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ABSTRACT: This study presents a hybrid modeling approach integrating the hydrological model HEC-HMS 

with machine learning techniques to predict the future inflow of the Huai Luang Reservoir under climate change 

scenarios. Rainfall projections from three CMIP6 global climate models (CanESM, CESM2, and GFDL-ESM4) 

under SSP245 and SSP585 scenarios for the period 2023–2044 were used as key inputs. Historical inflow data 

from 2001 to 2022 were employed for model training and validation. The calibration phase (2011–2015) achieved 

a coefficient of determination (R²) of 0.62 and an RMSE of 0.70, while validation (2016–2020) resulted in an R² 

of 0.56 and an RMSE of 0.70, demonstrating moderate predictive performance. The hybrid modeling approach 

reveals a declining trend in annual inflow, with projections ranging from 54.08 million cubic meters (GFDL-ESM4 

under SSP245) to 172.71 million cubic meters (CanESM under SSP245), while the highest average inflow 

projection reaches 120.48 million cubic meters (CanESM under SSP585). These findings highlight the potential 

hydrological impacts of climate change and underscore the necessity of adaptive reservoir management strategies 

to ensure sustainable water resource availability in the Huai Luang watershed.   
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1. INTRODUCTION 

 

Global warming has altered climate patterns and 

affected water availability in various regions. For 

instance, the headwater catchment of the Blue Nile in 

Ethiopia has experienced a decrease in water inflows 

[1-3]. In Thailand, changes in temperature and 

seasonal patterns [4] have caused irregular rainfall 

distribution, with projections indicating a decline in 

rainfall from March to July [5]. This reduction is 

expected to impact agriculture, the economy, society, 

and the environment, especially the agricultural 

sector, which relies heavily on water resources for 

production. 

Climate change has also contributed to increased 

flood occurrences, affecting both directly and 

indirectly the streamflow in the Huai Luang 

watershed [6]. This area has frequently experienced 

flooding issues due to water volumes exceeding the 

river’s capacity, obstacles in water flow, and the high-

water level of the Mekong River, which prevents 

timely drainage, resulting in prolonged inundation 

[7]. 

Hydro-informatics is a branch of informatics 

focused on the application of Information and 

Communication Technologies (ICTs) to effectively 

address the increasingly complex challenges in water 

resource management. It aims to meet various 

objectives by leveraging numerical modeling and 

water flow simulations. Hydro-informatics has also 

integrated Artificial Intelligence (AI) techniques, 

such as Artificial Neural Networks (ANNs) and 

various algorithms, to enhance system efficiency, 

ultimately developing a decision-support system for 

water management [8]. 

The concept of developing a deep processing 

system is promising for application in decision-

making processes related to the Huai Luang 

watershed management. This study begins by 

examining the issues impacting areas along the Huai 

Luang River and its tributaries using historical data. 

It then analyses rainfall data from weather radar and 

rainfall forecast models from various agencies to 

estimate inflow volumes to major and medium-sized 

reservoirs, which are important water infrastructure in 

the Huai Luang watershed and its headwaters, 

predicting excess water (side flow). Flood analysis is 

conducted through flood routing simulations in both 

reservoirs and river systems, utilizing telemetry data 

from the Royal Irrigation Department to aid in data 

analysis within the area [9]. 

Machine Learning (ML), a subset of Artificial 

Intelligence (AI), plays a critical role in this process 

by building a system that learns from sample data and 

experiences [10-11]. This approach is grounded in the 

principle that patterns and trends exist within all 

phenomena, which can be used to predict future 

outcomes. This predictive capability allows the 

system to forecast potential developments, supporting 

proactive water management strategies [12]. 

Previous studies have explored the integration of 

physically-based hydrological models with machine 

learning techniques to enhance runoff prediction 

under climate change. For instance, applied HEC-
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HMS in combination with machine learning models 

in the Upper Baro Watershed, Ethiopia, achieving 

improved accuracy in flood forecasting. Similarly, 

[13] investigated hydrological extremes in the Upper 

Blue Nile Basin using CMIP6 climate projections 

with hybrid models. However, limited research has 

applied such integrated approaches to mid-sized 

reservoirs in tropical monsoon regions like 

northeastern Thailand. This study addresses this gap 

by developing a hybrid modeling approach tailored to 

the Huai Luang Reservoir, which has received 

minimal attention despite its increasing vulnerability 

to climatic shifts. 

In addition to the hybrid modeling framework, the 

selection of appropriate General Circulation Models 

(GCMs) was crucial to ensure the credibility of future 

inflow projections. Three GCMs—CanESM, 

CESM2, and GFDL-ESM4—were specifically 

selected based on their superior performance in 

representing regional climate characteristics over 

Southeast Asia. According to prior evaluations [14-

15], these models demonstrated strong capabilities in 

simulating key climatic factors such as monsoon 

precipitation patterns, interannual rainfall variability, 

and ENSO-related anomalies. Compared to other 

CMIP6 models, CanESM provides robust climate 

sensitivity estimates, CESM2 effectively captures 

regional rainfall variability, and GFDL-ESM4 

accurately simulates ENSO impacts. These strengths 

justified their selection to enhance the reliability and 

relevance of future inflow forecasting for the Huai 

Luang Reservoir. 

This research aims to forecast the inflow volume 

into the Huai Luang Reservoir in response to climate 

change impacts on rainfall, using global climate 

models from the Coupled Model Intercom parison 

Project (CMIP 6) combined with ML and Artificial 

Intelligence (AI) techniques. It is anticipated that the 

results from this research will contribute to more 

effective water management for the Huai Luang 

Reservoir. 

 

2. RESEARCH SIGNIFICANCE 

 

This study presents an innovative hybrid 

modeling framework that integrates HEC-HMS with 

ML techniques to enhance inflow prediction accuracy 

for the Huai Luang Reservoir under future climate 

change scenarios. This integration improves 

performance by capturing both physical processes 

and complex non-linear hydrological patterns, 

thereby supporting more robust, data-driven reservoir 

operation strategies. By evaluating the projected 

 

 

 

 

 impacts of climate change using CMIP6 models, 

the research offers valuable insights for sustainable 

water resource management and policy formulation 

in northeastern Thailand. The proposed methodology 

can be adapted to other basins, contributing to global 

efforts in climate-resilient water infrastructure 

planning. 
 

3. MATERIALS AND METHODS  

 

3.1 Study Area 

 

Fig. 1 illustrates the study area of the Huai Luang 

Reservoir, located at coordinates 48QTE 425-206 on 

a 1:50,000 scale map (sheet 5543 IV). The reservoir 

is situated in the upper Huai Luang watershed, which 

is a sub-watershed of the northeaster Mekong Basin. 

It has a storage capacity of 135 million cubic meters 

and an upstream catchment area of 666.40 square 

kilometres. The average annual rainfall in this area is 

1,529.86 mm, with an average annual inflow of 

149.58 million cubic meters into the reservoir. 

 

3.2 Global Climate Models 

 

Global climate models are mathematical models 

that use quantitative data to simulate the interactions 

of energy in the atmosphere, oceans, land, and ice. 

These models are utilized for various purposes, such 

as studying weather dynamics and the climate system. 

In recent years, they have been used to project future 

climate scenarios resulting from changes in 

greenhouse gas concentrations in the atmosphere, as 

outlined in the Sixth Assessment Report (AR6) [16]. 

This research employs three global climate models: 

CanESM, CESM2, and GFDL-ESM4, as they have 

been shown to provide the most accurate rainfall 

projections for northeastern Thailand [17]. For future 

scenarios, the study uses SSP245, which represents a 

scenario with the most likely future outcomes, and 

SSP585, which represents a scenario with the worst-

case projections [18-20]. Details of these models are 

presented in Table 1. 

 

Table 1. Details of global climate models 

Model  

Name 

Institution Institution 

Abbreviation 

Resolution 

CanESM Canadian Climate 
Centre 

CCCma 280 km 

CESM2 National Centre 

for Atmospheric 
Research, USA 

NCAR 100 km 

GFDL-

ESM4 

NOAA/Geophysic

al Fluid Dynamics 
Laboratory, USA 

NOAA-

GFDL 

100 km 
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Fig. 1 Study Area 

 

 

3.3 HEC-HMS Model 

 

The HEC-HMS (Hydrologic Engineering Center 

- Hydrologic Modeling System) is a model designed 

to simulate the hydrologic processes within 

watershed networks. In Thailand, researchers widely 

adopt the HEC-HMS model due to its high accuracy 

in generating reliable results for watershed 

applications [21-23]. In this study, HEC-HMS is used 

to simulate runoff within each sub-watershed, 

allowing for runoff volume calculations based on 

different components of the hydrological cycle [24], 

as described below: 

1) Runoff Volume Simulation: This study uses 

the Initial and Constant-Rate method, which depends 

on rainfall and the soil’s water-holding capacity. The 

runoff volume can be calculated using the following 

equation: 

 
2( )

    
(( ) )

P Ia
Pe

P Ia S

−
=

− +
 (1) 

 

where: 

 

 Pe   is the excess rainfall (mm). 

 P   is the total rainfall (mm). 

 S   is the maximum potential loss (mm). 

 Ia   is the initial loss (mm), with a 

relationship to S defined as Ia = 0.2S 
 

25,400
    

( 254)
CN

S
=

+
                           (2) 

 

where: 

 

 CN  is the Curve Number, a dimensionless 

value used to indicate runoff potential 

(SI units). 

 

 2) Direct Runoff Simulation: In this study, 

the Snyder Unit Hydrograph (UH) method is 

used for simulating direct runoff. This method 

calculates the peak discharge rate and the time 

to reach this peak based on the lag time and 

rainfall duration. The formula for calculating the 

peak discharge (UP) is given by: 
 

(    )
    

C Cp A
UP

Tp

 
=  (3) 

 

where: 

UP  is the peak discharge (m³/s). 
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A   is the catchment area (km²). 

C   is a constant, typically 2.75 in SI units. 

Cp   is the UH peaking coefficient, usually 

between 0.4 and 0.8. 

Tp   is the lag time (hours). 

 

(   )
      

NL Lc
Tp Ct

S


=   (4) 

 

where: 

Ct  is the basin coefficient, typically 

between 1.8 and 2.2. 

L  is the main channel length from 

watershed outlet to divide (km). 

Lc  is the main channel length to the 

centroid (km). 

S  is the channel slope. 

N   is the exponent, usually 0.33. 
 

3) Baseflow Simulation: In this study, the 

exponential recession method is used for simulating 

baseflow. This method is frequently applied in studies 

involving drainage from natural storage within 

watersheds. The baseflow (Qt) at any time t can be 

calculated using the following equation: 

 
( )

0      ktQt Q e −=   (5) 

 

where: 

 

Qt  is the baseflow at time t (m³/s).  

Q0  is the initial baseflow (m³/s). 

k  is the exponential decay constant. 

t  is time (seconds). 

 

4) Channel Flow Simulation: In this study, the 

Muskingum-Cunge Standard Section method is used 

for channel flow simulation. This method analyzes 

channel flow by calculating the flow capacity of each 

river reach. The discharge (Qt) at any time t can be 

calculated using the following formula: 

 

Qt = {It if t < lag; It – lag if t >= lag} (6) 

 

where: 

 

Qt is the discharge at time t (m³/s). 

It is the inflow at time t (m³/s). 

lag is the delay in inflow response (hours). 

 

The performance of the model is evaluated by 

comparing the relationship between daily runoff 

measured at monitoring stations and the simulated 

runoff from the model. For this study, two methods 

are used to assess the model's performance. 

Coefficient of Determination (R²): This 

statistical measure explains the correlation between 

the observed and simulated variables. The coefficient 

of determination ranges from 0 to 1, with values 

closer to 1 indicating a reliable relationship between 

the two variables. It can be calculated using Eq. (7). 

Root Mean Square Error (RMSE): This 

statistical measure explains the difference be-tween 

the observed and simulated variables. RMSE values 

closer to zero indicate a more reliable relationship 

between the two variables. It can be calculated using 

Eq. (8). 

 

2
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2
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1
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    1  
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n
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1
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n
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i
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where: 

 

Qobs,i  is the observed data value at 

instance i. 

Qobs,mean is the mean of observed data values. 

Qsim,i  is the simulated data value at 

instance i. 

n   is the number of data points. 

 

3.4 Machine Learning (ML) Model Development 

 

3.4.1 Model selection 

Artificial Neural Networks (ANNs) were chosen 

as the primary Machine Learning (ML) model for 

inflow prediction due to their effectiveness in 

capturing complex non-linear relationships in 

hydrological processes. The advantages of ANNs 

include: 

1) Ability to model intricate dependencies 

between multiple input variables, making 

it suitable for hydrological forecasting. 

2) High adaptability in learning from large 

datasets and recognizing long-term trends. 

3) Robust performance in handling data noise 

and missing values, which are common in 

hydrological applications. 

The ANN model architecture consists of two 

hidden layers: the first hidden layer consists of 32 

neurons and the second hidden layer consists of 16 

neurons. Both hidden layers utilize ReLU activation 

functions. The output layer uses a single neuron with 

a linear activation function. This architecture was 

selected to balance model complexity and predictive 

performance, ensuring generalizability on unseen 

datasets. 

 

3.4.2 Training and testing 

The dataset was divided into 70% for training and 

30% for testing to mitigate overfitting and ensure a
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Fig. 2 Hybrid modeling workflow for inflow prediction using HEC-HMS and ML 

 

 

reliable evaluation. The ANN model was trained 

using the Adam optimizer with a learning rate of 

0.001 and a batch size of 64. To optimize 

hyperparameters, grid search and 5-fold cross-

validation (k = 5) were employed, enhancing the 

model’s ability to generalize to unseen data. 

Performance was assessed using R², RMSE, and 

Nash-Sutcliffe Efficiency (NSE), with iterative 

refinements to improve results. 

 

3.5 Hybrid Model: HEC-HMS and ML 

 

The hybrid modeling approach integrates the 

strengths of both physically-based and data-driven 

methodologies to enhance inflow prediction accuracy 

for the Huai Luang Reservoir. The HEC-HMS model 

is initially used to simulate inflow based on historical 

hydrological conditions, providing a structured and 

physics-based estimation. However, since 

hydrological processes involve complex and 

nonlinear relationships influenced by multiple 

climate and catchment variables, a ML correction 

step using ANNs is applied. The ANN model is 

trained on residual errors between observed and 

simulated inflows, refining HEC-HMS outputs by 

capturing intricate patterns that traditional 

hydrological models may overlook. The hybrid model 

workflow consists of three key steps: (1) running 

HEC-HMS simulations using calibrated parameters 

to generate preliminary inflow predictions, (2) 

applying ANN models to correct systematic biases 

and errors in HEC-HMS outputs, and (3) combining 

the outputs through an ensemble weighting 

mechanism to produce the final inflow forecast, as 

illustrated in Fig. 2. This approach leverages the 

physics-based advantages of HEC-HMS while 

incorporating the adaptive learning capabilities of 

ML, achieving superior predictive performance 

compared to either model alone. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Calibration and Verification Results of the 

HEC-HMS Model  

 

The calibration and verification results of the 

HEC-HMS model were evaluated by comparing the 

simulated daily inflow into the Huai Luang Reservoir 

with observed data from the reservoir's monitoring 

station. The most influential parameter in model 

calibration was the initial and constant loss rate 

(Impervious %), with values ranging from 4.48 to 

63.61%, which falls within the acceptable range of 

the model. 
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The calibration results for the model, covering the 

period from 2011 to 2015, yielded an R2 value of 0.64 

and an RMSE of 0.72 mm. The verification results for 

the model, covering the period from 2016 to 2020, 

showed an R2 value of 0.60 and an RMSE of 0.70 

mm, which are considered within acceptable 

performance criteria, as illustrated in Figs. 3 and 5. 

When the cumulative simulated inflow from the 

HEC-HMS model was compared to historical 

cumulative inflow over the calibration and 

verification periods, the cumulative results showed a 

high level of agreement with observed data, with R2 

values of 0.98 and 0.99, respectively  

 

Table 2. Calibration and verification results of the 

model 

 
Results R2 RMSE (mm) 

Calibration 0.64 0.72 

Verification 0.60 0.70 

 

 

 

 
 

Fig. 3 Calibration results of the HEC-HMS model at the reservoir inflow monitoring station (2011 - 2015) 

 

 

 
 

Fig. 4 Comparison of cumulative daily inflow volume into the reservoir (2011 - 2015) 
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Fig. 5 Verification results of the HEC-HMS model at the reservoir inflow monitoring station (2016 - 2020) 

 

 

 
 

Fig. 6. Comparison of Cumulative Daily Inflow Volume into the Reservoir (2016 - 2020) 

 

 

4.2 Improvement Using the Hybrid Model (HEC-

HMS and ANN)  

 

The hybrid model combining HEC-HMS and 

ANNs provided a significant improvement in inflow 

prediction accuracy for the Huai Luang Reservoir by 

leveraging the strengths of both approaches. Initially, 

HEC-HMS simulated inflow predictions based on 

historical hydrological data and climate projections, 

achieving a moderate calibration performance of R2 = 

0.62 and RMSE = 0.70. However, as these physics-

based models often struggle with capturing nonlinear 

dependencies, ANNs were introduced to learn from 

residual errors of HEC-HMS predictions, refining 

inflow estimations based on past trends and 

meteorological conditions. The ANN model alone 

achieved R2 = 0.86 and RMSE = 0.50, demonstrating 

strong predictive capabilities, but when integrated 

with HEC-HMS, the hybrid model achieved R2 = 0.92 

and RMSE = 0.38, marking the best performance 

across all models. This approach effectively reduced 

prediction errors and improved seasonal variability 

estimation, particularly in extreme hydrological 

conditions, making it a valuable tool for real-time 

water management and decision support in the 

context of climate change. 

The coefficient of determination (R²) serves as a 

key indicator of model performance, reflecting how 

well the predicted inflow values match the observed 

data. In this study, the hybrid model achieved an R² 

of 0.92, which indicates a high degree of predictive 

accuracy. 
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From a reservoir operation perspective, such a 

high R² enhances the confidence in short-term inflow 

forecasts, which are critical for planning water 

releases, optimizing storage, and minimizing flood or 

drought risks. The reliability of inflow predictions 

directly affects operational decisions such as 

maintaining rule curves, managing agricultural 

allocations, and ensuring adequate supply for 

domestic and ecological needs. 

Therefore, the model’s strong performance not 

only validates the hybrid approach but also provides 

a robust foundation for supporting data-driven, 

climate-informed reservoir management strategies in 

the Huai Luang Basin. 

To further validate seasonal performance 

improvements, error correction comparisons were 

conducted across dry and wet seasons. 

It was observed that hybrid modeling 

substantially reduced RMSE by approximately 25% 

during the dry season and 32% during the wet season, 

demonstrating its effectiveness across varying 

hydrological conditions.  
Comparative plots showing the seasonal 

performance improvements are provided in Fig. 7, 

illustrating the substantial error reduction achieved 

after ensemble correction. 

 

 
 

Fig. 7 Comparison of RMSE values between HEC-

HMS and the Hybrid Model (HEC-HMS and ANN) 

across Dry and Wet Seasons. The hybrid approach 

demonstrates significant error reduction in both 

seasons. 

 

4.3 Future Inflow Projections Under Climate 

Scenarios 

 

The projected inflow ranges (e.g., 48.44–172.71 

MCM) were contextualized with the reservoir’s 

operational minimum inflow threshold (~60 MCM). 

Lower-bound projections under CESM2 SSP245 

suggest potential supply risks during drought years. 

Cumulative inflow projections are now presented 

with 95% confidence intervals to account for model 

and climate variability uncertainties.  
Based on the annual inflow volume projections 

from the HEC-HMS hydrologic model, using future 

rainfall data from global climate models under near-

term scenarios (2023-2044), the following results 

were observed: for the CanESM model, the SSP 245 

scenario projected minimum and maximum inflow 

volumes at 79.73 and 271.45 million cubic meters, 

respectively, while the SSP 585 scenario showed 

minimum and maximum inflows at 57.81 and 171.74 

million cubic meters; for the CESM2 model, the SSP 

245 scenario indicated minimum and maximum 

inflows at 48.44 and 169.87 million cubic meters, 

respectively, whereas the SSP 585 scenario projected 

68.94 and 129.64 million cubic meters; finally, for the 

GFDL-ESM4 model, the SSP 245 scenario projected 

minimum and maximum inflows at 54.08 and 137.18 

million cubic meters, with the SSP 585 scenario 

showing 67.04 and 120.59 million cubic meters; The 

cumulative inflow projection for the CanESM 

SSP585 scenario was approximately 2.650 trillion m³. 

To account for uncertainties arising from model 

structure and climatic variability, a 95% confidence 

interval was computed, resulting in a range between 

2.410 and 2.870 trillion m³. 

Incorporating confidence intervals provides a 

more comprehensive understanding of the possible 

deviations from the mean projection and underscores 

the necessity for flexible water resource planning 

under future climate conditions, as illustrated in Figs. 

8, 9 and 10 for annual inflows and Fig. 11 for 

cumulative daily inflow projections. 

 

4.4 Discussion on Model Limitations 

 

While ANN standalone achieved R² of 0.86, 

further evaluation under extreme rainfall events was 

limited due to insufficient extreme event samples. 

Future work should include expanded datasets 

incorporating more severe hydrological extremes. 

Additionally, the Thiessen method for rainfall 

interpolation could be benchmarked against Kriging 

and Inverse Distance Weighting (IDW) methods to 

further enhance spatial prediction accuracy. 

Regarding baseflow modeling, calibration of the 

exponential recession constants against observed dry-

season flow trends was performed, ensuring 

appropriate parameterization.  

The observed variability in future inflow 

projections highlights not only the hydrological 

uncertainty but also the potential economic and 

operational impacts on reservoir management. Years 

with significantly reduced inflow could strain water 

allocation priorities among agricultural, domestic, 

and industrial uses, potentially requiring revisions to 

operational policies such as reservoir rule curves or 

emergency drought management plans. Consequently, 

integrating economic analysis and adaptive 

operational strategies into reservoir management 

frameworks is essential to enhance resilience under 

future climate scenarios.  
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Fig. 8 Annual inflow volume into the reservoir from CanESM model (Future period 2023 - 2044) 

 

 
 

Fig. 9 Annual inflow volume into the reservoir - CESM2 model (Future period 2023 - 2044) 

 

 
 

Fig. 10 Annual inflow volume into the reservoir - GFDL_ESM4 model (Future period 2023 - 2044) 
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(a) 

 
(b) 

 
(c) 

 

Fig. 11 Comparison of Cumulative Daily Inflow Volume into the Reservoir (Future period 2023 - 2044) based 

on three CMIP6 models: (a) CanESM, (b) CESM2, and (c) GFDL-ESM4. 
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5. CONCLUSION 

 

This study demonstrated that integrating a 

physically-based hydrological model (HEC-HMS) 

with an artificial neural network (ANN) substantially 

improves the accuracy of inflow forecasting for the 

Huai Luang Reservoir under future climate change 

scenarios. The hybrid model achieved superior 

predictive performance, with an R² of 0.92 and RMSE 

of 0.38, compared to standalone models. 

Qualitatively, the study showed that the hybrid 

modeling framework is robust across seasonal 

variations, especially in dry and wet seasons, 

improving prediction reliability where standalone 

models typically underperform. The model's 

architecture allowed for effective residual correction 

of HEC-HMS outputs, supporting more adaptive and 

dynamic decision-making in reservoir operations. 

Quantitatively, the inclusion of three GCMs 

(CanESM, CESM2, and GFDL-ESM4) under two 

SSP scenarios (SSP245 and SSP585) revealed 

substantial inflow variability, ranging from 48.44 to 

172.71 MCM. Uncertainty quantification was 

addressed by applying 95% confidence intervals to 

cumulative inflow estimates, which ranged ±10% 

around the central value. This added layer of analysis 

enables more actionable insights for policymakers, 

emphasizing the need for adaptive reservoir rules and 

drought contingency planning. 

The findings suggest that hybrid models are not 

only technically sound but also practically valuable 

for climate-resilient water resource management. 

These models should be incorporated into future 

reservoir operation policies to enhance preparedness 

and long-term sustainability under a changing climate. 

Future reservoir operational policies should be 

designed with flexibility to accommodate inflow 

variability, balancing water supply reliability with 

economic efficiency. 

Key Takeaways for Practicing Engineers: 

The hybrid modeling approach integrating HEC-

HMS with ANN enables more accurate inflow 

forecasting under variable climate conditions. It is 

practical and adaptable for application in real-world 

reservoir operations. Practicing engineers can 

leverage this method to support proactive water 

allocation decisions, enhance drought preparedness, 

and revise rule curves based on data-driven insights. 

The model’s ability to incorporate uncertainty 

quantification also makes it a valuable tool for risk-

informed infrastructure planning and policy 

development. 
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