLUSION 

 

The following conclusions were made based on 

the findings of this study. 

• The research revealed that geocomposite samples 

with maximum pullout resistance increased as 

horizontal displacement and normal stress 

increased.  

• The reasonable agreement between the measured 

and estimated pull-out peak forces in the 

subgrade-subbase scenario verifies the accuracy 

and reliability of the proposed test method in 

determining interface properties. 

• It seems that the Mohr-Coulom friction theory can 

be applied to estimate the interface friction with 

reasonable accuracy. 

• Geocomposites enhance shear resistance and offer 

potential economic and environmental benefits, 

but long-term performance under cyclic loading 

and cost-effectiveness require further 

investigation. 
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