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ABSTRACT: Concrete's compressive strength is critical for ensuring the safety, durability, and efficiency of 
construction projects. Traditional strength testing methods, though reliable, are labor-intensive, costly, and 
impractical for rapid, large-scale evaluations. This research explores a novel approach using Deep Convolutional 
Neural Networks (DCNN), specifically a ResNet50V2 architecture combined with transfer learning, to predict 
the compressive strength of concrete from images captured using mobile phones. A dataset of 49,000 dry 
concrete specimen images was prepared and enhanced through perceptual hashing for duplicate elimination, 
image preprocessing (resizing, normalization, standardization), and twenty-fold data augmentation, including 
random rotations, brightness/contrast adjustments, and horizontal flipping, to improve data diversity and model 
robustness. The DCNN model underwent a two-phase training process: initial feature extraction with frozen base 
layers, followed by fine-tuning of the final layers. The model accurately predicted compressive strengths of 
normal-strength concrete ranging from 12.96 MPa to 28.67 MPa. Evaluation metrics, including the coefficient of 
determination (R² = 0.9691), root mean square error (RMSE = 1.2349 MPa), and mean absolute percentage error 
(MAPE = 1.8651%), confirmed the model's high prediction accuracy. A paired t-test indicated no statistically 
significant difference (p = 0.9968) between true and predicted values, validating model reliability. An Android-
based mobile application was developed for real-time, on-site predictions. A second paired t-test comparing 
outputs from the Python-based model and the mobile app yielded a p-value of 0.9148, confirming cross-platform 
consistency. This study presents a scalable, efficient, and highly accurate nondestructive method for concrete 
strength evaluation. 
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1. INTRODUCTION 
 

Concrete remains the most extensively utilized 
construction material globally, essential in 
developing infrastructure such as buildings, bridges, 
and roads [1]. Its widespread use is attributed to its 
durability, versatility, and cost-effectiveness. A 
critical property governing concrete's structural 
integrity and longevity is its compressive strength, 
typically assessed through traditional laboratory-
based testing methods. While accurate, these 
physical tests require significant time and resources, 
posing challenges for rapid assessments or large-
scale construction projects [2]. 

The compressive strength of concrete varies 
based on multiple parameters. These include the 
water-to-cement (w/c) ratio, aggregate gradation, 
cement content, pore structure, and material 
uniformity. Researchers such as Lange et al. [3] and 
Başyiğit et al. [4] demonstrated that surface texture 
characteristics—such as pore distribution, aggregate 
orientation, and cement paste composition—can 
visually reflect internal structural integrity. Image-
based analysis has emerged as a potential 
nondestructive method to capture such features and 
estimate strength. 

However, early image processing (IP) methods 
required manual segmentation and thresholding, 
introducing subjectivity and limited adaptability to 
surface heterogeneity and varying lighting 
conditions. Dogan et al. [5] introduced a hybrid 
approach combining Artificial Neural Networks 
(ANN) with IP to predict compressive strength using 
surface images. Their method yielded prediction 
accuracies of up to 99.87%. Similarly, Waris et al. 
[6] used ANN and DSLR images to estimate the 
strength of concrete with fly ash and silica fumes, 
achieving a high correlation (R = 0.9865) between 
predicted and actual values. These studies 
highlighted the potential of AI for strength 
prediction but also underscored the challenges of 
handling high-dimensional image data. 

Researchers have adopted Deep Convolutional 
Neural Networks (DCNNs) to address these 
limitations, which automate feature extraction and 
excel in learning spatial hierarchies from images. 
Shin et al. [7] evaluated DCNN architectures such as 
AlexNet, GoogLeNet, and ResNet in predicting 
compressive strength, reporting an RMSE of 3.56 
MPa with the ResNet-based ConcNet_R. Lee et al. 
[8] found that high-resolution DSLR images 
produced better predictions (RMSE = 3.779 MPa) 
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than microscope images. Cuasay et al. [9] 
demonstrated the feasibility of a region-based 
DCNN for structural damage detection in reinforced 
concrete, reinforcing the broader applicability of 
deep learning in construction-related image analysis. 

Hybrid ensemble models have been explored to 
improve generalization and mitigate overfitting. 
Mayya et al. [10] combined multiple CNN 
architectures and transfer learning models through 
ensemble methods such as stacking and boosting, 
resulting in improved prediction accuracy for crack 
detection. 

Despite these advancements, most existing 
studies rely on high-end cameras, microscopes, or 
detailed mix design data, which are impractical in 
typical field environments. Addressing these 
limitations, this research proposes a DCNN model 
employing Residual Networks (ResNet) combined 
with transfer learning techniques to predict the 
compressive strength of normal-strength concrete 
from images captured using mobile phone cameras. 
This research aims to develop a practical, cost-
effective tool that delivers rapid and reliable strength 
assessments on construction sites.  

 
2. RESEARCH SIGNIFICANCE 

 
The significance of this research aligns directly 

with the United Nations Sustainable Development 
Goals (SDGs), specifically Goal 9 (Industry, 
Innovation, and Infrastructure), Goal 11 (Sustainable 
Cities and Communities), and Goal 12 (Responsible 
Consumption and Production). By utilizing 
smartphone imaging and advanced deep learning 
techniques, the study promotes innovation in 
construction practices, enhances the sustainability 
and safety of urban infrastructures, and promotes 
responsible resource management. Through quicker, 
more accurate concrete strength predictions, this 
approach minimizes material wastage, optimizes 
resource efficiency, and supports environmentally 
conscious construction, contributing to sustainable 
urban development and resilient infrastructure 
systems. 

 
3. METHODS 
 
3.1 Data Collection 
 
3.1.1 Material Preparation 

The material preparation significantly influenced 
the quality of concrete and the accuracy of collected 
data for machine learning [11]. Portland Cement 
Type 1 was selected for its consistency and 
versatility, directly affecting the strength and 
durability of the concrete. Coarse aggregates of 
19mm (3/4 inch) provided structural integrity, with a 
rodded density of 1568 kg/m³, an absorption rate of 
0.36%, and a moisture content of 0.31%. Vibro sand, 

used as the fine aggregate, enhanced workability and 
had a fineness modulus of 2.69, an absorption rate of 
2.88%, and a moisture content of 1.58%.  
 
3.1.2 Mix Design 

Twenty concrete specimens were prepared for 
each of four distinct mix designs, yielding 80 
cylindrical samples. Each mix was designed to 
achieve a target compressive strength ranging from 
11 MPa to 42 MPa. The water-to-cement (w/c) ratio 
was systematically varied to observe its effect on 
strength development. Mix proportions were 
determined using the absolute volume method, 
following established mix design guidelines and 
material characterization results. 

All materials—including water, cement, fine 
aggregate, and coarse aggregate were weighed per 
cubic meter (kg/m³) of concrete. The slump range 
was maintained at 70–100 mm across all mixes to 
ensure consistent workability during specimen 
casting. The fine and coarse aggregates were 
adjusted based on their respective moisture content 
and absorption rates to ensure accurate, effective 
water content and mix consistency. The detailed 
proportions for each mix are presented in Table 1, 
which reflects the batch composition per cubic meter 
of concrete. 
 
Table 1. The Mix Proportion of Experimental 
Concrete Specimens 
 
W/C 
(%) 

Water 
(kg/m3) 

Cement 
(kg/m3) 

Fine 
Aggregate 

(kg/m3) 

Coarse 
Aggregate 

(kg/m3) 

Slump 
(mm) 

0.66 216.2 327.48 836.12 992.48 70-
100 

0.60 215.76 360.92 802.15 992.48 70-
100 

0.44 214.11 488.1 672.96 992.48 70-
100 

0.36 212.84 585.71 573.81 992.48 70-
100 

 
3.1.3 Specimen Images and Videos 

High-resolution images and videos of concrete 
specimens were captured using the POCO X6 5G 
smartphone with a 64 MP OmniVision OV64B 
sensor (1/2" size, 0.7µm pixels) with a 25mm f/1.8 
aperture lens and Optical Image Stabilization (OIS). 
The specimens were photographed within a Pxel 
LB80LED Studio Soft Box LED Light Tent (800 × 
800 × 800 mm), as shown in Fig. 1, ensuring 
consistent illumination with 12000 LUX brightness, 
5500K color temperature, and a color rendering 
index of 85. This controlled lighting environment 
ensured accurate color representation and uniform 
exposure, essential for reliable image-based analysis 
and compressive strength prediction [12]. 
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Fig.1 Image Capture Setup Using Pxel LB80LED 
Studio Soft Box LED Light Tent 
 

The specimens were placed on a flat base, as 
shown in Fig. 1, with a plain, uniform white 
background to avoid distractions or reflections. For 
each specimen, images were captured from the top 
and bottom surfaces, as shown in Fig. 2, ensuring a 
comprehensive view of the critical areas likely to 
provide significant information about the concrete's 
compressive strength. 

 

 
 
Fig.2 Specimen Images and Videos Capturing 
Process 
 

The POCO X6 5G mobile camera was positioned 
at a fixed distance of 7 cm from each specimen's 
surface to ensure detailed, consistently scaled, and 
focused images, as shown in Fig. 3. Default camera 
settings were employed to maintain uniform image 
conditions and eliminate variability resulting from 
manual adjustments. In addition to still images, 
videos of dry concrete specimens were recorded to 
comprehensively capture surface details from 
multiple angles. Individual frames were extracted 
from these videos, complementing the still images 
and capturing subtle variations or features 
potentially missed during still photography. Multiple 
captures from each angle ensured the selection of the 
highest quality images, minimizing potential 
blurriness or focus issues. This method generated a 
robust dataset of thousands of high-quality images, 
which is critical for accurately predicting 
compressive strength using the DCNN model. 

 
 
Fig.3 Image and Video Capturing Setup 
 
3.2 Data Preprocessing 
 

Images were initially extracted from video 
recordings at one frame per second, ensuring dataset 
diversity without redundancy. Duplicate images 
were identified and eliminated using perceptual 
hashing (pHash) with an 8-bit hash and zero 
thresholds for exact matches. To balance the dataset, 
700 unique images per compressive strength value 
were selected, totaling 49,000 images across 70 
distinct strength levels, thus preventing bias due to 
overrepresentation. All images were resized to 
standardized dimensions of 224 × 224 pixels to meet 
the input requirements of the DCNN model, 
maintaining consistency and computational 
efficiency. Pixel values were normalized to a 0 to 1 
range and subsequently standardized to achieve a 
mean of 0 and standard deviation of 1, ensuring 
stable and efficient model training. 

Furthermore, each image underwent twenty 
augmentations, as shown in Fig. 4, including 
horizontal flipping, random brightness adjustments 
(±10%), contrast changes (range 0.9 to 1.1), and 
random rotations of 0°, 90°, 180°, or 270°. These 
augmentations significantly expanded the dataset, 
improving the model's robustness and generalization. 
 
 

 
 
Fig.4 Sample Image Augmentation 
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3.3 Model Development 
 

The DCNN model was developed using Jupyter 
Notebook. Python was the primary programming 
language used due to its extensive deep-learning 
libraries, notably TensorFlow and Keras [13]. 
TensorFlow provides a flexible framework for 
computational graph execution, while Keras 
simplifies model construction, training, and fine-
tuning [14]. The ResNet50V2 architecture, pre-
trained on ImageNet, was employed as the 
foundational model, leveraging transfer learning to 
enhance training efficiency and model performance 
[15]. Initially, base layers of ResNet50V2 were 
frozen to retain general features. Subsequently, 
specific layers were unfrozen for fine-tuning to 
enhance the network’s ability to identify concrete-
specific features. 

 

 
 
Fig.5 Schematic Diagram of the Deep Learning 
Model using Resnet50V2 
 

As shown in Fig. 5, the custom model 
architecture included standardized inputs of 224 × 
224 pixels in RGB channels. Global Average 
Pooling (GAP) and Global Max Pooling (GMP) 
layers condensed feature maps from ResNet50V2, 
capturing spatial details and reducing overfitting. 
GAP computed the mean, and GMP captured the 
maximum values of the feature maps, resulting in a 
combined rich feature representation for the model. 
Batch normalization, dropout layers (30% and 50%), 
and dense layers (256, 128, 64 neurons with 
LeakyReLU activation and L2 regularization) 
ensured stable training and robust feature extraction. 
The final dense layer utilized linear activation for 
regression, predicting compressive strength values. 

 
3.4 Training of DCNN Model 
 

The dataset was systematically split into training 
(70%), validation (10%), and testing (20%) subsets, 
ensuring balanced representation across all 
compressive strength categories. Training images 
underwent extensive augmentation, generating 

686,000 images, significantly enhancing model 
robustness and generalization. The validation and 
testing subsets underwent minimal augmentation to 
maintain evaluation integrity, as shown in Table 2. 

 
Table 2. Datasets Composition 
 
Data Sets Preprocess 

Images 
Augmented Images (20 

Augmentations) Total 

Training 
(70%) 34,300 686000  

Validation 
(10%) 4,900 -  

Testing 
(20%) 9800 -  

Total 49000 686000 735000 
 

The training phase comprised two stages: initial 
training and fine-tuning. In the initial training stage, 
the ResNet50V2 base layers were frozen to preserve 
pre-trained feature extraction capabilities, training 
only the newly added dense layers for 20 epochs. 
During the fine-tuning stage, the last 50 layers of 
ResNet50V2 were unfrozen and trained for 40 
epochs with a reduced learning rate, allowing deeper 
feature adaptation specific to concrete compressive 
strength prediction. 

Hyperparameters were systematically optimized, 
including learning rates, batch sizes, dropout rates, 
and epochs. The Adam optimizer and the Huber loss 
function facilitated efficient training and minimized 
sensitivity to outliers. The final model employed 
batch normalization, dropout layers (30% initially 
and 50% subsequently), and callbacks such as 
ReduceLROnPlateau, EarlyStopping, and 
ModelCheckpoint to dynamically manage training 
and enhance model performance.  

 
3.5 Model Validation and Evaluation 
 

The proposed model's performance was assessed 
using established statistical metrics to validate its 
reliability and effectiveness for predicting concrete 
compressive strength. The evaluation involved 
calculating the coefficient of determination (R²), 
Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and 
Mean Absolute Percentage Error (MAPE). 

The Huber loss function was implemented 
throughout model training and validation to ensure 
robustness against outliers. For minor errors, it 
operated similarly to MSE to provide sensitivity, 
transitioning to MAE behavior for more significant 
errors to minimize the impact of extreme values. 

Continuous monitoring of Huber loss and MAE 
was conducted during validation to detect potential 
overfitting or underfitting. Consistently low 
validation metrics suggested strong generalization 
capability, whereas increasing validation loss despite 
declining training loss indicated overfitting. 
Corrective measures, such as incorporating dropout 
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and batch normalization techniques, were employed 
to enhance generalization. 

 
3.6 Testing of DCNN Model 
 
3.6.1 Initial Testing 

In the initial testing phase, the developed Deep 
Convolutional Neural Network (DCNN) model, 
utilizing ResNet50V2 and transfer learning, was 
evaluated using a test dataset constituting 20% of the 
total dataset. This subset remained completely 
independent of the training and validation datasets to 
objectively assess the model's generalization 
capabilities. All test images underwent standardized 
preprocessing, including resizing, normalization, and 
standardization, ensuring consistency in evaluation. 
The model's predictive performance was evaluated 
using Mean Absolute Error (MAE), Coefficient of 
Determination (R²), Mean Squared Error (MSE), and 
Root Mean Squared Error (RMSE), collectively 
providing a thorough assessment of accuracy and 
predictive reliability. 
 
3.6.2 Final Testing 

A final testing phase was conducted using a 
distinct dataset composed of ten entirely new 
compressive strength categories unseen during 
training, validation, and initial testing to validate the 
model's robustness and real-world applicability. 
Images were preprocessed following identical steps 
used during initial testing. 

The DCNN model generated predictions for each 
image, which were compared against their 
compressive strength values. The accuracy was 
evaluated by averaging predictions within each 
category. Performance trends were critically 
analyzed to ensure the model's accuracy remained 
consistent across varying compressive strength 
levels. Results from this comprehensive evaluation 
informed potential refinements in model architecture, 
hyperparameters, and data augmentation strategies, 
aiming to maximize model reliability and predictive 
accuracy in practical, real-world applications. 
 
3.7 Android-based Prototype Application 
Development 
 

A prototype Android-based mobile application 
was developed to integrate the trained Deep 
Convolutional Neural Network (DCNN) model. This 
application lets construction professionals obtain 
real-time predictions of concrete compressive 
strength directly from images captured on mobile 
devices.  

The trained DCNN model was adapted for 
deployment on Android devices using TensorFlow 
Lite (TFLite), a framework optimized for mobile 
and embedded systems. This conversion involved 
exporting the model trained with TensorFlow/Keras, 

applying quantization techniques to optimize its size 
and computational efficiency, and converting it into 
the TFLite format suitable for mobile devices [16]. 

 
3.7.1 Development Environment 

Android Studio was chosen as the development 
environment due to its extensive capabilities, 
compatibility with TensorFlow Lite, and robust 
features, enabling seamless integration of the DCNN 
model within the mobile application [17]. 

 
3.7.2 User Interface (UI) 

The application's user interface (UI) was 
carefully designed for clarity and ease of use. As 
shown in Fig. 6, users were presented with intuitive 
options to capture or upload images of concrete 
specimens directly from the application. A built-in 
image preview feature allowed users to confirm 
image quality before initiating prediction. 
 
(a)    (b) 

       
 
Fig.6 User Interface of Android-based Application 
(a) Image Input Interface (b) Prediction Interface 
 

Upon selection, the images underwent 
preprocessing identical to the training procedures. 
The TFLite model processed these images to 
generate predictions, displaying results in 
megapascals (MPa) and pounds per square inch (psi).  
 
3.8 Statistical Analysis of True Values vs 
Predicted Values 
 

A statistical evaluation using a Paired T-test was 
conducted to assess the accuracy and reliability of 
the developed Deep Convolutional Neural Network 
(DCNN) model and its integration within the 
Android-based application in predicting concrete 
compressive strength. Two primary comparisons 
were performed. The first compared actual 
experimental compressive strength values with 
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DCNN model-predicted values. The second 
compared DCNN model predictions obtained via 
Python against predictions from the Android-based 
application using TensorFlow Lite. For each 
comparison, a significance level (α) of 0.05 was 
established. The paired t-test assumes that the 
differences between paired observations are 
approximately normally distributed and that the 
variances between groups are equal. These 
assumptions were evaluated using descriptive 
statistics, distribution symmetry, and sample size 
considerations to ensure the appropriateness and 
validity of the test, thereby strengthening the 
reliability of the comparative analysis across 
different prediction platforms and conditions. 
 
4. RESULTS AND DISCUSSION 
 
4.1 Datasets and Preprocessing 

 
The dataset consisted of images of cylindrical 

concrete specimens, with a total of 49,000 
preprocessed images. The training set initially 
contained 34,300 images, which, after augmentation, 
expanded to 686,000 images, significantly 
enhancing the model’s generalization ability. The 
validation set comprised 4,900 images, each 
undergoing a single augmentation to maintain 
dataset consistency. The testing set, containing 9,800 
images, remained unchanged to provide an unbiased 
evaluation of the model’s real-world applicability. 

 
4.2 Model Optimization 

 
The model was built using the ResNet50V2 

architecture, pre-trained on the ImageNet dataset, 
and adapted for regression-based compressive 
strength prediction. The training process was refined 
through multiple training runs, allowing for iterative 
improvements in hyperparameter selection and 
model structure. The best-performing approach 
involved a two-phase training process: 

Initial Training Phase: The base layers of 
ResNet50V2 were frozen, meaning only the newly 
added fully connected layers were trained. This 
approach leveraged pre-trained feature extraction, 
allowing the model to adapt to the concrete 
compressive strength prediction task. 

Fine-Tuning Phase: Through extensive 
experimentation, it was determined that unfreezing 
the last 50 layers was optimal for retaining learned 
features and adapting to the dataset's unique 
characteristics. Unfreezing too few layers limited the 
model's ability to capture task-specific details, while 
unfreezing too many layers led to overfitting. The 
learning rate was reduced to 1e-5 to ensure that the 
fine-tuning process adjusted weights gradually 
without disrupting the previously learned 
representations. 

Table 3. Optimal Hyperparameter Settings for 
DCNN Model 
 

Hyperparameter Optimal Value 
Model Architecture ResNet50V2 (pre-trained) 
Input Image Size 224 × 224 pixels 

Batch Size 32 
Initial Training Epochs 20 

Fine-Tuning Epochs 40 
Initial Learning Rate 1e-4 

Fine-Tuning Learning Rate 1e-5 
Dropout Rate (Initial Layers) 30% 
Dropout Rate (Dense Layers) 50% 

Regularization (L2) 0.01 
Optimizer Adam 

Loss Function Huber Loss 
Activation Function (Dense) LeakyReLU (α=0.1) 

Train/Val/Test Split 70% / 10% / 20% 
Augmentations per Image 20 

Total Training Images 686,000 

 
Hyperparameter tuning was a crucial aspect of 

model optimization. The Adam optimizer was used 
with an initial learning rate of 1e-4, which was 
dynamically reduced using ReduceLROnPlateau to 
prevent overfitting during convergence. Dropout 
layers (0.3 after the base model and 0.5 after fully 
connected layers) were introduced to improve model 
stability and prevent overfitting. Training 
performance was monitored using EarlyStopping, 
which halted training if validation loss did not 
improve for five consecutive epochs, and 
ModelCheckpoint, which ensured that the best-
performing model was saved. The selection of 
learning rate and dropout values was determined 
based on extensive experimentation, with multiple 
training iterations guiding the identification of the 
most effective configuration.  
 
4.3 Training and Validation 

 
The performance of the developed Deep 

Convolutional Neural Network (DCNN) model was 
systematically assessed by analyzing the training 
and validation loss values recorded over successive 
training iterations. At the beginning of training, both 
the training and validation losses exhibited elevated 
values, as shown in Fig. 7, signifying the model's 
initial lack of proficiency in capturing relevant data 
patterns. As training continued, both loss values 
demonstrated a stable decline, indicating effective 
learning and improved recognition of critical 
features necessary for accurately predicting 
compressive strength from concrete specimen 
images. The sharpest decrease in loss values 
occurred in the early stages, highlighting rapid 
model adaptation and feature extraction. 
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Fig.7 Loss Curve Graph 

 
As training continued towards convergence, the 

reduction rate of loss values diminished, suggesting 
incremental refinements and optimization of model 
predictions. Although minor fluctuations in 
validation loss were observed, likely attributable to 
inherent variations within the validation dataset, the 
overall trend consistently moved toward stability. 
The close alignment and parallel decrease of 
validation loss relative to training loss further 
suggested the successful avoidance of overfitting.  

 
4.4 Performance Metrics 

 
The deep convolutional neural network (DCNN) 

model was evaluated using key performance metrics, 
including Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), Coefficient of Determination 
(R²), and Mean Absolute Percentage Error (MAPE), 
as summarized in Table 4. 

 
Table 4. Performance Metrics Result 
 

Metric Value 
Best Training Loss 0.2539 
Best Training MAE 0.4228 
Best Validation Loss 0.3521 
Best Validation MAE 0.4708 

Validation RMSE 1.1753 
Test RMSE 1.2349 

Coefficient of Determination (R²) 0.9691 
Mean Absolute Percentage Error (MAPE) 1.8651 

 
4.4.1 Root Mean Square Error 

The validation RMSE was recorded at 1.1753, 
while the test RMSE was computed at 1.2349, 
indicating that the model maintained a low 
prediction error across different datasets.  

The slight difference between the validation 
RMSE and the test RMSE (1.2349) indicated that 
the model performed consistently on unseen data 
without significant overfitting. 

4.4.2 Coefficient of Determination (R²)  
The R² value was recorded at 0.9691, indicating 

that the model accurately predicted 96.91% of the 
variation in compressive strength. This high R² value 
confirmed that the model successfully captured the 
underlying patterns in the dataset and exhibited 
substantial predictive accuracy. 
 
4.4.3 Mean Absolute Percentage Error  

The Mean Absolute Percentage Error (MAPE) 
for the validation dataset was recorded at 1.8651%, 
indicating that, on average, the model’s predictions 
deviated by approximately 1.87% from the actual 
compressive strength values. The low MAPE value 
suggested that the deep convolutional neural 
network (DCNN) model consistently produced 
accurate predictions with minimal deviation from 
actual values.  

 
4.5 Predicted vs True Values 

 
As shown in Fig. 8, most data points were 

closely clustered along the perfect prediction line, 
suggesting that the model’s predictions aligned well 
with the actual compressive strength values. This 
indicated that the model effectively learned the 
underlying patterns from the dataset, allowing it to 
produce accurate predictions of compressive 
strength based on concrete images. 

 

         
 
 
Fig.8 Predicted vs True Values Scatter Plot 
 

However, minor deviations were observed, 
particularly in the mid-range compressive strength 
values (20 MPa to 35 MPa), where some points were 
scattered away from the ideal line. These deviations 
suggested the presence of minor errors, possibly due 
to variations in image quality, dataset 
inconsistencies, or limitations in the model's 
generalization ability. At lower strength values 
predictions were well-distributed around the perfect 
prediction line, showing that the model performed 
reliably in this range. Similarly, predictions aligned 
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with actual values at higher compressive strength 
values (above 35 MPa). However, some clustering 
was detected, indicating a potential saturation effect 
where the model's predictions were slightly 
constrained within a specific range. A few outliers 
were observed, particularly in the mid-to-high 
strength range, indicating instances where the 
model’s predictions deviated more significantly 
from the actual values. However, these errors 
remained within an acceptable margin, suggesting 
the model retained strong predictive capabilities. 

 
4.6 Residuals 

 
4.6.1 Histogram 

As shown in Fig. 9, the residual histogram 
demonstrated that most prediction errors were 
tightly clustered around zero, indicating that the 
DCNN model generated compressive strength 
predictions with minimal deviation from actual 
values. The sharp central peak reflected high model 
accuracy, while the symmetrical, narrow spread of 
residuals suggested an absence of systemic bias. 
Most residuals fell within ±5 MPa, with only a few 
outliers exceeding ±10 MPa. Dataset 
inconsistencies, image quality issues, or anomalous 
concrete samples likely caused these rare errors. The 
residual distribution confirmed the model's robust 
predictive performance across the dataset. 

 

             
 
 
Fig.9 Residual Distribution 
 
4.6.2 Plot 

As shown in Fig.  10, the residual plot illustrated 
the prediction errors by plotting residual differences 
between actual and predicted compressive strengths 
against predicted values. Residuals were 
predominantly clustered around the zero line, 
suggesting high prediction accuracy and minimal 
systematic bias. The symmetrical spread confirmed 
the absence of overestimation or underestimation 
tendencies. However, a widening dispersion was 
observed for predictions above 30 MPa, indicating 
increased variance and reduced accuracy at higher 
strength levels. Notably, residuals below 20 MPa 
remained small, while higher strength values tended 

to be underestimated, as reflected by more 
significant negative residuals. A few outliers 
exceeded ±15 MPa. The presence of 
heteroscedasticity highlighted slight performance 
inconsistencies of the DCNN model at elevated 
strength ranges. 
 

       
 
 
Fig.10 Residual Plot 

 
4.7 Final Testing on Unseen Datasets 

 
The model was tested on ten (10) unique datasets 

containing concrete specimens with varying 
compressive strengths that had never been included 
in training, validation, or initial testing.  
 

        
 
 
Fig.11 Predicted Values per Image in 12.96 MPa 
 

        
 
 
Fig.12 Predicted Values per Image in 20.30 MPa 
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Fig.13 Predicted Values per Image in 21.96 MPa 
 

        
 
 
Fig.14 Predicted Values per Image in 25.52 MPa 
 

        
 
 
Fig.15 Predicted Values per Image in 26.02 MPa 
 

        
 
 
Fig.16 Predicted Values per Image in 26.26 MPa 
 

          
 
 
Fig.17 Predicted Values per Image in 26.63 MPa 
 

        
 
 
Fig.18 Predicted Values per Image in 26.64 MPa 
 

        
 
 
Fig.19 Predicted Values per Image in 26.74 MPa 
 

         
 
 
Fig.20 Predicted Values per Image in 28.67 MPa 
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The model exhibited both overestimations and 
underestimations across different compressive 
strength levels. The model consistently 
overestimated lower compressive strengths, such as 
12.96 MPa predicted as 13.78 MPa (Fig. 11) and 
20.30 MPa predicted as 24.08 MPa (Fig. 12). 
Predictions tended to cluster slightly above the 
actual values, indicating a bias toward higher 
strength estimates in this range. 

At moderate compressive strengths, the model 
showed a tendency to underestimate values, such as 
26.02 MPa predicted as 24.06 MPa (Fig. 15) and 
26.26 MPa predicted as 22.76 MPa (Fig. 16). This 
pattern suggests that the model may have 
misinterpreted certain structural features in mid-
range strength concrete specimens. 

Predictions fluctuated between overestimation 
and underestimation in datasets with strengths above 
26 MPa. For example, 26.64 MPa were 
overestimated at 29.36 MPa (Fig. 18). In 
comparison, 28.67 MPa were underestimated at 
26.82 MPa (Fig. 20). This suggests that the model 
handled higher-strength specimens less consistently, 
possibly due to variations in texture, aggregate 
distribution, or lighting conditions. 

These observations indicate that while the model 
maintained strong predictive accuracy, specific 
strength ranges introduced subtle biases in 
estimation. To quantify the model's accuracy, the 
Root Mean Square Error (RMSE) was calculated at 
2.35, reflecting the average deviation between 
predicted and actual values. The relatively low 
RMSE suggests minimal significant errors, 
reinforcing the model's generalization ability to 
unseen data. 

 
4.8 Statistical Analysis of True Values and 
Predicted Values 

 
4.8.1 True Values vs DCNN Predicted Values 

To evaluate the accuracy of the DCNN model, a 
paired t-test was conducted comparing ten actual 
compressive strength values to their corresponding 
predictions from the Python-based model. The test 
resulted in a mean difference of -0.008 MPa, a t-
statistic of 0.004, and a p-value of 0.9968, far above 
the significance level of 0.05. These results indicate 
no statistically significant difference between the 
true values and the model's predictions, as shown in 
Table 5. 

The assumption of normality of differences was 
evaluated using descriptive statistics and distribution 
symmetry. Although formal normality testing was 
not applied due to the small sample size (n = 10), 
visual inspection of the data revealed no strong 
deviation from normality. The test also assumed 
equal variances, which was considered reasonable 
given the similarity in standard deviations between 
true and predicted values. 

Table 5. Paired T-Test Result (True Values and 
Python Model Predicted Values) 
 

Metric Value 
Mean Difference -0.008 

Sum of Squared Differences 19.7004 
T Statistic 0.004 

Degrees of Freedom  18 
Critical Value  2.1009 

p-value 0.9968 
Remark H0 

*H₀ = There is no significant difference between the true 
compressive strength values and the predicted values.  
*Ha = There is a significant difference between the true and 
predicted compressive strength values. 
 

These findings confirm that the Python-based 
DCNN model provides highly accurate and unbiased 
predictions, supporting its reliability as a 
nondestructive tool for estimating concrete 
compressive strength. 

 
4.8.2 Python Model Predicted Values vs Android-
based Application Predicted Values 

A second paired t-test was performed to compare 
the predicted compressive strength values generated 
by the Python-based model and the Android-based 
mobile application. The dataset consisted of 50 
paired observations, and the test produced a mean 
difference of -0.109 MPa, a t-statistic of 0.1072, and 
a p-value of 0.9148, as presented in Table 6. This 
result indicates no statistically significant difference 
between the predictions from the two platforms. 

Given the larger sample size (n = 50), the 
normality of differences was assumed based on the 
central limit theorem. The assumption of equal 
variances was supported by the similarity of 
standard deviations between the two sets (Python: 
5.0994 MPa, Android: 5.0656 MPa). 

 
Table 6. Paired T-Test Result (True Values and 
Python Model Predicted Values) 
 

Metric Value 
Mean Difference -0.109 

Sum of Squared Differences  25.8319 
T Statistic 0.1072 

Degrees of Freedom  98 
Critical Value 1.9845 

p-value 0.9148 
Remark H0 

*H₀ = There is no significant difference between the true 
compressive strength values and the predicted values.  
*Ha = There is a significant difference between the true and 
predicted compressive strength values. 
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These results validate that converting the trained 
model into TensorFlow Lite (TFLite) for mobile 
deployment did not introduce meaningful 
discrepancies, confirming the model's cross-platform 
consistency and field applicability. 

 
4.9 Real-Time Prediction Performance 
  

The performance evaluation of the optimized 
TensorFlow Lite (TFLite) model deployed within 
the Android application demonstrated highly 
efficient inference capabilities suitable for practical 
on-site usage. The final TFLite model was reduced 
to 93.8 MB, effectively balancing compactness and 
accuracy, allowing the application to operate 
smoothly on standard Android mobile devices. 
Inference speed was also optimized, with the model 
achieving an average prediction time of 34 
milliseconds per image on a typical mid-range 
Android device. This ensures that prediction results 
are generated almost instantaneously, supporting 
real-time decision-making in field conditions. 
 

4.10 Visual Reliability and Environmental 
Considerations 
  

The Android-based model is optimized for rapid 
and lightweight performance; however, image-based 
misinterpretation can occur during prediction. Such 
issues may arise from non-uniform lighting, 
shadows, surface dust or debris, image blur, or 
improper camera angles, which can obscure or 
distort critical surface features such as aggregate 
texture, pore structure, or microcracks. These 
inconsistencies can affect the model's ability to 
interpret input images and predict compressive 
strength accurately. 

To minimize these risks, the image acquisition 
process was standardized. A fixed working distance 
of 7 cm, a uniform white background, and controlled 
illumination using a softbox light (12,000 LUX, 
5500K) were employed to ensure consistent and 
high-quality images across the dataset. 

In addition to visual variability, environmental 
factors such as temperature, humidity, and concrete

Table 7. Comparison with existing NDT prediction results 
 

Author Methods Algorithm Input Data RMSE 
Chen et al. [18] NDT Regression Rebound hammer test value 4.9 

Chen, Fu, Yao, et al., 
2017 [19] NDT Regression Ultrasonic pulse velocity test value 4.9 

Rashid et al., 2017 [20] NDT Regression Rebound hammer test value 12.4 
   Ultrasonic pulse velocity test value 37.9 

Yaseen et al., 2018 [21] Machine learning SVM Concrete cement 4.35 
   Concrete oven dry density 3.57 
   Concrete water/binder 4 
   Concrete foam 3.33 
 Machine learning M5 Tree Concrete cement 3.3 
   Concrete oven dry density 2.17 
   Concrete water/binder 6.84 
   Concrete foam 2.29 
 Machine learning MARS Concrete cement 3.68 
   Concrete oven dry density 1.37 
   Concrete water/binder 6.41 
   Concrete foam 3.57 
 Machine learning ELM Concrete cement 3.25 
   Concrete oven dry density 1.06 
   Concrete water/binder 3.8 
   Concrete foam 1.48 

Jang et al., 2019 [22] DCNN ResNet Concrete Microscope Image 4.463 
Shin et al., 2019 [7] DCNN Concnet_A Concrete Surface Digital Image 3.82 

  Concnet_G Concrete Surface Digital Image 3.64 
  Concnet_R Concrete Surface Digital Image 3.56 

Lee et al., 2020 [8] DCNN DSLR Concrete Surface DSLR Image 3.779 
  Microscope Concrete Surface Microscope 

Image 4.875 

Yu et al., 2024 [23] DCNN CNN Pervious Concrete Surface Image 2.72 

Proposed Model DCNN/Transfer 
Learning Resnet50V2 Concrete Surface Mobile Image 1.23 
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curing conditions can influence the surface 
appearance of the concrete and its true compressive 
strength. These factors may cause visible differences 
in surface texture or coloration and can impact the 
development of material properties over time. As 
such, they represent critical considerations when 
evaluating and interpreting image-based predictions 
in practical applications. 

Given its demonstrated accuracy, speed, and 
portability, the proposed model offers strong 
potential for on-site concrete strength monitoring, 
particularly in remote or resource-limited 
environments. It is also well-suited for integration 
into mobile inspection tools, automated quality 
control workflows, and smart construction systems 
or IoT-based infrastructure platforms that require 
fast, nondestructive assessment of material 
performance. 
 
4.11 Existing NDT Prediction Results 
 

Table 7 shows the various nondestructive testing 
(NDT) methods and machine learning approaches 
used in previous research to predict concrete 
compressive strength. Shin et al. [7] introduced deep 
convolutional neural networks (DCNNs) as an 
alternative approach for predicting concrete 
compressive strength using digital images of 
concrete surfaces.  

The models ConcNet_A, ConcNet_G, and 
ConcNet_R achieved RMSE values of 3.82, 3.64, 
and 3.56, respectively. These results demonstrated 
that DCNNs could reasonably approximate concrete 
strength from image data. However, their accuracy 
remained slightly lower than some best-performing 
machine learning models. 

Lee et al. [8] proposed additional DCNN-based 
methods, using digital images captured via DSLR 
and microscope devices to predict compressive 
strength, achieving RMSE values of 3.779 and 
4.875, respectively. Another recent model by Yu et 
al. [23] used a CNN to predict the compressive 
strength of pervious concrete and achieved an 
RMSE of 2.72. Similarly, Jang et al. [22] employed 
a ResNet-based model using digital microscope 
images and obtained an RMSE of 4.463. 

Our new approach, the DCNN model developed 
using ResNet50V2 with Transfer Learning in the 
present study, yielded a significantly lower RMSE 
of 1.23. This indicated that the proposed model 
achieved a higher predictive accuracy than previous 
NDT-based and machine learning-based methods. 
The substantial reduction in RMSE suggested that 
deep learning techniques, particularly those 
leveraging pre-trained architectures such as 
ResNet50V2, could extract meaningful features 
from concrete images and accurately estimate 
compressive strength.  
 

5. CONCLUSIONS 
 
This study demonstrated the effectiveness of a 

ResNet50V2-based Deep Convolutional Neural 
Network (DCNN) for nondestructive prediction of 
concrete compressive strength using mobile phone 
imagery. Based on experimental results and 
statistical analysis, the following conclusions are 
drawn: 

• The developed Deep Convolutional Neural 
Network (DCNN) using ResNet50V2 
architecture achieved a coefficient of 
determination (R²) of 0.9691, indicating 
that 96.91% of the variability in concrete 
compressive strength was successfully 
predicted from image data. 

• The model obtained a Root Mean Square 
Error (RMSE) of 1.2349 MPa and a Mean 
Absolute Percentage Error (MAPE) of 
1.8651%, demonstrating high prediction 
accuracy and minimal deviation from actual 
test results. 

• A paired t-test between true compressive 
strength values and those predicted by the 
Python-based model showed a mean 
difference of -0.008 MPa and a p-value of 
0.9968, confirming no statistically 
significant difference (α = 0.05) and 
validating model accuracy. 

• A second paired t-test comparing 
predictions from the Python-based model 
and the Android-based mobile application 
yielded a p-value of 0.9148, indicating no 
significant difference between platforms 
and confirming the mobile app's reliability. 

• The TensorFlow Lite (TFLite) version of 
the model was optimized for real-time 
deployment, reducing the model size to 
93.8 MB and achieving an average 
prediction speed of 34 milliseconds per 
image on standard Android devices. 

• The model outperformed previous 
nondestructive testing (NDT) and machine 
learning approaches regarding RMSE, 
achieving a value of 1.23, compared to 
RMSEs of 3.56–12.4 from existing studies. 

• Final testing on unseen data showed 
consistent predictive performance, with 
minor underestimations and 
overestimations within an acceptable range 
and a final testing RMSE of 2.35 MPa, 
supporting the model's generalizability. 

This study highlights the potential of integrating 
deep learning with mobile technology for fast, 
reliable, and nondestructive concrete evaluation. 
This research sets a foundation for adopting AI-
driven solutions in construction quality control by 
demonstrating high prediction accuracy, cross-
platform reliability, and real-time performance. 
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Future studies can build on this framework by 
extending it to other materials, embedding it into 
smart infrastructure systems, and combining image-
based AI with complementary sensing technologies 
to advance the field of intelligent structural 
assessment. 
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