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ABSTRACT: Excavation-induced slope instability threatens infrastructure safety and civil engineering
operations, often leading to substantial economic losses and environmental degradation. Traditional predictive
methods, such as the Limit Equilibrium Method (LEM) and Finite Element Method (FEM), are limited in their
ability to address the nonlinear, dynamic, and uncertain conditions typically present in excavation scenarios. This
study presents an integrated prediction framework that couples experimental observations with Monte Carlo
simulation and artificial intelligence (Al) techniques to enhance the accuracy and robustness of slope instability
prediction. The Monte Carlo simulation component estimates failure probabilities under various geotechnical
conditions, including moisture content, vibration amplitude, slope angle, and pore water pressure.
Simultaneously, machine learning algorithms—specifically random forests and neural networks—are employed to
capture complex interactions among variables and improve classification performance. The proposed model
demonstrates superior predictive accuracy, with machine learning classifiers achieving over 98% accuracy, and
effectively identifies critical thresholds and dominant risk factors through statistical and visual analysis. The
integration of experimental data further validates the model’ s reliability. This hybrid approach provides a
scalable, adaptive, and data-driven tool for real-time slope risk assessment and early warning applications,
supporting safer and more resilient infrastructure development in geotechnically complex environments.
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1. INTRODUCTION mprove the accuracy and adaptability of slope failur
e prediction. Monte Carlo Simulation (MCS) has em
Excavation-induced slope instability remains a erged as a powerful tool for quantifying failure prob
critical concern in geotechnical and civil engineering, ability by accounting for spatial and statistical variab
with significant implications for infrastructure safety, ility in input parameters, such as moisture content, sl
environmental sustainability, and socioeconomic ope angle, and pore water pressure[5-6]. Meanwhile,
resilience. The complex interactions of geological artificial intelligence (AI) models—including Rand
formations, groundwater conditions, mechanical om Forest (RF), Support Vector Machine (SVM), an
disturbances, and human interventions such as deep d Extreme Gradient Boosting (XGBoost)-have dem
foundation excavation and road cuttings often onstrated strong classification performance in model
trigger these failures. Recent studies have ing nonlinear geotechnical behavior and extracting h
highlighted such failures' increased frequency and idden failure patterns from large datasets [7-8].
severity, reinforcing the urgent need for more robust Recent applications increasingly emphasize the
and intelligent predictive frameworks[1-2]. real-time integration of artificial intelligence (AI)
Conventional analytical approaches, particularly into early warning systems (EWS), sensor networks,
the Limit Equilibrium Method (LEM) and Finite and dynamic slope monitoring[9]. For example, a
Element Method (FEM), have long been employed UAV-based monitoring framework incorporating Al
in slope stability assessments. However, their prediction algorithms has been developed to detect
deterministic nature limits them in addressing the slope instability. A hybrid Monte Carlo simulation
highly nonlinear behavior, boundary variability, and and machine learning (MCS-ML) framework has
uncertainty inherent in excavation-induced slope also been used to evaluate failure risk under rainfall-
responses[3-4]. These methods often fail to identify induced conditions[10]. These initiatives
transitional failure states and do not quantify the demonstrate that combining Al with probabilistic
inﬂuence of.par.amete.r Yariability, especially under systems provides reliable, scalable, and interpretable
rainfall or seismic excitation. solutions for predicting geotechnical hazards.
In response, researchers have increasingly adopte Nonetheless, two critical gaps remain: (1) the
d probabilistic and machine-learning techniques to i absence of unified frameworks that tightly couple
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probabilistic simulations and AI models in an
interpretable manner and (2) the limited integration
of high-resolution experimental data and real-time
updates, which constrain in-situ implementation and
validation efforts [11-13].

To address these challenges, this study proposes
a hybrid framework that couples experimental
observations, Monte Carlo simulation, and machine
learning algorithms for the realistic prediction of
excavation-induced slope failures. The proposed
method offers improved accuracy, dynamic learning

capability, and interpretability —compared to
traditional approaches. Moreover, it supports
engineering  decision-making  through  risk

quantification, visual diagnostics, and early warning
outputs.

The remainder of this paper is structured as
follows: Section 2 introduces the experimental setup
and simulation procedures. Section 3 presents the
main results and model validation. Section 4

discusses engineering implications. Section 5
outlines future research directions, and Section 6
concludes the paper with key findings and
contributions.

2. RESEARCH SIGNIFICANCE

This study introduces a novel hybrid framework
that combines experimental data, Monte Carlo
simulations, and artificial intelligence to accurately
predict slope failures caused by excavation. By
integrating probabilistic modelling with machine
learning, this framework overcomes the limitations
of traditional methods and offers real-time, data-
driven risk assessments. This approach significantly
improves the reliability and clarity of slope failure
predictions, providing practical benefits for
engineering design, early warning systems, and
slope hazard mitigation in complex geotechnical
environments.

3. METHODOLOGY
3.1 Experimental Data Collection

Identifying and quantifying the key contributing
factors is essential for developing a reliable
predictive framework for excavation-induced slope
instability. This study emphasizes four critical
variables commonly discussed in recent geotechnical
literature: moisture content (W), vibration amplitude
(A), slope angle ( 0 ), and pore water pressure (Pw).
Each of these parameters plays a unique role in
influencing soil behaviour and triggering failure
mechanisms.

- Moisture content: affects matric suction and
shear strength, particularly under varying saturation
conditions.

-Vibration amplitude :

represents dynamic
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stresses from excavation or traffic loads, which can
lead to the internal restructuring of soil particles.

- Slope angle: determines the gravitational
component of driving forces, serving as a geometric
risk amplifier.

- Pore water pressure decreases effective stress,
weakening the soil's resistance to sliding.

These parameters were obtained through
laboratory experiments, field surveys, and controlled
numerical simulations. Table 1 summarizes the
value ranges and sources for these parameters.

Table 1. Input parameters and corresponding value
ranges were used in this study.

Parameter Value Range  Source

Moisture 15-65% Laboratory
Content (W) Experiments
Vibration 0.5-10 mm Controlled
Amplitude (A) Simulations
Slope  Angle 5° -60° Field

(6) Observations
Pore Water 5-50 kPa Experiment/Simu
Pressure (Pw) lation

3.2 Monte Carlo Simulation Approach

Monte Carlo Simulation (MCS) is employed to
assess the probabilistic nature of slope instability.
Compared to deterministic models, MCS better
captures variability in environmental loads and
material heterogeneity. Recent studies confirm its
applicability in slope reliability assessments[14].
Each parameter is modelled using a uniform
distribution over its defined range. The simulation is
repeated 10,000 times, and a binary classification is
made based on the threshold :

-W>50%, A>7 mm, and 0 > 45°
instability.

- Additionally, W X 0 > 2000 and A X Pw >
200 also indicate failure scenarios.

The results provide a failure probability as a base
risk indicator for AI model development.

signify

3.3 Integration of Al for Prediction

Several Al models, including Random Forest
(RF), Support Vector Machine (SVM), and
XGBoost, are trained to complement MCS. These
classifiers utilize the Monte Carlo outputs and
experimental data for supervised learning. Al
methods, notably ensemble and boosting techniques,
have demonstrated high reliability in geotechnical
classification tasks[13,15].

Evaluation metrics such as accuracy, AUC, and
F1-score were used to validate model performance.
The results show that SVM and XGBoost achieved
over 98% accuracy, significantly surpassing
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traditional LEM and FEM models in dynamic and
high-dimensional scenarios.

3.4 Data Fusion and Model Coupling

The final model integrates MCS-derived
probabilistic outputs with Al classification decisions.
This hybrid architecture ensures that statistical risk
evaluation and adaptive real-time prediction are
available for decision support. The fusion technique
merges stability probability from MCS with slope
classification labels from Al models, facilitating:

- Layered risk interpretation based on simulation
and prediction.

- Dynamic model retraining as new sensor data
becomes available.

This approach enhances practical engineering
applications by enabling timely warnings and
supporting excavation safety management with data-
driven insights.

4. RESULTS AND DISCUSSION

4.1 Practical Applications of the Coupled
Simulation Framework

By seamlessly integrating  experimental
observations with Monte Carlo simulations and Al-
driven predictive models, we establish a robust and
reliable foundation for tackling excavation-induced
slope instability. This innovative framework adeptly
simulates intricate slope behaviors under various
geotechnical and environmental conditions, critically
assessing the interactions between key variables
such as moisture content, slope angle, vibration
amplitude, and pore water pressure. The synergy of
laboratory-validated parameters with advanced
machine learning algorithms dramatically enhances
the model” s robustness and its applicability across
diverse site conditions[16].

This hybrid framework is not just an academic
exercise; it holds tangible benefits for engineering
practice. For instance, real-time monitoring systems
can continuously supply dynamic data to the model
during urban excavation or tunneling projects,
facilitating ongoing assessments of slope stability
and enabling the timely issuance of early warning
alerts for potential failures[17]. Such predictive

Table 2. Failure Scenarios by Dominant Conditions

capabilities empower engineers to take proactive
measures, ensuring safety and efficiency rather than
merely responding to crises after they occur.

4.2 Failure Pattern Analysis and Visual Insights

Our comprehensive analysis simulated a
staggering ten thousand slope scenarios using Monte
Carlo methods. From these simulations, we
determined an overall failure probability of 23.1%.
Notably, failures predominantly occurred under high
moisture content and steep slope angles.

Figure 1 showcases a compelling 3D scatter plot,
where blue dots signify stable conditions while red
dots mark failure cases. The visual clustering of red
markers unequivocally highlights zones susceptible
to failure, providing critical insights into the most
hazardous combinations of input parameters.

Vibration Amplitude (a)

Fig.1: 3D Visualization of Slope Stability based on
Monte Carlo Simulations.

To enhance our understanding of the various
types of failures, we classified the failed cases into
three predominant scenarios: (1) high moisture and
high slope angle, (2) high vibration coupled with
high pore water pressure, and (3) complex
interactions (for example, moisture content
combined with slope angle or vibration amplitude
with pore water pressure). Table 2 offers a concise
summary of the statistical profiles for these
categories. At the same time, Figure 2 vividly
illustrates their proportions in a stacked bar chart,
making the information accessible and compellingly
clear.

Failure Moisture  Vibration ~ Slope ~ Pore Water Proportion
Scenario Content Amplitude Angle  Pressure W_theta  A_Pw  Count (%)

H¥gh At 48.24 8.44 48.86 45.14 2321.39 380.36 80 12.60
High Pw

High . 49.64 7.13 47.68 37.82 2311.30 261.27 246 38.74
Interaction

Eﬁﬁ Yo 7.95 5275 29.30 304538 22496 309  48.66
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Fig. 2 Stacked Bar Chart of Failure Scenario
Proportions

4.3 Comparative Evaluation of AI and
Traditional Models

To assess predictive accuracy, three Al
classifiers —Random Forest (RF), Support Vector
Machine (SVM), and XGBoost—were benchmarked
against traditional models: the Limit Equilibrium
Method (LEM) and Finite Element Method (FEM).
As shown in Table 3, SVM and XGBoost achieved
accuracy levels above  98%, significantly
outperforming traditional models that showed
reduced performance in handling nonlinear or
interaction-dominated scenarios[16].

To evaluate predictive accuracy, three Al
classifiers —Random Forest (RF), Support Vector
Machine (SVM), and XGBoost —were compared
against traditional models, specifically the Limit
Equilibrium Method (LEM) and the Finite Element
Method (FEM). As illustrated in Table 3, SVM and
XGBoost achieved accuracy levels exceeding 98%,
significantly outperforming the traditional models,
which exhibited reduced performance in scenarios
characterized by nonlinearity or dominated by
interactions[18].

Table 3. Performance Comparison: Al Models vs.
Traditional Methods

Acc AUC Interpr ?eal-
Model urac  Scor etabilit e
e Capabili
y y ty
Limit
Equilibrium 0.75 0.78 High Low
Method (LEM)
Finite Element Mediu
Method (FEM) 0.82 0.85 m Low
Random Forest 0.97 0.97 Xedlu High
Support Vector
Machine 0.99 0.99 Low Medium
(SVM)
XGBoost 0.99 099 Low High
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4.4 Displacement Trends Under Compound
Loads

We examined average displacement behavior
under compound stress conditions to enhance the
classification analysis. Figure 3 shows slope
displacement increases sharply when moisture
content exceeds 50%, and vibration amplitude
surpasses 7.0 mm. These trends are consistent with
findings from shear tests and field observations,
which validate the model's physical plausibility.

1 Moisture Content

0.4 —_ 35%
45 %

03f =—50%
— 55%

0.2r

Simulated Slope Displacement

0 2 4 6 8
Vibration Amplitude

Fig.3 Simulated Slope Displacement under Varying
Conditions

This non-linear increase in displacement under
compound loads indicates a shift from elastic
behavior to irreversible deformation. Understanding
this critical point is essential for issuing early
warnings and planning effective mitigation strategies.

4.5 Implications for Engineering and Risk
Management

The hybrid modeling framework introduced in
this study offers actionable insights for both slope
design and site monitoring. By enabling real-time
failure prediction based on dynamic sensor data, the
model serves as a vital component of modern early
warning systems[19].

Furthermore, the classification of failure
scenarios helps prioritize mitigation efforts:
-Drainage and membrane barriers are

recommended for situations involving high moisture
and pore pressure.

-In cases dominated by vibration, slope regrading
and anchoring systems are more appropriate.

-Integrated  geotechnical and  geophysical
interventions are necessary for compound scenarios.

Ultimately, this system facilitates a transition
from reactive to predictive slope risk management,
reducing engineering costs and enhancing safety.
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5. APPLICATIONS AND IMPLICATIONS
5.1 Practical Applications

The coupled prediction framework proposed in
this study — integrating experimental data, Monte
Carlo simulations, and artificial intelligence (Al)
techniques — exhibits significant potential for
practical engineering implementation, particularly in
slope instability induced by excavation. This hybrid
framework allows for the simulation of thousands of
possible slope conditions by varying key factors
such as moisture content, pore water pressure,
vibration amplitude, and slope geometry, thereby
rendering it well-suited for complex geotechnical
environments subject to dynamic changes.

Recent research indicates that combining real-
time sensor data with artificial intelligence (Al)
algorithms can significantly improve the accuracy of
slope stability predictions. For instance, a real-time
instability forecasting system using IoT-based
sensors alongside Al models to predict slope
behavior in urban excavation scenarios has been
developed[20]. Additionally, another study created
an early warning system for slopes by integrating
piezometers and inclinometers into a machine
learning framework, which effectively reduced the
rate of false alarms during field deployments[21].

As depicted in Fig. 4, the proposed system
architecture facilitates the integration of real-time
field data into Al prediction modules, establishing a
feedback loop that supports dynamic model updates.
This feature is essential for early warning systems
(EWS), which are increasingly deployed in high-risk
mountainous regions and along infrastructure
corridors [22].

Experimental
Data

Monte Carlo
Simullatiion

I 1
Monte Carlo Artificial
Simullatiion Intelligence

Coupled
Model

Real-Time
Monitoring

Sensor
Network

Slope Stability
Assessment

Fig. 4 Coupled Slope Prediction

Framework

Stability
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A low-cost IoT-based prototype system was also
developed in this study to demonstrate the feasibility
of real-time monitoring and data acquisition. The
system, illustrated in Fig. 5, integrates an ESP32
microcontroller with an FC-28 soil moisture sensor
and an MPU6050 gyroscope module. This compact
and scalable hardware configuration enables
continuous monitoring of moisture and vibration
parameters, which can be wirelessly transmitted to
the Al module for dynamic analysis and risk
classification. The prototype is a practical
demonstration of how IoT technologies can be
embedded into the proposed prediction framework
to enable early warnings and data-driven decision-
making in excavation sites and other high-risk
geotechnical settings.

Fig. 5. IoT-based slope monitoring prototype system

The model's real-time predictive capabilities
further assist site engineers in pinpointing hazardous
zones before failure, enabling timely mitigation
measures such as optimizing excavation sequences,
installing drainage systems, or reinforcing structures.
Moreover, this modular and data-driven framework
allows for customization according to local
geological conditions and regulatory requirements,
enhancing its versatility across various geotechnical
projects.

5.2 Implications for Slope Management and Risk
Assessment

The proposed approach presents significant
advancements in slope management and hazard
assessment. Traditional deterministic methods—such
as the Limit Equilibrium Method (LEM) and Finite
Element Method (FEM)—are widely utilized but
often fail to adequately capture the inherent
uncertainties and non-linear interactions among
environmental factors. In contrast, the hybrid
framework introduced here addresses these
shortcomings by integrating probabilistic modeling
and machine learning.
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This model enables comprehensive multi-
scenario risk evaluation by estimating failure
probabilities under varying environmental and
operational conditions. For example, a machine
learning-based framework has been applied to assess
rainfall-induced landslides, effectively capturing the
complex interactions among precipitation, pore
water pressure, and slope angle — factors also
considered in this study.

The integration of artificial intelligence further
improves the capacity to detect subtle thresholds and
compound risk indicators that traditional methods
may overlook. Deep learning classifiers have
demonstrated superior performance over finite
element methods (FEM) in classifying slope stability
under layered and saturated soil conditions,
achieving accuracy levels exceeding 97%.

The model's scalability also supports adapting to
diverse climatic zones, geological settings, and
engineering scenarios. GIS-integrated ensemble
learning models have been calibrated to regional
topographies, enabling large-scale slope risk
mapping and facilitating spatially targeted mitigation
planning.

In addition, model interpretability has become
increasingly important in real-world applications.
The use of SHAP (Shapley Additive Explanations)
values provides insights into the influence of
individual variables on prediction outcomes, thereby
enhancing transparency and confidence in Al-
assisted geotechnical decision-making[6].

In summary, the proposed framework contributes
to the advancement of slope safety management by
enabling:

Real-time, data-driven risk prediction, adaptable
to changing field conditions;

Probabilistic assessment of multiple failure
scenarios under excavation or hydrological loads;

Integration with GIS systems and EWS platforms
for proactive management;

Improved accuracy and interpretability via
machine learning, including explainable Al methods.

This  significantly  shifts from reactive
stabilization to proactive, intelligent, sustainable
slope hazard control.

6. FUTURE RESEARCH DIRECTIONS
6.1 Enhancing Simulation Accuracy

Improving the precision and realism of Monte
Carlo simulations is essential for advancing slope
instability predictions. Currently, input variables are
assigned broad ranges and modeled using uniform
probability distributions. While this method supports
generalized assessments, it often fails to reflect
localized geotechnical conditions accurately.

Future improvements should integrate high-
resolution geotechnical datasets, including detailed
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stratigraphic profiles, spatially varying pore-water
pressures, shear strength heterogeneity, and the
anisotropic behavior of soils and rock masses. By
utilizing these data sources, we can achieve more
representative  sampling and more thorough
statistical characterization of boundary and material
uncertainties, which will, in turn, enhance the
reliability of failure probability estimates.

Monte Carlo simulations are particularly
sensitive to the statistical properties of input
variables. Consequently, inaccuracies in input

characterization can lead to significant prediction
bias. Adopting site-specific, calibrated probability
distributions and continuously updating models
based on field monitoring data is crucial to mitigate
this risk and improve prediction robustness.

Furthermore, incorporating temporal dynamics—
such as rainfall seasonality, antecedent moisture
conditions, and long-term climate projections—is
increasingly important, especially in global climate
change. Recent studies have underscored that
integrating hydrological and meteorological datasets
into Monte Carlo models can significantly enhance
the prediction of slope responses under changing
environmental conditions.

6.2 Advances in Al Techniques

Artificial  intelligence  (AI)  continuously
revolutionizes geotechnical modeling by providing
innovative solutions for predicting slope failures.
Deep learning architectures, particularly
convolutional neural networks (CNNs) and recurrent
neural networks (RNNs)—exceptionally long short-
term memory (LSTM) models — are remarkably
suited for capturing spatial dependencies and
modeling temporal sequences. These advanced
models can efficiently process extensive time-series
data, including rainfall measurements, pore pressure,
and displacement. As a result, they enable dynamic
predictions of slope stability under varying
conditions.

In addition to accuracy, explainability has
become crucial in engineering applications. Recent
advancements in explainable AI (XAI), such as
Shapley Additive explanations (SHAP), allow users
to discern how each input variable impacts model
predictions. This level of transparency is essential in
managing infrastructure risk, where decisions must
be substantiated to regulators and stakeholders.

Looking toward the future, integrating high
predictive accuracy with model interpretability will
be vital for the broader adoption of Al in
geotechnical engineering. Reliable and explainable
models will significantly contribute to transitioning
slope hazard mitigation strategies from reactive
responses to proactive, risk-informed decision-
making.
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6.3 Expanding Experimental Data

Enhancing the predictive performance of slope
instability models relies on expanding experimental
datasets, particularly those that reflect real-world
conditions. = While  conventional  laboratory
experiments offer controlled environments for
studying specific variables, they often fail to capture
boundary effects and heterogeneity in field-scale
slopes.

Recent research has underscored the importance
of multi-scale validation approaches. For example,
scaled flume tests, coupled with in-situ
measurements, have been utilized to evaluate the
excavation stability of ancient landslides. This
illustrates the advantage of merging physical data
with observational insights to validate model
predictions [22].

Supporting this perspective, Li et al. conducted a
case study on siltstone slope instability induced by
excavation and rainfall infiltration in southwestern
China. Their findings underscored the importance of
combining field investigations with numerical
simulations to elucidate the progressive failure
mechanisms in stratified rock masses [23].

Additionally, advancements in sensor
technologies and wireless transmission systems have
made real-time environmental monitoring feasible.
Implementing Internet of Things (IoT)-based sensors
and uncrewed aerial vehicle (UAV) imaging systems
facilitates high-frequency collection of parameters
such as pore-water pressure, displacement, and
surface deformation. When integrated with Al-
driven models, these data streams can significantly
enhance the responsiveness and accuracy of early
warning systems [24].

Developing integrated experimental-monitoring
databases—encompassing physical tests and real-time
sensor data—will be critical for creating adaptive,
high-fidelity slope stability models that can be
applied across various contexts.

7. CONCLUSION

This study proposes an integrated framework that
combines  experimental data, Monte Carlo
simulations, and artificial intelligence (Al)
techniques to enhance the accuracy and reliability of
slope instability prediction. The results demonstrate
that this coupled approach effectively captures the
nonlinear and interactive effects of key influencing
factors — namely, moisture content, vibration
amplitude, slope angle, and pore-water pressure—
particularly under excavation-induced conditions.

By leveraging the strengths of probabilistic
simulations and machine learning algorithms, the
proposed model outperforms conventional methods
such as the Limit Equilibrium Method (LEM) and
the Finite Element Method (FEM) in terms of
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predictive  capability and adaptability. The
integration of Al facilitates dynamic learning from
complex datasets and enables real-time updates in
response to new field observations.

The successful implementation of this
framework underscores its practical potential in
engineering applications, including early warning
systems, slope risk assessments, and adaptive design
strategies. Additionally, it provides a scalable and
flexible foundation for incorporating real-time
sensor data, remote sensing technologies, and high-
resolution site-specific information.

Future research should prioritize expanding
experimental datasets, refining AI models, and
advancing real-time data integration techniques to
fully realize this hybrid approach's potential. These
efforts will contribute to more proactive, data-driven
slope management strategies and help mitigate
geotechnical risks in infrastructure development and
excavation activities.

8. ACKNOWLEDGMENTS

This study was supported by the Chongqing
Metropolitan College of Science and Technology
Research Fund (Grant No. CKKY?2024022).

9. REFERENCES

[1] Xu J. and Zhang Y., Al-Powered Digital Twin T
echnology for Highway System Slope Stability R
isk Monitoring, Geotechnics, Vol.5, No.1, 2025,
Article 19. https://doi.org/10.3390/geotechnics50
10019.

[2] Do V.V, Tran T.V., Nguyen D.H., Pham H.D.,
Nguyen V.D. Integrating soil property variability
in sensitivity and probabilistic analysis of unsatu
rated slope: A case study. International Journal o
f GEOMATE, Vol. 25, Issue 110, 2023, pp. 132—
139. https://doi.org/10.21660/2023.110.4011

[3] Zhang J. and Cui S., Investigating the Number of
Monte Carlo Simulations for Statistically Station
ary Model Outputs, Axioms, Vol. 12, No. 5, 202
3, Article 481. https://doi.org/10.3390/axioms12
050481.

[4] Nanehkaran A.Y., Zhu L., Jin C., Chen J., Anwa
r S., Azarafza M., and Derakhshani R., Comparat
ive Analysis for Slope Stability by Using Machin
e Learning Methods, Applied Sciences, Vol. 13,
No. 3, 2023, Article 1555. https://doi.org/10.339
0/app13031555.

[5] Tran T.V., Pham H.D., Hoang V.H., Trinh M.T.
Assessment of the influence of the type of soil an
d rainfall on the stability of unsaturated cut-slope
s — a case study. International Journal of GEOM
ATE, Vol. 20, Issue 77, 2020, pp. 141-148. http
s://doi.org/10.21660/2020.77.66560

[6] Li D., Zhou C., Lu W., and Jiang Q., Machine le
arning-enhanced Monte Carlo and subset simulat


https://doi.org/10.21660/2020.77.66560
https://doi.org/10.21660/2020.77.66560

International Journal of GEOMATE, Aug., 2025 Vol.29, Issue 132, pp.134-141

ions for slope stability analysis, Journal of Mount

ain Science, Vol. 20, No. 5, 2023, pp. 1234-1245.

https://doi.org/10.1007/s11629-023-8388-8.

[7] Zhang L., Wang J., Lin C. Real-time slope insta
bility forecasting based on IoT monitoring and A
I algorithms. International Journal of GEOMAT
E, Vol. 22, Issue 92, 2022, pp. 150—-157. https://d
01.0rg/10.21660/2022.92.8899.

[8] Pisanu C., Saravut J., Pattamad P., Nirut K. Prob
abilistic analysis of slope against uncertain soil p
arameters. International Journal of Civil Enginee
ring, Vol. 14, Issue 14530, 2022, pp. 1-14. https:
//doi.org/10.3390/su142114530

[9] Kanjanakul C. and Chub-Uppakarn T., Method t
o Estimate the System Probability of Failure for
Slope Stability Analysis, International Journal of

GEOMATE, Vol. 14, No. 45, 2018, pp. 162-169.

DOI: https://doi.org/10.21660/2018.45
[10] Chakraborty R., Dey A. Probabilistic slope stab
ility analysis: state-of-the-art review and future p

rospects. Innovative Infrastructure Solutions, Vol.

7, Issue 177, 2022, pp. 1-54. DOI: 10.1007/s41
062-022-00784-1

[11] LiJ., Li X., Zhang J., Zhang L., Zhu H. Rainfal
l-induced soil slope failure: stability analysis and
probabilistic assessment. CRC Press, Vol. 374, 2
016. https://doi.org/10.1201/b20116

[12] Wines D.R. Understanding the sensitivity of nu
merical slope stability analyses to geotechnical a
nd other input parameters. In: Int. Symp. on Slop
e Stability, Australian Centre for Geomechanics,
Perth, 2020, pp. 983-1002. https://doi.org/10.364
87/ACG_repo/2025 65

[13] Pisano M. and Cardile G., Probabilistic Analys
es of Root-Reinforced Slopes Using Monte Carlo

Simulation, Geosciences, Vol. 13, No. 3, 2023,
Article 75. https://doi.org/10.3390/geosciences13
030075.

[14] Abeykoon T. and Jayakody S., Factors Controlli
ng Rainfall-Induced Slope Instability of Natural
Slopes in North Maleny, Queensland, Internation
al Journal of GEOMATE, Vol. 23, No. 100, 202
2, pp. 9-16. https://doi.org/10.21660/2022.100.3
596.

[15]Wang, X., Zhang, L., Wu, F. Al-based dynamic
slope stability prediction in Hong Kong excavati
on sites. International Journal of GEOMATE, 20
21, 19(85), pp. 223-231. DOI 10.2183/pjab.99.0
23

[16] Alkaabi K. and El Fawair A., Drones Applicatio
ns for Smart Cities: Monitoring Palm Trees and
Street Lights, Open Geosciences, Vol. 14, No. 1,

141

2022, pp. 1650-1666. DOI: 10.1515/geo-2022-0
447

[17] Troncone, A. Numerical analysis of a landslide i
n soils with strain-softening behaviour. Géotechn
ique. 2004, 54(10), pp. 617-627. https://doi.org/1
0.1680/geot.2005.55.8.585

[18] Angeli, M.G., Pasuto, A., Silvano, S. A critical r
eview of landslide monitoring experiences. Engi
neering Geology, 2000, 55, pp. 133—147. https://
doi.org/10.1016/S0013-7952(99)00122-2

[19] Alam M.J.B., Manzano L.S., Debnath R., Ahme
d A.A., Monitoring Slope Movement and Soil H
ydrologic Behavior Using IoT and Al Technolog
ies: A Systematic Review, Hydrology, Vol. 11,
No. 8, 2024, Article 111. https://doi.org/10.3390/
hydrology11080111

[20]Linrong X., Usman A., Bello A., Yongwei L., R
ainfall-induced transportation embankment failur
e: A review, Open Geosciences, Vol. 15, No. 1, 2
023, Article 20220558. DOI: 10.1515/geo-2022-
0558

[21]Hermle D., Casagli N., Scaioni M., Macciotta R.
Integrated UAV and Al-based system for real-ti
me slope monitoring and early warning. Internati
onal Journal of GEOMATE, Vol. 20, Issue 86, 2
021, pp. 113—121. https://doi.org/10.21660/2021.
86.j20014.

[22]Wang L., Nan F., Wang S., Chen Y., Li X., Fan
Z., Chen Y. Infiltration characteristics and defor
mation mechanism of rainfall-induced landslides
in Three Gorges Reservoir Area based on 1D and
2D model tests. Rock and Soil Mechanics, Vol.
44, Issue 5, 2023, Article 8. DOI: 10.16285/j.rsm.
2022.00248

[23]Jiang T., Cui S., Ran Y. Analysis of landslide m
echanism induced by excavation and rainfall: A ¢
ase study of the Qianjin square landslide in Wan
yuan City, Sichuan Province. The Chinese Journ
al of Geological Hazard and Control, Vol. 34, Iss
ue 3, 2023, pp. 20-30. DOI : 10.16031/j.cnki.iss
n.1003-8035.202207025

[24] Abraham M.T., Satyam N., Pradhan B., Alamri
A.M. IoT-Based Geotechnical Monitoring of Un
stable Slopes for Landslide Early Warning in the
Darjeeling Himalayas. Sensors, Vol. 20, Issue 9,
2020, Article 2611. https://doi.org/10.3390/s200
92611

Copyright © Int. J. of GEOMATE All rights reserved,
including making copies, unless permission is obtained
from the copyright proprietors.



https://doi.org/10.21660/2021.86.j20014.
https://doi.org/10.21660/2021.86.j20014.

	COUPLING EXPERIMENTAL DATA WITH MONTE CARLO SIMULATION AND AI FOR REALISTIC PREDICTION OF SLOPE INSTABILITY
	1. INTRODUCTION
	2. RESEARCH SIGNIFICANCE
	3. Methodology
	3.1 Experimental Data Collection
	3.2 Monte Carlo Simulation Approach
	3.3 Integration of AI for Prediction
	3.4 Data Fusion and Model Coupling

	4. Results and Discussion
	4.1 Practical Applications of the Coupled Simulation Framework
	4.2 Failure Pattern Analysis and Visual Insights
	4.3 Comparative Evaluation of AI and Traditional  Models
	4.4 Displacement Trends Under Compound Loads
	4.5 Implications for Engineering and Risk Management

	5. Applications and Implications
	5.1 Practical Applications
	5.2 Implications for Slope Management and Risk Assessment

	6. Future Research Directions
	6.1 Enhancing Simulation Accuracy
	6.2 Advances in AI Techniques
	6.3 Expanding Experimental Data

	7. Conclusion
	8. Acknowledgments
	9. References


