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ABSTRACT: This research addresses the integration of strategic, tactical, and operational planning within an 
intermodal hub distribution network. While previous studies have explored network problems with the aim of 
developing efficient solution methodologies, many rely on simplistic assumptions, often resulting in solutions 
based on limited variables that may not adequately reflect complexities. To bridge this gap, the study presents a 
comprehensive approach that incorporates realistic scenarios. Specifically, we formulate a multi-period, multi-
allocation, and multi-capacity intermodal hub location problem using a mixed-integer nonlinear programming 
(MINLP) model with chance constraints. To effectively solve this complex model, a matheuristic algorithm—
hybridizing metaheuristics (adaptive simulated annealing and tabu search) with nonlinear programming—is 
proposed. The algorithm demonstrates high efficiency, accurately solving small- to medium-sized problems 
while providing high-quality solutions for large-scale instances within limited computational time. Notably, the 
algorithm reduces average computational time by approximately 50% relative to the optimization approach. 
Empirical studies utilizing the algorithm examine the effects of variations in service quality and costs on the 
network structure and overall costs. The study reveals that reducing delivery frequency and increasing lead time 
influence costs and hub configurations, with economies of scale from diverse vehicle types lowering 
transportation expenses. However, expanding rail service often yields no benefits in this case, as factors like 
geography, costs, and operational constraints significantly impact the optimal logistics network design. 
 
Keywords: Location problem, Multimodal transportation, Matheuristics, Adaptive simulated annealing, Tabu 
search 
 
1. INTRODUCTION 
 

The facility location problem is a critical 
component of strategic transportation network 
design, extensively studied across diverse fields to 
develop efficient solutions for real-world 
applications. Beyond transportation networks, this 
problem holds significance in humanitarian relief 
operations [1–3] and urban mobility planning [4]. 

In logistics and transportation, hubs enhance 
economies of scale within many-to-many 
distribution networks. Previous studies [5–8] show 
that hubs reduce operational costs, improve service 
frequency, and bolster resilience against demand 
variability. However, existing approaches often fail 
to capture operational complexities, despite the need 
for reliable long-term strategic decisions. Traditional 
literature frequently assumes economies of scale 
occur only on hub-to-hub arcs, represented by a 
constant discount factor applied to unit 
transportation costs [5, 9–10]. Serper and Alumur 
[11] extend this by introducing multiple vehicle 
types for inter-hub connections, yet this approach 
has not been comprehensively applied across the 
entire network. 

Focusing on service-level, some researchers [12–
13] incorporate service quality to guarantee specific 

levels, highlighting the importance of such factors in 
network design. Additionally, Raa [14] proposes 
inventory cyclic planning for supply chain networks 
to reduce variability and mitigate the bullwhip effect 
in uncertain environments. This methodology has 
been widely applied in production planning, 
inventory replenishment, vehicle routing, and 
scheduling, but rarely in hub location problems. 

Several researchers have studied hub location 
problems from varied perspectives [7, 15–17], yet 
most consider elements such as multiple hub types, 
modal connectivity costs, service windows, vehicle 
capacities, delivery lead times, service levels, or 
demand uncertainty in isolation. 

Integrating strategic, tactical, and operational 
decision-making is critical, as balancing long-, 
medium-, and short-term horizons is essential to 
meet demand in dynamic environments. However, 
this integration creates highly complex optimization 
problems, difficult to solve analytically. Limited 
research has explored heuristics and metaheuristics 
[18–20] for such integrated problems. These 
methods have shown effectiveness in location-
inventory-routing problems, producing optimal or 
near-optimal solutions with reduced computational 
effort. Still, their application to hub location 
problems in multimodal transportation networks 
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remains limited, leaving a research gap. 
This study examines the hub location problem in 

a distribution network managed by a logistics 
provider. It considers multi-period, multi-allocation, 
and multi-capacity hub placements, incorporating 
multimodal transportation with road and rail. 
Warehouses serve as origins, retail outlets as 
destinations, and hubs are strategically located in 
high-potential areas. The network employs various 
vehicle and container types for different routes. 

Key service quality issues include ensuring on-
time delivery, managing delivery frequencies, and 
setting delivery lead times by distance. Cost 
components comprise hub costs, transportation 
expenses, inventory costs, and penalties for late 
deliveries. 

The objectives of this research are threefold: 
first, to propose an efficient method for solving the 
multimodal hub location problem in distribution 
networks through a matheuristic algorithm. This 
hybrid combines adaptive simulated annealing 
(ASA) and tabu search (TS) with mathematical 
programming to solve complex, large-scale 
networks. Second, it investigates how service quality 
and operating cost variations affect network 
structure and total costs. Third, it examines the 
impact of vehicle-type differentiation in realizing 
economies of scale, moving beyond constant 
discount factor assumptions, and its influence on 
network design and costs. 

The paper is organized as follows: Section 2 
presents the modeling framework and introduces a 
mixed-integer nonlinear programming (MINLP) 
model with chance constraints. Section 3 describes 
the proposed matheuristic algorithm, Section 4 
provides a computational study, Section 5 offers 
empirical analysis of the intermodal hub network, 
and Section 6 concludes with key insights and 
directions for future research. 

 
2. RESEARCH SIGNIFICANCE 

 
This study contributes originality by integrating 

strategic, tactical, and operational perspectives into a 
unified intermodal hub location model with chance 
constraints, formulated as a mixed-integer nonlinear 
program. Unlike previous research with simplifying 
assumptions, our approach addresses realistic 
complexities through a novel matheuristic that 
hybridizes adaptive simulated annealing, tabu search, 
and nonlinear programming. The framework 
advances both methodology and practice, delivering 
efficient, high-quality solutions for large-scale 
multimodal logistics networks. 

 
3. MODELING FRAMEWORK 

 
This study focuses on resolving a logistics 

challenge within a multimodal hub distribution 

network. The hub serves as a critical node for 
consolidating and dispersing goods from various 
origins destined for a specific region. The network, 
managed by a service provider responsible for 
warehousing and transportation, handles the flow of 
goods from initial dispatch from warehouses to 
deliver at retailers and grocery stores, as shown in 
Fig.1. 

The hub's operation begins with receiving goods 
from origin nodes via trucks. These goods are sorted 
and consolidated with other items headed to the 
same destination. They are then transported to 
another hub within the region by road or multimodal 
means. Upon arrival at this secondary hub, the goods 
are segregated and distributed to final destinations 
using trucks, as shown in Fig.2. 

 

 
Fig.1 Delivery alternatives from an origin to a 
destination, an example of direct delivery route. 
 

 
Fig.2 Delivery alternatives from an origin to a 
destination, an example of delivery route via hub(s). 
 

Economies of scale are achieved in the initial and 
subsequent transport segments (𝑖𝑖 − 𝑘𝑘 and 𝑘𝑘 − 𝑙𝑙) by 
consolidating goods into less-than-truckload (LTL) 
shipments. This approach optimizes transportation 
costs by using larger trucks or rail containers. For 
the final transport segment ( 𝑙𝑙 − 𝑗𝑗 ), full-truckload 
(FTL) shipments are dispatched using appropriate 
truck types. Depending on their location and rail 
freight service availability, hubs can function as 
either road or multimodal hubs. 

This research incorporates multimodal 
connectivity costs linked to the transportation mode 
of each hub. Goods handling at multimodal hubs 
involve specialized equipment and expertise, leading 
to higher costs than truck-based operations. Delays 
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in synchronizing goods at the hub incur inventory 
costs during waiting periods. 

This study considers three delivery options (as 
shown in Fig.1 and Fig.2): Direct delivery from 
origin 𝑖𝑖  to destination 𝑗𝑗 , delivery through a single 
hub (𝑖𝑖 − 𝑘𝑘 − 𝑗𝑗), and delivery through two hubs (𝑖𝑖 −
𝑘𝑘 − 𝑙𝑙 − 𝑗𝑗). 

Delivery lead time, measured from the departure 
from origin 𝑖𝑖 to arrival at destination 𝑗𝑗, is calculated 
based on the average travel time for each 𝑖𝑖 − 𝑗𝑗 pair. 
Considering driver working hours (8 hours per day),  

lead times are classified as same-day, next-day, 
next 2-days, or next 3-days, depending on the 𝑖𝑖 − 𝑗𝑗 
route length. Delays in final delivery result in goods 
being scheduled for the next period, incurring 
penalties for the service provider. 

To ensure service within a specified lead time 
with a certain probability, chance-constrained 
programming or probabilistic constraints are 
employed. The confidence level 𝜶𝜶  indicates the 
likelihood of meeting customer demand within the 
designated time frame, defined as the probability of 
on-time delivery in this context. 
 
3.1 Model Formulation 
 

Consider a node set 𝑵𝑵 = 𝑵𝑵𝒐𝒐 ∪ 𝑵𝑵𝒄𝒄 ∪ 𝑵𝑵𝒉𝒉 , where 
𝑵𝑵𝒐𝒐 , 𝑵𝑵𝒄𝒄  and 𝑵𝑵𝒉𝒉  denote the set of nodes that 
correspond to origins, destinations, and potential 
hubs, respectively. Apart from having different hub 
types (road hub and intermodal hub), we also 
consider multiple sizes of the hub: small, medium, 
and large, so let 𝑺𝑺 be a capacity set of the hub. To 
reduce the number of parameters and variables 
indices that relate to different vehicle types and 
transportation modes, we merge the indices of 
vehicle types in each transportation mode into one 
index. Then let 𝑽𝑽 = 𝑽𝑽𝒓𝒓𝒓𝒓 ∪ 𝑽𝑽𝒓𝒓𝒓𝒓  be a set of vehicle 
types for both road and rail transportation, where 
𝑽𝑽𝒓𝒓𝒓𝒓 and 𝑽𝑽𝒓𝒓𝒓𝒓 denote the set of road vehicle types and 
rail container types, respectively. Furthermore, we 
denote 𝑻𝑻 as a set of a finite planning horizon. The 
mathematical formulation of the Mixed-Integer 
Nonlinear Programming (MINLP) model is 
established utilizing the provided notation and 
mathematical expressions to define the optimization 
problem and decision variables as follows. 

 
Parameters: 
𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖  Uncertain demand at node 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 that 

originated from node 𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 in period 𝑡𝑡 ∈
𝑇𝑇. 

𝑓𝑓𝑠𝑠 Setup and operating costs of hub size 𝑠𝑠 ∈ 𝑆𝑆. 
𝑚𝑚𝑠𝑠 Multimodal connectivity cost for 

multimodal hub size 𝑠𝑠 ∈ 𝑆𝑆. 

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 Transportation cost per shipment from 
warehouse 𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 to customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 of 
vehicle 𝑣𝑣 ∈ 𝑉𝑉. 

ℎ Hub inventory cost per unit per period. 
𝑔𝑔 Tardiness penalty cost per unit per period. 
𝑞𝑞𝑠𝑠 Capacity of hub size 𝑠𝑠 ∈ 𝑆𝑆. 
𝜅𝜅𝑣𝑣 Capacity of vehicle type 𝑣𝑣 ∈ 𝑉𝑉. 
𝑅𝑅𝑘𝑘𝑘𝑘 Inter-hub route between hub 𝑘𝑘 and hub 𝑙𝑙 

that operates rail freight service 
𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  Total service time requirements for hub-

based shipments from warehouse 𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 to 
customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 through hub 𝑘𝑘 ∈ 𝑁𝑁ℎ and 
𝑙𝑙 ∈ 𝑁𝑁ℎ . 

Γ𝑖𝑖𝑖𝑖  Delivery lead time between warehouse 
𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 and customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐. 

𝛼𝛼 Level of service (on-time delivery). 
𝜌𝜌 Delivery frequency (i.e., every day, five 

times a week, three times a week, or once a 
week). 

𝑀𝑀 A sufficiently large number. 
 

Decision variables:  
𝑧𝑧𝑘𝑘𝑘𝑘  =    1 if a road hub size 𝑠𝑠 ∈ 𝑆𝑆 opens at node 

𝑘𝑘 ∈ 𝑁𝑁ℎ; otherwise, 0. 
𝑧̂𝑧𝑘𝑘𝑘𝑘  =    1 if the opened road hub size 𝑠𝑠 ∈ 𝑆𝑆 is 

operated as a multimodal hub at node 
𝑘𝑘 ∈ 𝑁𝑁ℎ ; otherwise, 0. 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =   1 if path 𝑖𝑖 − 𝑘𝑘 − 𝑙𝑙 − 𝑗𝑗 can be operated 
(𝑧𝑧𝑘𝑘𝑘𝑘 = 1 and 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ Γ𝑖𝑖𝑖𝑖); otherwise, 0. 

𝑝𝑝𝑗𝑗𝑗𝑗  =    1 if customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 is scheduled to be 
delivered on period 𝑡𝑡 ∈ 𝑇𝑇; otherwise, 0. 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = Flow that delivered from warehouse 𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 
to customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 in period 𝑡𝑡 ∈ 𝑇𝑇 within 
the given lead time. 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 = Late flow in previous periods that delivered 
to customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 in period 𝑡𝑡 ∈ 𝑇𝑇. 

ω𝑖𝑖𝑖𝑖𝑖𝑖 = Total flow delivered between warehouse 
𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 and customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 in period 𝑡𝑡 ∈ 𝑇𝑇. 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = An amount of flow delivered from 
warehouse 𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 to customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐, by 
vehicle 𝑣𝑣 ∈ 𝑉𝑉, in period 𝑡𝑡 ∈ 𝑇𝑇. 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = A number of shipments delivered from 
warehouse 𝑖𝑖 ∈ 𝑁𝑁𝑜𝑜 to customer 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐, by 
vehicle 𝑣𝑣 ∈ 𝑉𝑉, in period 𝑡𝑡 ∈ 𝑇𝑇. 

𝒖𝒖𝒌𝒌𝒌𝒌 = Inventory at hub 𝒌𝒌 ∈ 𝑵𝑵𝒉𝒉 in period 𝒕𝒕 ∈ 𝑻𝑻. 
 

Objective function (Eq. 1) is to minimize the 
total logistics costs, including multiple cost 
components: fixed and variable costs associated with 
the establishment and operation of logistics hubs. 
Additional costs consist of intermodal connectivity 
when goods are transferred between different 
transportation modes. Transportation costs are 
incurred across several transport segments. Hub 
inventory costs involve storing goods at the hubs, 
while tardiness penalty costs are incurred for 
delayed deliveries. 
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Model formulation (MINLP): 
minimize 

,

ˆ
h h ro h o ro c h

ro c o h c o

h

s ks s ks ikv ikvt ljv ljvt
s S k N s S k N t T v V k N i N t T v V j N l N

ijv ijvt kt ijt
t T v V j N i N t T k N t T j N i N

klv klvt
t T v V l k N

f z m z c y c y

c y h u g

c y

δ

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

+ + +

+ + +

+∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑

∑∑ ∑∑ ∑∑ ∑∑∑

∑∑ ∑
  (1) 

 
subject to 

                                                         jt c
t T

p j Nρ
∈

= ∀ ∈∑                           (2) 

( )      , ,  ijt ijt o cPr d t T i N j Nξ α= ∀ ∈ ∈ ∈ ≥        (3) 

( ) ( )1= + 1                        , ,ijt ijt ijt ijt jt c od p t T j N i Nδ ξ δ −− − ∀ ∈ ∈ ∈      (4) 

( )1 1 1(1 ) +           , ,ijt ijt ijt jt jt ijt jt c od d p p p t T j N i Nω δ− − −= + − ∀ ∈ ∈ ∈      (5) 

 
- Flow conservation constraints 

+  =              ,
ro h ro c c

ikvt ijvt ijt o
v V k N v V j N j N

x x t T i Nξ
∈ ∈ ∈ ∈ ∈

∀ ∈ ∈∑ ∑ ∑ ∑ ∑              (6) 

+  =                 ,
ro h ro o o

ljvt ijvt ijt c
v V l N v V i N i N

x x t T j Nω
∈ ∈ ∈ ∈ ∈

∀ ∈ ∈∑ ∑ ∑ ∑ ∑              (7) 

+  =                      , , ,
ro ra

klvt kl klvt klvl h
v V v V v V

x R x x t T k l N k l
∈ ∈ ∈

∀ ∈ ∈ ≠∑ ∑ ∑                    (8) 

 
- Hub and delivery route constraints 

1+                         ,
ro o

ikvt kt s ks h
v V i N s S

x u q z t T k N−
∈ ∈ ∈

≤ ∀ ∈ ∈∑ ∑ ∑                      (9) 

1+                        ,
h

klvt lt s ls h
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∈ ∈ ∈

≤ ∀ ∈ ∈∑ ∑ ∑       (10) 

ˆ                                          , , ,klvt ks ra h
t T s S

x M z v V k l N k l
∈ ∈

≤ ∀ ∈ ∈ ≠∑ ∑    (11)                                                

ˆ                                         , , ,klvt ls ra h
t T s S

x M z v V k l N k l
∈ ∈

≤ ∀ ∈ ∈ ≠∑ ∑    (12)                

  1                                                     ks h
s S

z k N
∈

≤ ∀ ∈∑  (13) 

ˆ                                                   ,ks ks hz z s S k N≤ ∀ ∈ ∈  (14) 

+ 1                                      , , ,iklj ks ls c h o
s S s S

r z z j N k l N i N
∈ ∈

≥ − ∀ ∈ ∈ ∈∑ ∑  (15) 

                                                , , ,iklj iklj ij c h or j N k l N i Nγ ≤ Γ ∀ ∈ ∈ ∈  (16) 
 
- Vehicle related constraints 

                                               , , ,ikvt v ikvt ro o hx y t T v V i N k Nκ≤ ∀ ∈ ∈ ∈ ∈      (17)                                                                           

                                            , , ,klvt v klvt hx y t T v V k l Nκ≤ ∀ ∈ ∈ ∈     (18)      
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                                                , , ,ijvt v ijvt ro o cx y t T v V i N j Nκ≤ ∀ ∈ ∈ ∈ ∈      (20) 
 
- Inventory related constraints 

1  +             ,
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kt kt ikvt klvt h
v V i N v V l N

u u x x t T k N−
∈ ∈ ∈ ∈
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1  +           ,
h ro c

lt lt klvt ljvt h
v V k N v V j N

u u x x t T l N−
∈ ∈ ∈ ∈

= − ∀ ∈ ∈∑ ∑ ∑ ∑       (22) 

, , , , 0                                  , , , , ,ijt jt ijt ijvt kt c h od x u t T v V j N k l N i Nδ ω ≥ ∀ ∈ ∈ ∈ ∈ ∈     (23) 
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{ }ˆ, , , 0,1                                    , , , , ,ks ks iklj jt c h oz z r p t T s S j N k l N i N∈ ∀ ∈ ∈ ∈ ∈ ∈          (24) 

                                                        , , , , ,ijvt c h oy t T v V j N k l N i N∈ ∀ ∈ ∈ ∈ ∈ ∈N    (25) 
 
Objective function (Eq. 1) is to minimize the total 
logistics costs, including multiple cost components: 
fixed and variable costs associated with the 
establishment and operation of logistics hubs. 
Additional costs consist of intermodal connectivity 
when goods are transferred between different 
transportation modes. Transportation costs are 
incurred across several transport segments. Hub 
inventory costs involve storing goods at the hubs, 
while tardiness penalty costs are incurred for 
delayed deliveries. 
 Delivery frequency constraint (Eq. 2) ensures 
that the delivery schedule for each customer 
adheres to a predefined frequency and compliance 
with that schedule. Service level constraint (Eq. 3) 
ensures that the delivery service level meets a 
specified threshold (denoted by α), accommodating 
demand uncertainty. For example, a 95% service 
level means that 95% of deliveries must be on time. 
Late flow (Eq. 4) calculates the quantity of goods 
delayed for delivery within a given period. If there 
are delays, the late flow is incorporated into the 
subsequent period's delivery schedule. Total flow 
calculation (Eq. 5) determines the total flow of 
goods delivered to a customer within a specific 
period. It includes the current period's demand, 
undelivered goods from previous periods due to 
non-delivery days, and late flows from preceding 
periods. Flow conservation constraints (Eq. 6-8) 
ensure the accurate accounting of goods flow 
within the network. Eq. 6 ensures that the total 
goods leaving the origins match the total goods to 
be delivered. Eq. 7 ensures that each destination 
receives the correct quantity of goods from the 
origins. Eq. 8 stipulates that inter-hub shipments via 
rail occur only on routes with rail services. 
 Hub capacity constraints (Eq. 9-10) ensure that 
the total inbound flow and inventory at each hub do 
not exceed the hub’s capacity at the start of each 
period. Intermodal hub constraints (Eq. 11-12) 
determine whether a hub operates as an intermodal 
hub based on its handling of rail shipments, 
ensuring that hubs with intermodal capabilities 
meet specific conditions. Hub selection and size 
constraints (Eq. 13-14) ensure that only one size of 
hub is selected at a given location and the hub can 
operate as a multimodal hub or not. 
 Delivery route validation (Eq. 15-16) ensures 
that the total service time for routes through hubs 
does not exceed permissible lead times, marking 
validated routes as usable. Vehicle capacity 
constraints (Eq. 17-20) ensure that the flow of 
goods along any route does not exceed the vehicle's 
capacity. Inventory holding constraints (Eq. 21-22) 

ensure consistency in inventory levels across 
planning periods.  
 Variable constraints (Eq. 23-25) define the 
binary and non-negativity conditions for specific 
variables, ensuring that elements such as the 
number of shipments or the status of routes and 
hubs comply with required conditions. 
 To solve the model, we first reformulate the 
stochastic MINLP model as a stochastic mixed-
integer programming (MIP) model because Eq. (4) 
and Eq. (5) contain the products of binary and 
continuous variables. Furthermore, the demand 𝝃𝝃𝒊𝒊𝒊𝒊𝒊𝒊  
is unpredictable, which is a normal distributed 
random variable with mean 𝝁𝝁𝒊𝒊𝒊𝒊𝒊𝒊 and standard 
deviation 𝝈𝝈𝒊𝒊𝒊𝒊𝒊𝒊. The deterministic form of the chance 
constraints, Eq. (3), can be rewritten by applying 
the cumulative distribution function (CDF) of 𝝃𝝃𝒊𝒊𝒊𝒊𝒊𝒊 
as follows: 
 

(1 )   , ,ijt ijt ijt o cd z t T i N j Nαµ σ−= + ∀ ∈ ∈ ∈   (26) 
 
where 𝒛𝒛(𝟏𝟏−𝜶𝜶) is a critical value of the standard 
normal distribution at the confidence level 𝜶𝜶. 

This process involves finding a critical value 
𝒛𝒛(𝟏𝟏−𝜶𝜶), which is a standard normal variable 
corresponding to a confidence level 𝜶𝜶. The value 
𝒛𝒛(𝟏𝟏−𝜶𝜶) represents the threshold such that the 
probability of falling below this value is 𝜶𝜶. By 
leveraging the inverse of the standard normal CDF, 
we determine 𝒛𝒛(𝟏𝟏−𝜶𝜶) (for example, 𝒛𝒛(𝟎𝟎.𝟗𝟗𝟗𝟗) approx. 
1.645 for 95% confidence). Incorporating this, the 
chance constraint can be rewritten as a 
deterministic constraint that ensures, with 
probability 𝜶𝜶, the demand does not violate the 
model's conditions. This approach effectively 
converts the stochastic constraint into a more 
manageable form, facilitating subsequent 
optimization. 
 Therefore, the problem can be solved by using 
the following MIP formulation with service-level 
constraints: 
Minimize  Eq. (1), 
subject to Eq. (2), (4) - (26). 
 
4. MATHEURISTIC  
 

The proposed solution approach involves a 
matheuristic algorithm amalgamating adaptive 
simulated annealing (ASA), tabu search (TS) 
metaheuristics, and a nonlinear programming 
(NLP) model (ASATS&NLP). ASATS 
metaheuristics serve as the master stage, including 
the exploration process within defined 
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neighborhood boundaries, while the NLP is the 
slave stage, fine-tuning solutions provided by the 
master. Binary variables are initially optimized at 
the master level before feeding into the slave level. 
The algorithm iteratively refines solutions by 
communicating between the master and slave stages 
until termination criteria are met, optimizing the 
overall algorithmic process. 
 
4.1 Master Stage - Adaptive Simulated 
Annealing and Tabu Search (ASATS)  

 
 The proposed matheuristic algorithm, ASATS, 
addresses the multimodal hub network problem 
through a strategic integration of ASA and TS. The 
algorithm dynamically adjusts temperature based 
on cost function variations and employs Tabu 
Search to enhance solution diversity. To ensure 
scalability and robustness in handling large-scale 
scenarios, key termination parameters, including 
maxVisit, maxNonImp, and maxRound, are 
introduced for algorithmic flexibility and 
preventing local optima entrapment. The 
algorithm's sequential execution involves 
initializing delivery schedules and hub selections, 
validating hub-based routes, calling the slave 
algorithm with fixed parameters, adjusting delivery 
flows based on NLP solutions, recalculating costs, 
and iterative evaluation until termination criteria are 
met. If the termination conditions are not satisfied, 
the algorithm regenerates an initial solution and 
applies to a neighborhood search operator. This 
iterative process continues until the termination 
criteria are met, optimizing the multimodal hub 
network solution. 

 
Neighborhood search mechanism  

Six distinct neighborhood search operators are 
introduced to enhance optimization efficiency in the 
study. These operators, such as "Swap," "Add," 
"Remove," "ImHub," "Size," and "SwapDay," 
target hub locations, sizes, multimodal operations, 
and delivery schedules. By iteratively applying 
these operators and updating the tabu list, diverse 
solutions are generated, enabling thorough 
exploration of the multimodal hub network. 
 
4.2 Slave Stage – Nonlinear Programming Model  

 
 The NLP model, derived from the MINLP 
model, differs in removing hub-related constraints 
(Eq. 13-16) and vehicle capacity constraints (Eq. 
17-20), focusing on flow-unit transport costs for 
initial flow calculations. 
 
Model formulation (NLP): 
 
Minimize 

,
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                     (27) 

 
subject to Eq. (2), (4) – (12), (21) – (23), (26). 
 
Then, all solutions that were determined during this 
phase are returned to the master phase. 
 
5. COMPUTATIONAL STUDY 
 
 The computational study assesses the proposed 
matheuristic algorithm against optimal solutions, 
measuring optimality gap and computational time. 
Five datasets representing varying distribution 
network sizes are created, incorporating different 
origin-destination pairs, candidate hubs, truck 
types, and container varieties, over a seven-period 
planning horizon. Each dataset comprises nine 
problem instances with varied service levels and 
delivery frequencies, totaling 45 instances for 
evaluation. Origin-destination flows follow a 
uniform distribution, while costs related to hub 
setup, operations, and transportation are obtained 
from a logistics provider, including multimodal 
connectivity costs equivalent to 15% of total hub 
expenses. 
 
5.1 Computational Results 
 

The data sets for computational study are 
provided in Table 1. The computational study 
utilized Intel Xeon E5-2620 v3 2.60 GHz CPUs to 
compare MINLP solutions obtained using Xpress 
within a 24-hour timeframe to those derived from 
the proposed matheuristics (ASATS&NLP).  

 
Table 1. Data sets for computational study 

Data 
set 

Number of 
origin 

nodes (𝒊𝒊) 

Number of 
destination 
nodes (𝒋𝒋) 

Number of 
potential 
hubs (𝒌𝒌) 

1 2 20 5 
2 3 40 10 
3 4 60 15 
4 5 80 20 
5 6 100 25 

 
While Xpress achieved feasible or near-optimal 

solutions for 38 of 45 instances, producing a 6.44% 
average gap with lower bounds, ASATS&NLP 
yielded no optimal solutions but achieved 
comparative optimality with an average gap of 
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5.24%. Notably, ASATS&NLP significantly 
reduced computational times, completing tasks 
within approximately 8 hours on average, 
contrasting with Xpress's 16-hour average for 
solvable instances within the specified timeframe. 
Fig.3 and Fig.4 show the proposed algorithm's 
efficiency enhancements in terms of solution 
optimality and computational time compared to 
Xpress across various instances, respectively. 

 
Fig.3 Percent optimal gap of MINLP’s and 
Matheuristic (ASATS&NLP)’s solution values 
compared to LB. 
 

 
Fig.4 Computational time compared between 
MINLP and Matheuristic (ASATS&NLP). 

 
6. EMPIRICAL STUDY 

 
This section aims to investigate the impacts of 

variations in service quality, costs, and vehicle 
types on the network structure and total costs 
through generated logistics data based on Thailand's 

rail freight services. This dataset concerns two 
warehouses that distribute products to 96 demand 
nodes nationwide, one warehouse located in the 
West and the other in the East. 

Twenty potential hub locations were identified 
based on areas with high potential and high demand 
density: four locations in Bangkok and vicinity, five 
locations in central area, one location in eastern, 
three locations in north-eastern, three locations in 
northern, and four locations in southern. Four truck 
types for road transportation and three container 
types for rail transportation were utilized. Each 
vehicle type differs in capacity, loading/unloading 
times, and speeds, as specified by the company. 
Due to the limitations of rail freight services in 
Thailand, only available rail freight routes were 
considered. 
 
6.1 Experimental Design 
 

This study investigates the effects of various 
factors on intermodal hub networks, specifically 
focusing on service level (𝛼𝛼), delivery frequency 
( 𝜌𝜌 ), delivery lead time ( 𝛤𝛤 ), and intermodal 
connectivity cost (𝑚𝑚𝑠𝑠 ). Of these, the first three 
factors pertain to service parameters, while the last 
relates to cost. The service level is evaluated at four 
probabilities of on-time delivery: 100%, 97%, 95%, 
and 90%. Delivery frequency is analyzed across 
four intervals: daily, five times per week, three 
times per week, and once per week. Service lead 
time is categorized into three levels: normal 
delivery, extended delivery, and immediate delivery 
(no lead time). 

 
Table 2. Factors 
Factors Levels 
Service 
quality 

Service 
level (𝛼𝛼) 

{100%, 97%, 95%, 
90%} 

 Delivery 
frequency 
(𝜌𝜌) 

{7, 5, 3, 1} 

 Delivery 
lead time 
(𝛤𝛤) 

{Normal, 
Extended, None} 

Cost Multimodal 
connectivity 
cost (𝑚𝑚𝑠𝑠) 

{15%, 10%, 5%, 
0% } 

Transportation Variation of 
vehicle type 

{1T, 2T1C, 3T2C, 
4T3C } 

 
To determine the impact of intermodal 

connectivity cost on network structure, four levels 
of intermodal costs are considered, set at 15%, 
10%, 5%, and 0% of the hub setup and operating 
costs. In addition to service and cost factors, 
economies of scale are examined through different 
transport fleet configurations rather than varying 
constant discount factors. The fleet variations 
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include: a single truck type for all routes (1T), two 
truck types and one container type (2T1C), three 
truck types and two container types (3T2C), and 
four truck types and three container types (4T3C). 
All the factors studied are outlined in Table 2. 
 
6.2 Results and Discussions 
 

The first investigation examines how the 
probability of on-time delivery impacts on total 
costs. As shown in Fig.5, higher service levels lead 
to increased total costs, particularly with daily 
deliveries or deliveries of five times per week, due 
to higher tardiness penalty costs. Conversely, for 
lower delivery frequencies, total costs decrease as 
service levels fall. This decrease is because 
consolidating deliveries to fewer days significantly 
lowers transportation costs, which outweigh the 
increased penalty costs due to economies of scale. 
However, total costs may rise if customers impose 
higher penalty fees. 

 

 
Fig.5 Effects of different service quality on total 
costs. 
 

The second factor analyzed is the impact of 
delivery frequency on total costs, as shown in Fig. 5. 
Reduced delivery frequency lowers total costs due 
to economies of scale achieved through flow 
consolidation. Although hub inventory costs rise, 
the savings in transportation costs are substantially 
greater. In the scenario with 100% on-time delivery, 
reducing delivery frequency shifts some 
commodities from direct delivery (𝑖𝑖 − 𝑗𝑗) to being 
routed through the hub network. Transportation 
costs are the dominant factor in this hub distribution 
network, and the economies of scale associated 
with fewer deliveries allow for using larger vehicle 

types, thus significantly reducing total 
transportation costs. 

This analysis highlights the trade-off between 
service quality and total costs within the hub 
network. Regarding hub locations, the study found 
that only one small hub is established in all 
scenarios. Changes in on-time probabilities do not 
affect hub locations, whereas changes in delivery 
frequency do.  

This section analyzes the impact of delivery 
lead time on the hub network. The study considers 
three service lead time scenarios: normal, extended, 
and no lead time restrictions. As indicated in Table 
3, delivery lead time significantly affects both total 
costs and the hub network configuration under 
conditions of 100% on-time delivery and daily 
delivery schedules. Total costs slightly decrease as 
delivery lead times become more flexible. Notably, 
extending the delivery lead time does not influence 
the use of two-hub routes, suggesting that 
intermodal transportation usage remains consistent. 
However, with extended delivery times, the 
frequency of single hub usage and the number of 
hubs established both increases. 

 
Table 3. Total costs and percentage of delivered 
flow at different delivery lead-time.  

Delivery lead time  
Normal 

lead time 
Extended 
lead time 

No lead 
time 

Total costs 
(THB) 

6,535,632 6,321,505 6,256,277 

% Flow delivery 
  

Direct route 87.42% 84.21% 83.80% 
Single-hub 

route 
12.58% 15.79% 16.20% 

Two-hub 
route 

0.00% 0.00% 0.00% 

 
The study explored four levels of intermodal 

connectivity cost: 15%, 10%, 5%, and 0% of the 
hub setup and operating costs. Reducing intermodal 
connectivity costs does not affect total costs or the 
hub network structure. This suggests that most 
deliveries are made via direct or single hub routes. 

The study then explores the economies of scale 
by differentiating between vehicle types instead of 
using traditional constant discount factors. Four-
fleet variations are examined. As illustrated in Fig.6, 
using multiple vehicle sizes significantly reduces 
total costs. 

Table 4 shows that when only one truck type or 
a combination of two truck types with one container 
type is used, deliveries are made directly from 
origin to destination. However, a notable 
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observation arises when three truck types and two 
container types are employed: in this scenario, a 
two-hub route is utilized, with 100% of inter-hub 
transportation conducted via intermodal means. 

 

 
Fig. 6 Total costs at different variation of vehicle 
type. 

 
Table 4. Percentage of delivered flow at different 
variations of vehicle type 

Delivery 
routes 

Number of vehicle types 
1T 2T1C 3T2C 4T3C 

Direct route 100% 100% 56.11% 87.42% 
Single-hub 

route 
0.00% 0.00% 0.41% 12.58% 

Two-hub 
route 

0.00% 0.00% 43.48% 0.00% 

 
7. CONCLUSIONS 
 
 This study makes several significant 
contributions beyond the development of a 
computationally efficient algorithm for large-scale 
logistics network optimization. First, it introduces a 
novel matheuristic algorithm that synergistically 
integrates adaptive simulated annealing (ASA) and 
tabu search (TS) within a nonlinear programming 
(NLP) framework. While prior research [21-22] has 
demonstrated the effectiveness of individual 
metaheuristics such as SA and TS in solving 
combinatorial problems, this approach advances the 
methodological frontier by combining these 
techniques into a cohesive, scalable framework 
capable of effectively managing complex logistics 
networks. This integration results in substantial 
reductions in computational time, enabling the 
attainment of near-optimal solutions within 
practical timeframes—an essential requirement in 
real-world logistics applications. 
 Second, the research contributes to the 
understanding of how advanced metaheuristic 
algorithms can be effectively applied within 
operational contexts characterized by large problem 

sizes and complex constraints. Unlike existing 
approaches that primarily emphasize algorithmic 
efficiency in abstract models using theoretical or 
limited datasets [23-24], this study demonstrates 
tangible improvements in solution quality and 
computational speed. Empirical results reveal that 
the proposed algorithm reduces the solution gap by 
over 17% and terminates the search process in 
nearly half the time required by traditional mixed-
integer nonlinear programming (MINLP) methods. 
Such reductions in optimality gaps translate into 
enhanced cost-efficiency in logistics operations by 
minimizing waste stemming from suboptimal 
decision-making. This underscores the inherent 
trade-off between solution optimality and 
computational efficiency, a consideration discussed 
in the literature [17]. 
 Third, aligned with the suggestions of previous 
research [16, 24], this research provides a 
comprehensive empirical analysis of the influence 
of various operational factors—such as delivery 
frequency, lead times, vehicle heterogeneity, and 
infrastructure investments—on network 
configurations and total costs. Grounded in a case 
study based on logistics data from Thailand, these 
insights demonstrate how strategic decisions, and 
external variables impact the logistics network 
structure and overall cost efficiency. The findings 
indicate that changes in delivery frequency 
substantially affect total costs, while variations in 
lead times significantly influence hub network 
configurations. Moreover, employing multiple 
vehicle types across the entire network—rather than 
relying solely on constant discount factors on inter-
hub arcs—yields economies of scale that 
dramatically reduce transportation costs. Notably, 
the case study shows that operating an intermodal 
hub network can sometimes be more costly than a 
road-only network. Additionally, expanding rail 
freight services across the network does not 
invariably produce expected cost savings, 
emphasizing the importance of contextual factors 
such as geographical constraints and demand 
patterns. These insights offer practical guidance for 
logistics planning and policymaking. 
 Finally, the study underscores the practical 
significance and scalability of the proposed 
framework, establishing it as a valuable tool for 
optimizing large and complex multimodal networks 
under real operational constraints. While this 
research primarily targets road and rail 
transportation, the framework provides a foundation 
for future development into dynamic, multimodal, 
and environmentally sustainable logistics models. 
Incorporating emerging technologies, such as 
machine learning and advanced data analytics, 
promises to further expand the contribution, 
addressing contemporary challenges related to 
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efficiency, sustainability, and resilience in logistics 
operations. 
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