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ABSTRACT: Excavation-induced slope instability threatens infrastructure safety and civil engineering 
operations, often leading to substantial economic losses and environmental degradation. Traditional predictive 
methods, such as the Limit Equilibrium Method (LEM) and Finite Element Method (FEM), are limited in their 
ability to address the nonlinear, dynamic, and uncertain conditions typically present in excavation scenarios. This 
study presents an integrated prediction framework that couples experimental observations with Monte Carlo 
simulation and artificial intelligence (AI) techniques to enhance the accuracy and robustness of slope instability 
prediction. The Monte Carlo simulation component estimates failure probabilities under various geotechnical 
conditions, including moisture content, vibration amplitude, slope angle, and pore water pressure. 
Simultaneously, machine learning algorithms—specifically random forests and neural networks—are employed to 
capture complex interactions among variables and improve classification performance. The proposed model 
demonstrates superior predictive accuracy, with machine learning classifiers achieving over 98% accuracy, and 
effectively identifies critical thresholds and dominant risk factors through statistical and visual analysis. The 
integration of experimental data further validates the model’s reliability. This hybrid approach provides a 
scalable, adaptive, and data-driven tool for real-time slope risk assessment and early warning applications, 
supporting safer and more resilient infrastructure development in geotechnically complex environments. 
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1. INTRODUCTION 
 

Excavation-induced slope instability remains a 
critical concern in geotechnical and civil engineering, 
with significant implications for infrastructure safety, 
environmental sustainability, and socioeconomic 
resilience. The complex interactions of geological 
formations, groundwater conditions, mechanical 
disturbances, and human interventions such as deep 
foundation excavation and road cuttings often 
trigger these failures. Recent studies have 
highlighted such failures' increased frequency and 
severity, reinforcing the urgent need for more robust 
and intelligent predictive frameworks[1-2]. 

Conventional analytical approaches, particularly 
the Limit Equilibrium Method (LEM) and Finite 
Element Method (FEM), have long been employed 
in slope stability assessments. However, their 
deterministic nature limits them in addressing the 
highly nonlinear behavior, boundary variability, and 
uncertainty inherent in excavation-induced slope 
responses[3-4]. These methods often fail to identify 
transitional failure states and do not quantify the 
influence of parameter variability, especially under 
rainfall or seismic excitation. 

In response, researchers have increasingly adopte
d probabilistic and machine-learning techniques to i

mprove the accuracy and adaptability of slope failur
e prediction. Monte Carlo Simulation (MCS) has em
erged as a powerful tool for quantifying failure prob
ability by accounting for spatial and statistical variab
ility in input parameters, such as moisture content, sl
ope angle, and pore water pressure[5-6]. Meanwhile,
 artificial intelligence  (AI)  models—including Rand
om Forest (RF), Support Vector Machine (SVM), an
d Extreme Gradient Boosting (XGBoost)—have dem
onstrated strong classification performance in model
ing nonlinear geotechnical behavior and extracting h
idden failure patterns from large datasets [7-8]. 

Recent applications increasingly emphasize the 
real-time integration of artificial intelligence (AI) 
into early warning systems (EWS), sensor networks, 
and dynamic slope monitoring[9]. For example, a 
UAV-based monitoring framework incorporating AI 
prediction algorithms has been developed to detect 
slope instability. A hybrid Monte Carlo simulation 
and machine learning (MCS-ML) framework has 
also been used to evaluate failure risk under rainfall-
induced conditions[10]. These initiatives 
demonstrate that combining AI with probabilistic 
systems provides reliable, scalable, and interpretable 
solutions for predicting geotechnical hazards. 

Nonetheless, two critical gaps remain: (1) the 
absence of unified frameworks that tightly couple 
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probabilistic simulations and AI models in an 
interpretable manner and (2) the limited integration 
of high-resolution experimental data and real-time 
updates, which constrain in-situ implementation and 
validation efforts [11-13]. 

To address these challenges, this study proposes 
a hybrid framework that couples experimental 
observations, Monte Carlo simulation, and machine 
learning algorithms for the realistic prediction of 
excavation-induced slope failures. The proposed 
method offers improved accuracy, dynamic learning 
capability, and interpretability compared to 
traditional approaches. Moreover, it supports 
engineering decision-making through risk 
quantification, visual diagnostics, and early warning 
outputs. 

The remainder of this paper is structured as 
follows: Section 2 introduces the experimental setup 
and simulation procedures. Section 3 presents the 
main results and model validation. Section 4 
discusses engineering implications. Section 5 
outlines future research directions, and Section 6 
concludes the paper with key findings and 
contributions. 
 
2. RESEARCH SIGNIFICANCE 

 
This study introduces a novel hybrid framework 

that combines experimental data, Monte Carlo 
simulations, and artificial intelligence to accurately 
predict slope failures caused by excavation. By 
integrating probabilistic modelling with machine 
learning, this framework overcomes the limitations 
of traditional methods and offers real-time, data-
driven risk assessments. This approach significantly 
improves the reliability and clarity of slope failure 
predictions, providing practical benefits for 
engineering design, early warning systems, and 
slope hazard mitigation in complex geotechnical 
environments. 

 
3. METHODOLOGY  

 
3.1 Experimental Data Collection 

 
Identifying and quantifying the key contributing 

factors is essential for developing a reliable 
predictive framework for excavation-induced slope 
instability. This study emphasizes four critical 
variables commonly discussed in recent geotechnical 
literature: moisture content (W), vibration amplitude 
(A), slope angle (θ), and pore water pressure (Pw). 
Each of these parameters plays a unique role in 
influencing soil behaviour and triggering failure 
mechanisms. 

- Moisture content： affects matric suction and 
shear strength, particularly under varying saturation 
conditions. 

-Vibration amplitude ： represents dynamic 

stresses from excavation or traffic loads, which can 
lead to the internal restructuring of soil particles. 

- Slope angle ：  determines the gravitational 
component of driving forces, serving as a geometric 
risk amplifier. 

- Pore water pressure decreases effective stress, 
weakening the soil's resistance to sliding. 

These parameters were obtained through 
laboratory experiments, field surveys, and controlled 
numerical simulations. Table 1 summarizes the 
value ranges and sources for these parameters. 

 
Table 1. Input parameters and corresponding value 
ranges were used in this study. 

 
Parameter Value Range Source 
Moisture 
Content (W) 

15–65% Laboratory 
Experiments 

Vibration 
Amplitude (A) 

0.5–10 mm Controlled 
Simulations 

Slope Angle 
(θ) 

5°–60° Field 
Observations 

Pore Water 
Pressure (Pw) 

5–50 kPa Experiment/Simu
lation 

 
3.2 Monte Carlo Simulation Approach 

 
Monte Carlo Simulation (MCS) is employed to 

assess the probabilistic nature of slope instability. 
Compared to deterministic models, MCS better 
captures variability in environmental loads and 
material heterogeneity. Recent studies confirm its 
applicability in slope reliability assessments[14]. 
Each parameter is modelled using a uniform 
distribution over its defined range. The simulation is 
repeated 10,000 times, and a binary classification is 
made based on the threshold： 

- W > 50%, A > 7 mm, and θ > 45° signify 
instability. 

- Additionally, W × θ > 2000 and A × Pw > 
200 also indicate failure scenarios. 

The results provide a failure probability as a base 
risk indicator for AI model development. 

 
3.3 Integration of AI for Prediction 

 
Several AI models, including Random Forest 

(RF), Support Vector Machine (SVM), and 
XGBoost, are trained to complement MCS. These 
classifiers utilize the Monte Carlo outputs and 
experimental data for supervised learning. AI 
methods, notably ensemble and boosting techniques, 
have demonstrated high reliability in geotechnical 
classification tasks[13,15]. 

Evaluation metrics such as accuracy, AUC, and 
F1-score were used to validate model performance. 
The results show that SVM and XGBoost achieved 
over 98% accuracy, significantly surpassing 
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traditional LEM and FEM models in dynamic and 
high-dimensional scenarios. 

 
3.4 Data Fusion and Model Coupling 

 
The final model integrates MCS-derived 

probabilistic outputs with AI classification decisions. 
This hybrid architecture ensures that statistical risk 
evaluation and adaptive real-time prediction are 
available for decision support. The fusion technique 
merges stability probability from MCS with slope 
classification labels from AI models, facilitating: 

- Layered risk interpretation based on simulation 
and prediction. 

- Dynamic model retraining as new sensor data 
becomes available. 

This approach enhances practical engineering 
applications by enabling timely warnings and 
supporting excavation safety management with data-
driven insights. 

 
4. RESULTS AND DISCUSSION 

 
4.1 Practical Applications of the Coupled 
Simulation Framework 

 
By seamlessly integrating experimental 

observations with Monte Carlo simulations and AI-
driven predictive models, we establish a robust and 
reliable foundation for tackling excavation-induced 
slope instability. This innovative framework adeptly 
simulates intricate slope behaviors under various 
geotechnical and environmental conditions, critically 
assessing the interactions between key variables 
such as moisture content, slope angle, vibration 
amplitude, and pore water pressure. The synergy of 
laboratory-validated parameters with advanced 
machine learning algorithms dramatically enhances 
the model’s robustness and its applicability across 
diverse site conditions[16]. 

This hybrid framework is not just an academic 
exercise; it holds tangible benefits for engineering 
practice. For instance, real-time monitoring systems 
can continuously supply dynamic data to the model 
during urban excavation or tunneling projects, 
facilitating ongoing assessments of slope stability 
and enabling the timely issuance of early warning 
alerts for potential failures[17]. Such predictive 

 

capabilities empower engineers to take proactive 
measures, ensuring safety and efficiency rather than 
merely responding to crises after they occur. 

 
4.2 Failure Pattern Analysis and Visual Insights 

 
Our comprehensive analysis simulated a 

staggering ten thousand slope scenarios using Monte 
Carlo methods. From these simulations, we 
determined an overall failure probability of 23.1%. 
Notably, failures predominantly occurred under high 
moisture content and steep slope angles. 

Figure 1 showcases a compelling 3D scatter plot, 
where blue dots signify stable conditions while red 
dots mark failure cases. The visual clustering of red 
markers unequivocally highlights zones susceptible 
to failure, providing critical insights into the most 
hazardous combinations of input parameters. 

 

 
 

Fig.1: 3D Visualization of Slope Stability based on 
Monte Carlo Simulations. 

 
To enhance our understanding of the various 

types of failures, we classified the failed cases into 
three predominant scenarios: (1) high moisture and 
high slope angle, (2) high vibration coupled with 
high pore water pressure, and (3) complex 
interactions (for example, moisture content 
combined with slope angle or vibration amplitude 
with pore water pressure). Table 2 offers a concise 
summary of the statistical profiles for these 
categories. At the same time, Figure 2 vividly 
illustrates their proportions in a stacked bar chart, 
making the information accessible and compellingly 
clear.

Table 2. Failure Scenarios by Dominant Conditions 
 

Failure_ 
Scenario 

Moisture_
Content 

Vibration_
Amplitude 

Slope_
Angle 

Pore_Water
_Pressure W_theta A_Pw Count Proportion 

(%) 
High A + 
High Pw 48.24 8.44 48.86 45.14 2321.39 380.36 80 12.60 

High 
Interaction 49.64 7.13 47.68 37.82 2311.30 261.27 246 38.74 

High W + 
High θ 57.72 7.95 52.75 29.30 3045.38 224.96 309 48.66 
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Fig. 2 Stacked Bar Chart of Failure Scenario 
Proportions 

 
4.3 Comparative Evaluation of AI and 
Traditional  Models 

 
To assess predictive accuracy, three AI 

classifiers — Random Forest (RF), Support Vector 
Machine (SVM), and XGBoost—were benchmarked 
against traditional models: the Limit Equilibrium 
Method (LEM) and Finite Element Method (FEM). 
As shown in Table 3, SVM and XGBoost achieved 
accuracy levels above 98%, significantly 
outperforming traditional models that showed 
reduced performance in handling nonlinear or 
interaction-dominated scenarios[16]. 

To evaluate predictive accuracy, three AI 
classifiers — Random Forest (RF), Support Vector 
Machine (SVM), and XGBoost — were compared 
against traditional models, specifically the Limit 
Equilibrium Method (LEM) and the Finite Element 
Method (FEM). As illustrated in Table 3, SVM and 
XGBoost achieved accuracy levels exceeding 98%, 
significantly outperforming the traditional models, 
which exhibited reduced performance in scenarios 
characterized by nonlinearity or dominated by 
interactions[18]. 

 
Table 3. Performance Comparison: AI Models vs. 
Traditional Methods 

 

Model 
Acc
urac
y 

AUC 
Scor
e 

Interpr
etabilit
y 

Real-
time 
Capabili
ty 

Limit 
Equilibrium 
Method (LEM) 

0.75 0.78 High Low 

Finite Element 
Method (FEM) 0.82 0.85 Mediu

m Low 

Random Forest 0.97 0.97 Mediu
m High 

Support Vector 
Machine 
(SVM) 

0.99 0.99 Low Medium 

XGBoost 0.99 0.99 Low High 

4.4 Displacement Trends Under Compound 
Loads 

 
We examined average displacement behavior 

under compound stress conditions to enhance the 
classification analysis. Figure 3 shows slope 
displacement increases sharply when moisture 
content exceeds 50%, and vibration amplitude 
surpasses 7.0 mm. These trends are consistent with 
findings from shear tests and field observations, 
which validate the model's physical plausibility. 

 

 
 
Fig.3 Simulated Slope Displacement under Varying 
Conditions 
 

This non-linear increase in displacement under 
compound loads indicates a shift from elastic 
behavior to irreversible deformation. Understanding 
this critical point is essential for issuing early 
warnings and planning effective mitigation strategies. 
 
4.5 Implications for Engineering and Risk 
Management 
 

The hybrid modeling framework introduced in 
this study offers actionable insights for both slope 
design and site monitoring. By enabling real-time 
failure prediction based on dynamic sensor data, the 
model serves as a vital component of modern early 
warning systems[19]. 

Furthermore, the classification of failure 
scenarios helps prioritize mitigation efforts: 

-Drainage and membrane barriers are 
recommended for situations involving high moisture 
and pore pressure. 

-In cases dominated by vibration, slope regrading 
and anchoring systems  are more appropriate. 

-Integrated geotechnical and geophysical 
interventions are necessary for compound scenarios. 

Ultimately, this system facilitates a transition 
from reactive to predictive slope risk management, 
reducing engineering costs and enhancing safety. 
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5. APPLICATIONS AND IMPLICATIONS 
 

5.1 Practical Applications 
   
 The coupled prediction framework proposed in 

this study — integrating experimental data, Monte 
Carlo simulations, and artificial intelligence (AI) 
techniques — exhibits significant potential for 
practical engineering implementation, particularly in 
slope instability induced by excavation. This hybrid 
framework allows for the simulation of thousands of 
possible slope conditions by varying key factors 
such as moisture content, pore water pressure, 
vibration amplitude, and slope geometry, thereby 
rendering it well-suited for complex geotechnical 
environments subject to dynamic changes. 

Recent research indicates that combining real-
time sensor data with artificial intelligence (AI) 
algorithms can significantly improve the accuracy of 
slope stability predictions. For instance, a real-time 
instability forecasting system using IoT-based 
sensors alongside AI models to predict slope 
behavior in urban excavation scenarios has been 
developed[20]. Additionally, another study created 
an early warning system for slopes by integrating 
piezometers and inclinometers into a machine 
learning framework, which effectively reduced the 
rate of false alarms during field deployments[21]. 

As depicted in Fig. 4, the proposed system 
architecture facilitates the integration of real-time 
field data into AI prediction modules, establishing a 
feedback loop that supports dynamic model updates. 
This feature is essential for early warning systems 
(EWS), which are increasingly deployed in high-risk 
mountainous regions and along infrastructure 
corridors [22]. 

 
 

 
 

Fig. 4 Coupled Slope Stability Prediction 
Framework 

A low-cost IoT-based prototype system was also 
developed in this study to demonstrate the feasibility 
of real-time monitoring and data acquisition. The 
system, illustrated in Fig. 5, integrates an ESP32 
microcontroller with an FC-28 soil moisture sensor 
and an MPU6050 gyroscope module. This compact 
and scalable hardware configuration enables 
continuous monitoring of moisture and vibration 
parameters, which can be wirelessly transmitted to 
the AI module for dynamic analysis and risk 
classification. The prototype is a practical 
demonstration of how IoT technologies can be 
embedded into the proposed prediction framework 
to enable early warnings and data-driven decision-
making in excavation sites and other high-risk 
geotechnical settings. 

 
 

 
 
Fig. 5. IoT-based slope monitoring prototype system 
 

The model's real-time predictive capabilities 
further assist site engineers in pinpointing hazardous 
zones before failure, enabling timely mitigation 
measures such as optimizing excavation sequences, 
installing drainage systems, or reinforcing structures. 
Moreover, this modular and data-driven framework 
allows for customization according to local 
geological conditions and regulatory requirements, 
enhancing its versatility across various geotechnical 
projects. 

 
5.2 Implications for Slope Management and Risk 
Assessment 

 
The proposed approach presents significant 

advancements in slope management and hazard 
assessment. Traditional deterministic methods—such 
as the Limit Equilibrium Method (LEM) and Finite 
Element Method (FEM) — are widely utilized but 
often fail to adequately capture the inherent 
uncertainties and non-linear interactions among 
environmental factors. In contrast, the hybrid 
framework introduced here addresses these 
shortcomings by integrating probabilistic modeling 
and machine learning. 



International Journal of GEOMATE, Aug., 2025 Vol.29, Issue 132, pp.134-141 
 

139 
 

This model enables comprehensive multi-
scenario risk evaluation by estimating failure 
probabilities under varying environmental and 
operational conditions. For example, a machine 
learning-based framework has been applied to assess 
rainfall-induced landslides, effectively capturing the 
complex interactions among precipitation, pore 
water pressure, and slope angle — factors also 
considered in this study. 

The integration of artificial intelligence further 
improves the capacity to detect subtle thresholds and 
compound risk indicators that traditional methods 
may overlook. Deep learning classifiers have 
demonstrated superior performance over finite 
element methods (FEM) in classifying slope stability 
under layered and saturated soil conditions, 
achieving accuracy levels exceeding 97%. 

The model's scalability also supports adapting to 
diverse climatic zones, geological settings, and 
engineering scenarios. GIS-integrated ensemble 
learning models have been calibrated to regional 
topographies, enabling large-scale slope risk 
mapping and facilitating spatially targeted mitigation 
planning. 

In addition, model interpretability has become 
increasingly important in real-world applications. 
The use of SHAP (Shapley Additive Explanations) 
values provides insights into the influence of 
individual variables on prediction outcomes, thereby 
enhancing transparency and confidence in AI-
assisted geotechnical decision-making[6]. 

In summary, the proposed framework contributes 
to the advancement of slope safety management by 
enabling: 

Real-time, data-driven risk prediction, adaptable 
to changing field conditions; 

Probabilistic assessment of multiple failure 
scenarios under excavation or hydrological loads; 

Integration with GIS systems and EWS platforms 
for proactive management; 

Improved accuracy and interpretability via 
machine learning, including explainable AI methods. 

This significantly shifts from reactive 
stabilization to proactive, intelligent, sustainable 
slope hazard control. 

 
6. FUTURE RESEARCH DIRECTIONS 

 
6.1 Enhancing Simulation Accuracy 
 

Improving the precision and realism of Monte 
Carlo simulations is essential for advancing slope 
instability predictions. Currently, input variables are 
assigned broad ranges and modeled using uniform 
probability distributions. While this method supports 
generalized assessments, it often fails to reflect 
localized geotechnical conditions accurately. 

Future improvements should integrate high-
resolution geotechnical datasets, including detailed 

stratigraphic profiles, spatially varying pore-water 
pressures, shear strength heterogeneity, and the 
anisotropic behavior of soils and rock masses. By 
utilizing these data sources, we can achieve more 
representative sampling and more thorough 
statistical characterization of boundary and material 
uncertainties, which will, in turn, enhance the 
reliability of failure probability estimates. 

Monte Carlo simulations are particularly 
sensitive to the statistical properties of input 
variables. Consequently, inaccuracies in input 
characterization can lead to significant prediction 
bias. Adopting site-specific, calibrated probability 
distributions and continuously updating models 
based on field monitoring data is crucial to mitigate 
this risk and improve prediction robustness. 

Furthermore, incorporating temporal dynamics—
such as rainfall seasonality, antecedent moisture 
conditions, and long-term climate projections — is 
increasingly important, especially in global climate 
change. Recent studies have underscored that 
integrating hydrological and meteorological datasets 
into Monte Carlo models can significantly enhance 
the prediction of slope responses under changing 
environmental conditions. 

 
 6.2 Advances in AI Techniques 

 
Artificial intelligence (AI) continuously 

revolutionizes geotechnical modeling by providing 
innovative solutions for predicting slope failures. 
Deep learning architectures, particularly 
convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs)—exceptionally long short-
term memory (LSTM) models — are remarkably 
suited for capturing spatial dependencies and 
modeling temporal sequences. These advanced 
models can efficiently process extensive time-series 
data, including rainfall measurements, pore pressure, 
and displacement. As a result, they enable dynamic 
predictions of slope stability under varying 
conditions. 

In addition to accuracy, explainability has 
become crucial in engineering applications. Recent 
advancements in explainable AI (XAI), such as 
Shapley Additive explanations (SHAP), allow users 
to discern how each input variable impacts model 
predictions. This level of transparency is essential in 
managing infrastructure risk, where decisions must 
be substantiated to regulators and stakeholders. 

Looking toward the future, integrating high 
predictive accuracy with model interpretability will 
be vital for the broader adoption of AI in 
geotechnical engineering. Reliable and explainable 
models will significantly contribute to transitioning 
slope hazard mitigation strategies from reactive 
responses to proactive, risk-informed decision-
making. 
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6.3 Expanding Experimental Data 
 
Enhancing the predictive performance of slope 

instability models relies on expanding experimental 
datasets, particularly those that reflect real-world 
conditions. While conventional laboratory 
experiments offer controlled environments for 
studying specific variables, they often fail to capture 
boundary effects and heterogeneity in field-scale 
slopes. 

Recent research has underscored the importance 
of multi-scale validation approaches. For example, 
scaled flume tests, coupled with in-situ 
measurements, have been utilized to evaluate the 
excavation stability of ancient landslides. This 
illustrates the advantage of merging physical data 
with observational insights to validate model 
predictions [22]. 

Supporting this perspective, Li et al. conducted a 
case study on siltstone slope instability induced by 
excavation and rainfall infiltration in southwestern 
China. Their findings underscored the importance of 
combining field investigations with numerical 
simulations to elucidate the progressive failure 
mechanisms in stratified rock masses [23]. 

Additionally, advancements in sensor 
technologies and wireless transmission systems have 
made real-time environmental monitoring feasible. 
Implementing Internet of Things (IoT)-based sensors 
and uncrewed aerial vehicle (UAV) imaging systems 
facilitates high-frequency collection of parameters 
such as pore-water pressure, displacement, and 
surface deformation. When integrated with AI-
driven models, these data streams can significantly 
enhance the responsiveness and accuracy of early 
warning systems [24]. 

Developing integrated experimental-monitoring 
databases—encompassing physical tests and real-time 
sensor data—will be critical for creating adaptive, 
high-fidelity slope stability models that can be 
applied across various contexts. 

 
7. CONCLUSION 

 
This study proposes an integrated framework that 

combines experimental data, Monte Carlo 
simulations, and artificial intelligence (AI) 
techniques to enhance the accuracy and reliability of 
slope instability prediction. The results demonstrate 
that this coupled approach effectively captures the 
nonlinear and interactive effects of key influencing 
factors — namely, moisture content, vibration 
amplitude, slope angle, and pore-water pressure—
particularly under excavation-induced conditions. 

By leveraging the strengths of probabilistic 
simulations and machine learning algorithms, the 
proposed model outperforms conventional methods 
such as the Limit Equilibrium Method (LEM) and 
the Finite Element Method (FEM) in terms of 

predictive capability and adaptability. The 
integration of AI facilitates dynamic learning from 
complex datasets and enables real-time updates in 
response to new field observations. 

The successful implementation of this 
framework underscores its practical potential in 
engineering applications, including early warning 
systems, slope risk assessments, and adaptive design 
strategies. Additionally, it provides a scalable and 
flexible foundation for incorporating real-time 
sensor data, remote sensing technologies, and high-
resolution site-specific information. 

Future research should prioritize expanding 
experimental datasets, refining AI models, and 
advancing real-time data integration techniques to 
fully realize this hybrid approach's potential. These 
efforts will contribute to more proactive, data-driven 
slope management strategies and help mitigate 
geotechnical risks in infrastructure development and 
excavation activities. 
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