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ABSTRACT: This study introduces an analytical approach for the nonlinear analysis of continuous steel-concrete 
composite girders. The proposed method achieves high accuracy by addressing key nonlinear effects, such as 
gradual and distributed yielding, while overcoming the limitations of conventional numerical techniques that rely 
heavily on element subdivision and complex computations. By utilizing three-moment equations from the force-
based method, the approach establishes relationships between bending moments at three consecutive supports, 
enhancing the analysis of continuous girders and effectively capturing nonlinear flexural behavior. It should be 
noted that the method assumes full composite action and neglects shear slip effects, making it most suitable for 
flexure-dominated scenarios with adequate shear connection. The method's validity is confirmed through 
comparisons with advanced numerical simulations and full-scale experimental data from existing literature, 
demonstrating excellent agreement. These results establish the proposed approach as a dependable benchmark for 
validating numerical models and provide engineers with a practical yet precise tool for evaluating capacities and 
deflections of continuous girders. 
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1. INTRODUCTION 
 

Researchers have proposed advanced methods for 
the analysis, design, and construction of bridge 
girders to ensure their safety throughout their service 
life [1,2]. Steel-concrete composite sections are 
widely used as composite beams in buildings and as 
composite girders in bridges, taking advantage of the 
combined material strengths of structural steel and 
concrete. Continuous girders offer additional benefits 
over simply supported girders, such as reduced 
deflection and redistribution of shear forces and 
bending moments. However, the design and analysis 
of continuous composite girders are more complex 
due to the differing behaviors in the positive and 
negative moment regions [3-5]. 

Three types of nonlinear analysis models for steel-
concrete composite frames were proposed in the 
previous studies 1) Detailed finite element model: 
Developed using shell and solid elements; 2) Mixed 
finite-element model: A combination of beam and 
shell elements; and 3) Beam finite element model: 
Simplified representation using beam elements. 

Detailed finite element models utilize shell 
elements for the flanges and webs of steel beams, 
along with shell or solid elements for reinforced 
concrete (RC) slabs [6-8]. These models effectively 
capture nonlinear material behavior and the slip effect 
between steel and concrete, making them valuable for 
analyzing local effects. However, their complexity 
and high computational cost make large-scale global 
analyses of steel-concrete composite girders 

challenging and often impractical. To balance 
accuracy and computational efficiency, mixed finite 
element models combining beam and shell elements 
have been proposed [9]. Zhou et al. [10] applied this 
approach for elasto-plastic numerical simulations of 
composite frames, while Vasdravellis et al. [4] used 
shell elements for the RC slab, beam elements for the 
steel beam, and spring or interface elements to model 
shear connectors. Nie et al. [9] also proposed a mix 
finite element model combining the fibered beam and 
layered shell elements using the general finite-
element program. These models effectively account 
for the spatial behavior of RC slabs and slip effects 
while maintaining computational efficiency. 

To further reduce computational demands, many 
researchers have adopted beam finite element models 
for nonlinear analyses of composite frames [11-15]. 
These models evaluate the flexural stiffness of 
composite beams using the moment-curvature (M-ϕ) 
relationship, derived from the constitutive stress-
strain behavior of concrete and steel. The approach 
requires either dividing elements into multiple sub-
elements with lumped plastic hinges or using a single 
element with spreading plastic hinges. However, 
despite its efficiency, this method still involves 
significant effort in formulating the governing 
equations [13,14]. 

Recent advancements in composite girder analysis 
have focused on addressing complex behaviors such 
as partial shear interaction, shear deformability, and 
time-dependent effects. Several studies [16-18] have 
incorporated partial shear connection and shear 
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deformation into finite element models to improve 
accuracy, particularly for cases where bending–shear 
interaction is significant. Zona and Ranzi [16] 
demonstrated that while differences between models 
are minimal in flexure-dominated behavior, 
neglecting shear effects can lead to substantial 
discrepancies when shear forces become influential. 
Similarly, Ranzi et al. [18] quantified the 
underestimation of deflections due to ignoring shear 
deformability, highlighting its impact in both simply 
supported and continuous girders. In addition to 
shear-related effects, recent research has also 
addressed time-dependent behaviors such as creep 
and shrinkage, which can significantly influence the 
long-term performance of composite girders [19]. 

By enhancing both computational efficiency and 
accuracy, this study advances structural analysis and 
design methodologies, enabling engineers to optimize 
composite structures with greater confidence. The 
proposed method, based on a force-based formulation 
using three-moment equations, directly relates 
bending moments at consecutive supports, allowing 
efficient analysis of continuous girders while 
accurately capturing nonlinear behavior such as 
gradual and distributed yielding. Compared to 
conventional displacement-based methods, which 
rely on approximating displacement fields and 
require extensive element subdivision and complex 
computations, the force-based approach offers 
superior handling of flexurally dominated 
nonlinearities with reduced computational effort. 
While displacement-based methods are widely used 
for their simplicity in general applications, they often 
struggle with accurately representing distributed 
plasticity without fine meshing. The proposed 
method overcomes these limitations, providing a 
practical and reliable tool with significant 
implications for both academic research and 
engineering practice. 

 
2. RESEARCH SIGNIFICANCE 

 
This study introduces an innovative method to 

develop an exact moment-curvature curve for steel-
concrete composite cross-sections, offering a 
breakthrough in accuracy and efficiency. Unlike the 
traditional fiber method, this approach drastically 
reduces computational time, making it highly 
practical for engineering applications. Furthermore, 
the research presents a precise solution for 
determining girder deflection, addressing a critical 
challenge in structural analysis. By improving the 
computational efficiency and accuracy of these 
calculations, this study contributes to the 
advancement of structural design methodologies, 
enabling engineers to optimize composite structures 
with greater precision and confidence. Its findings 
have broad implications for both academia and 
industry. 

3. THE PROPOSED METHOD  
 
3.1 Cross Section 
 

Figure 1 shows a typical cross-section of the steel-
concrete composite girder. The dimensions include 
concrete slab width (bs) and thickness (ts), steel I-
section height (h), flange width (bf), flange thickness 
(tf), and web thickness (tw). The following 
assumptions are adopted in this study: (1) a perfect 
bond is assumed between the steel and concrete 
components, ensuring that plane sections remain 
plane after deformation; (2) shear deformation and 
torsional effects are neglected in the constitutive 
behavior of both steel and concrete; (3) large 
displacements and rotations are permitted, while 
strains are assumed to remain small; and (4) time-
dependent effects (such as creep and shrinkage) and 
dynamic effects are not considered. 

It is acknowledged that the assumption of a perfect 
bond between steel and concrete, along with the 
application of Euler–Bernoulli beam theory, may 
introduce limitations, particularly for long-span 
girders, partial shear connections, or cases involving 
high shear forces. However, for typical continuous 
composite girders with moderate spans and 
adequately designed shear connectors, these 
assumptions provide a reasonable balance between 
analytical simplicity and accuracy. Therefore, these 
assumptions are deemed appropriate for the scope of 
this study, which focuses on capturing the primary 
nonlinear flexural behavior. This study assumes full 
composite action with an adequate number of shear 
connectors to prevent significant slip between the 
steel beam and concrete slab. As such, shear 
deformation and connector spacing effects are not 
explicitly considered. This assumption is appropriate 
for typical design scenarios where connectors are 
provided in accordance with code requirements to 
ensure full interaction. 
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Fig. 1 Typical cross-section 
 
3.2 The Behavior of Structural Steel 
 

Due to the limited available parameters for steel 
behavior, this study adopts the simplest stress-strain 
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relationship. The axial stress-strain response of the 
structural steel material is assumed to be elastic-
perfectly plastic in both tension and compression [9], 
without considering hardening effects, as shown in 
Fig. 2 and expressed in Eq. (1) below: 
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where σs is axial stress and εs is axial strain; s=s(εs) is 
signum function of εs, s=1 if εs≥0, and s=-1 if εs<0; fys 
is yield strength and εys is yield strain; Es is Young’s 
modulus. 
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Fig. 2 The stress-strain relationship for steel 
 
3.3 The Behavior of Concrete 
 

The constitutive model for concrete under 
compression is represented by a combination of a 
second-degree parabola for ascending part and a 
straight line for descending part [20], as depicted in 
Fig. 3 and presented in Eq. (2): 

( )

2

0
0 0

0
0

0

2 , 0

1 1 , <-

,

c c
c c c

c c

c c
c c uc c c

uc c

c c uc

f

f

f

ε ε
ε ε

ε ε

ε ε
σ η ε ε ε

ε ε
η ε ε

     −  − − − ≤ ≤         
  − −= − − − − ≤  − 
− < −




(2) 

where εc is axial strain and σc is axial stress of the 
concrete; fc is prism compressive strength in uniaxial 
loading, taken as 0.76fuc, where fuc represents the 
cubic compressive strength and can be approximately 
evaluated as 1.25f0c where f0c represents the cylinder 
compressive strength; Ec denoted Young’s modulus 
of the concrete, can be computed by using ACI318-
08 [21] equation as 4700 ( )c cE f MPa=  (MPa) for 
normal weight concrete; ε0c is a corresponding strain 
to fc, εuc=2fc/Ec; εuc is ultimate strain; and η is residual 
stress factor. 
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Fig. 3 The stress-strain relationship for concrete 
 

The stress-strain relationship of concrete in 
tension developed by Vebo and Ghali [22] was 
adopted in this study, given in the following forms: 
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where fcr represents the tensile strength of concrete; 
ε1c is strain corresponding to cracking stress; ε2c is 
strain corresponding to tensile stress reducing to half 
of cracking stress after cracking, ε2c =2.625fcr/Ec; ε3c 
is strain corresponding to zero tensile stress; and 
Ecr1=0.8Ec and Ecr2=0.075Ec are cracking moduli. The 
stress-strain curve of the concrete for both 
compression and tension is illustrated in Fig. 3. The 
number inside the circle indicates the segment 
number that is used to establish equation of stress to 
determine moment-curvature curve. 
 
3.4 The Behavior of Steel Rebar 
 

When the steel bar is subjected to tension, the 
crack in concrete will lead to the inhomogeneous 
distribution of stress of the steel bar along the 
longitudinal direction. Based on experimental results 
and theoretical analysis, Berlabi and Hsu [23] 
proposed a method for considering the 
inhomogeneous distribution of stress and smeared 
crack model. An average stress-strain curve 
represents stress-strain relationship of the embedded 
rebar in tension was developed (as shown in Fig. 4) 
expressed in the following equation: 
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where εr is axial strain and σr is axial stress of the 
rebar; Er and fyr are Young’s modulus and yield 
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strength of the rebar material, respectively; fnr and εnr 
is the average yield stress and yield strain, 
respectively; εur is the ultimate strain; and Ehr is 
hardening modulus. More details about the model can 
be found in Berlabi and Hsu [23]. 
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Fig. 4 The stress-strain relationship for rebar 
 
3.5 The Proposed Method 
 

The three-bending-moment equation based on 
force method and iteration method are adopted to 
solve the nonlinear behavior of the continuous girder. 
The applied loads are divided into number of load 
steps and the increment unknown moments at the 
supports can be solved linearly. The following 
equations for the continuous girder with N spans in 
Fig. 5 can be obtained [24]: 

111 12 1

221 22 23 2

23 33 3 3

0 ... 0
... 0

0 ... 0
... ... ... ... ... ... ...
0 0 0 ...

p

p

p

nn n np

M
M
M

M

δδ δ
δδ δ δ

δ δ δ

δ δ

 ∆        ∆          ∆ =   
     
     
  ∆        

 (5) 

where: 
1

2 2
1

,
1 10 0

1 1i iL L
i

i i
i i i i

L xx dx dx
EI L EI L

δ
+

+

+ +

   −
= +   

   
∫ ∫ (6a) 

1
1

, 1
1 1 10

1iL
i

i i
i i i

L xx dx
EI L L

δ
+

+
+

+ + +

  −
=   

  
∫  (6b) 

1

, ,
0

1
, 1

1 10

1

1

i

i

L

i p p i
i i

L
i

p i
i i

x M dx
EI L

L x
M dx

EI L

δ

+
+

+
+ +

 
= ∆ 

 
 −

+ ∆ 
 

∫

∫
 (6c) 

where i=1÷n denoted as index of unknown internal 
moments at the supports, ΔMi, and the left span length 
of the ith support, Li; n=N-1; EI is tangential stiffness 
of the composite cross section; ΔMp is increment 
bending moment in the primary system due to applied 
load; L is span length. The derivation of these 
equations follows the classical development of the 

three-moment equation as detailed in [24]. For 
completeness, a brief outline of the key steps is 
provided here, while full derivations can be found in 
the referenced work. It is important to note that the 
derivation of the governing equations is based on the 
assumption of full composite action, where a perfect 
bond between steel and concrete is maintained. As a 
result, slip effects and partial interaction behavior are 
not included in this formulation, allowing for a 
simplified yet accurate representation of the nonlinear 
flexural response. 
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a) Geometry of the continuous girder 
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b) Internal moments of the conjugate girder 
Fig. 5 The continuous girder 
 
The internal bending moments at the ith span of the 
girder then computed as follows: 
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Based on bending moments along the girder and 
moment-curvature curve, the curvature along the 
girder can be obtained as: 

( )Mφ φ=      (8) 
The moment-curvature curves can be obtained 

based on a method proposed by Hoang [25]. The 
rotation and displacement of the girders can then be 
calculated by using the following equations [26]: 

dx C

w dxdx Cx D

θ φ

φ

= +

= + +
∫
∫ ∫

   (9) 

where C and D are constants of integrations 
determined from boundary conditions. Equation (8) 
can be implemented using the Riemann integral, 
which is defined as a limit of sums. This approach, as 
described by Bear [27], allows for the calculation of 
the integral by summing the contributions from each 
small segment of the girder and taking the limit as the 
segment size approaches zero. The boundary 
conditions are applied at both span ends by setting 
displacements in Eq. (9) to zero, assuming perfectly 
rigid supports that prevent vertical displacement and 
eliminate additional deformations or moment 
redistribution. At the first end, x=0, and the 
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integration 0dxdxφ =∫ ∫ , and at the second end, x=Li, 
the constants of integrations at the ith span can be 
obtained as: 

0iD =      (10) 

0 0

1 i iL L

i
i

C dxdx
L

φ= − ∫ ∫    (11) 

The algorithm of the solution method is illustrated in 
Fig. 6. It should be noted that the proposed method 
employs an explicit iteration scheme, where 
tangential stiffness is updated based on the curvature 
from the previous step, thus eliminating the need for 
a conventional convergence criterion. 
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Fig. 6 Solution flow chart 

  
4. EXAMPLES AND DISCUSSIONS 
 
4.1 Two-Span Continuous Composite Girder 
Tested By Ansourian [28] 
 

The specimen CTB4, from a series of continuous 
composite beams tested by Ansourian [28], is 
selected for analysis in this study to verify the 
accuracy of the proposed method. The beam was 
subjected to two vertical concentrated loads at the 

middle of each span, as shown in Fig. 7a. It consists 
of a concrete slab measuring 0.1 m × 0.8 m and an 
IBPL200 steel section, with dimensions illustrated in 
Fig. 7b. The concrete slab had a compressive strength 
of 34 MPa, a tensile strength of fcr=3.6 MPa, and a 
Young’s modulus of Ec=27,406 MPa, both calculated 
based on ACI318-08 [21] equations described above. 
The moment-curvature curve developed for this 
composite cross section is depeicted in Fig. 8. 
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b) Cross section 
Fig. 7 The model test by Ansourian [28] 

 
Fig. 8 M-ϕ curve for the model test by Ansourian [28] 
 

Figure 9 presents a comparison of the results 
obtained from the proposed method, experimental 
data, and the theoretical model by Ansourian [28]. 
The load-displacement curve from the proposed 
method closely aligns with the theoretical curve; 
however, both tend to overestimate the load-
displacement relationship compared to the 
experimental results. This discrepancy arises from not 
accounting for shear slip between the concrete slab 
and the steel section. Nevertheless, the proposed 
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method accurately predicts the girder capacity at P = 
520 kN, which is very close to the experimental girder 
capacity of P = 518 kN. 

 
Fig. 9 Load-displacement curves at mid-span for the 
model test by Ansourian [28] 
 
4.2 Two-Span Continuous Composite Girder 
Tested By Slutter and Driscoll [29] 
 

The two-span continuous composite girder was 
tested by Slutter and Driscoll [29] and numerically 
analyzed by Nie et al. [9] and Chiorean [14]. The 
geometry with applied load locations and section 
properties of the girder are depicted in Fig. 10. The 
concrete in compression had a cylinder compressive 
strength of f'c = 16 MPa, while the structural steel had 
a yield stress of fsy = 252.4 MPa and a Young’s 
modulus of Es = 20,000 MPa.  
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Fig. 10 The model test by Slutter and Driscoll [29] 

As shown in Fig. 12, the behavior of the continuous 
composite girder predicted by the present analysis 
closely aligns with both the experimental test results 
[29] and the mixed finite element analysis [9], 
accurately capturing the girder's capacity. 

 
Fig. 11 M-ϕ curve for the model test by Slutter and 
Driscoll [29] 

 
Fig. 12 Load-displacement curves for the model test 
by Slutter and Driscoll [29] 
 
4.3 Two-Span Continuous Composite Girder 
Tested By Yam and Chapman [30] 
 

The continuous beam had two equal spans of 3.55 
m each (Fig. 13a) and consisted of a 0.152 m deep I-
section with a yield strength of 270 MPa. The steel 
girder was connected to a 0.06 m thick, 0.92 m wide 
concrete slab using stud shear connectors. The 
compressive strength of the slab is 47.6 MPa. More 
details of the cross section of the girder is shown in 
Fig. 13b. The moment-curvature curve, shown in Fig. 
14, reveals a softening range on the negative side of 
the curvature, indicating concrete cracking behavior. 
The proposed solution also captures the negative 
tangent stiffness of the cross-section. 
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b) Cross section 
Fig. 13 The model test by Yam and Chapman [30] 
 

 
Fig. 14 M-ϕ curve for the model test by Yam and 
Chapman [30] 

 
Fig. 15 The model test by Yam and Chapman [30] 
 

Due to the absence of a load-displacement curve, 
the comparison is made using the deflection curve of 
the entire girder at P=108.5 kN, which is considered 
the maximum applied load. Razaqpur and Nofal [8] 
conducted finite element analyses using shell 
elements and material models capable of capturing 

the shear effect between the concrete slab and the 
steel section. As the proposed method does not 
account for shear effects, the predicted deflection 
curve underestimates by 11% compared to Razaqpur 
and Nofal [8], and by 20% compared to the 
experimental results of Yam and Chapman [30]. 

 
5. CONCLUSIONS 
 

This study presents a simple yet highly accurate 
analytical solution for analyzing the nonlinear 
behavior of continuous steel-concrete composite 
girders. The key conclusions drawn from this 
research are as follows: 
• For the first time, the three-moment equation 

based on the force method is applied to the 
nonlinear analysis of continuous girders, 
effectively capturing gradual and distributed 
yielding. 

• The proposed method produces results that 
closely align with those obtained from the mixed 
finite element method and the plastic hinge 
method. 

• The comparisons with three full-scale test results 
from the literature with either acceptable 
discrepancies or high accuracy in predicting 
girder capacities, confirming the robustness of 
the proposed method. 

The proposed analytical method offers practicing 
engineers a straightforward and reliable tool for 
assessing the nonlinear flexural behavior of 
continuous steel-concrete composite girders. By 
eliminating the need for complex finite element 
modeling while maintaining high accuracy, this 
method supports efficient design verification and 
performance evaluation in typical engineering 
applications. Future work may extend the proposed 
method by incorporating shear slip effects and shear 
deformation, enabling its application to composite 
girders with partial shear connection or cases where 
shear-lag significantly influences global behavior, 
and accounting for cyclic or fatigue loading.  
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