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ABSTRACT: Construction delays in tunnel projects have persisted over several decades, often resulting in
significant financial and scheduling impacts. Despite extensive efforts, the root causes of these delays and effective
predictive modeling approaches remain insufficiently resolved. This study aims to identify the key factors
contributing to construction delays and to develop predictive models based on empirical data from tunnel projects
in Japan constructed using the New Austrian Tunneling Method (NATM). The dataset includes initial and final
displacements, displacement rate, categorical geological classifications, and advance rate (dependent variable),
compiled from detailed design and construction records. Descriptive statistical analysis revealed a high frequency
of outliers and a non-normal distribution, suggesting underlying heterogeneity in ground conditions. Regression
models—both standalone and integrated with K-means clustering—were developed and further refined using
Adaptive Boosting (Adaboost) algorithms. Adaboost outperformed other models, achieving higher coefficients of
determination (R?) and lower prediction errors. Feature importance and SHAP analysis confirmed final
displacement as the most influential predictor of tunneling performance. The principal causes of delay were
identified as insufficient geotechnical investigations and unanticipated disaster-related ground instabilities, both
of which contributed to design revisions and prolonged construction periods. The study underscores the critical
role of comprehensive geological surveys conducted at early project stages and demonstrates the utility of machine
learning in enhancing delay prediction. These findings provide actionable insights for improving schedule
reliability and risk management in future tunnel infrastructure development.

Keywords: Construction delay, Predictive Modeling, Influential predictor, Adaptive Boosting (AdaBoost),

Machine Learning.
1. INTRODUCTION

Over the past several decades, the demand for tunnels
has significantly increased due to rapid infrastructure and
other expansions. Despite advancements, tunnel projects
utilizing the New Austrian Tunneling Method (NATM)
often encounter construction delays, where the actual
duration exceeds the planned schedule, even in the
presence and absence of major hazard reports. These
delays frequently result in substantial financial losses.
Unfortunately, research specifically addressing the
characteristics, causes, and consequences of these delays
in civil and tunnel engineering remains limited and
typically focuses on expert literature reviews and basic
statistical analyses. The effectiveness of existing research
in addressing these delays is therefore uncertain.

Tunnel engineers have typically assessed tunnel
planning based on advance rates relative to geological
conditions. Anticipated progress rates have relied on
engineering judgment, prior experience, reference
projects, or limited statistical data. However, accurate
models to predict advance rates in the early stages of
tunnel projects are still lacking. A comprehensive study
identifying  the specific characteristics, causes,

consequences, contributing factors, and predictive tools
would enable early detection and mitigation of
construction delays.

Doloi et al. [1] used factor analysis and linear
regression to identify causes of construction delays in
India, based on surveys and interviews with construction
specialists. They found that a lack of commitment, poor
site management, and inadequate coordination were key
contributors. Similarly, Marzouk and El-Rasas [2] used
frequency and severity indices in Egypt, identifying
financial issues as the main cause of delays. While these
studies highlight contract management-related delays,
they may not directly apply to excavation delays in
NATM tunnel projects.

A significant challenge in studying tunnel delays is
limited access to reliable data. A comprehensive database
spanning the period from 1980 to 2019 has been
developed, encompassing information on hazards, tunnel
dimensions, excavation techniques, and terrain types.
Utilizing an edit distance search tool and fundamental
statistical analysis, the study highlights the high variability
associated with total delays in tunneling projects [3].
Building on this, Kongsung et al. (in press) [4] examined
four NATM tunnel projects in Japan and found that
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discrepancies between preliminary and actual ground
conditions during construction frequently required
substantial design modifications. Their study identified
initial displacement as a key indicator and developed
predictive delay models using both univariate and
multivariate regression analyses, achieving over 80%
accuracy in estimating total delay periods.

Although few studies have focused directly on
NATM tunnel delays, there has been substantial work on
predictive models for Tunnel Boring Machine (TBM)
performance. Yagiz and Karahan [5] developed a highly
accurate (R? = 0.80) TBM performance model using
rock strength and discontinuity properties, leveraging
Particle Swarm Optimization. Other studies have
employed various hybrid Al techniques—such as
Differential Evolution (DE) and Grey Wolf Optimizer
(GWO)—to develop rate-of-penetration (ROP) models
for tunnel boring machines (TBMs), achieving
coefficients of determination (R?) of 0.80 or higher [6-8].
However, these models typically require substantial
datasets, which are not readily available for NATM
projects.

The recent predictive Rate of Penetration (ROP) study
[9] employed various variables, including Unconfined
Compressive Strength (UCS), rock type, the distance
between planes of weakness (DPW), and thrust force
(TF), to perform descriptive statistical analysis and
construct the ROP model. This was achieved by
comparing robust machine learning techniques such as
Gradient Boosting (GB), Extreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine
(LightGBM), Adaptive Boosting (AdaBoost), and
CatBoost (which incorporates categorical features into
GB). These models demonstrated R? values approaching
unity, indicating excellent predictive performance. The
study identified UCS as the most significant feature, as
confirmed by the SHAP (SHapley Additive exPlanations)
methodology. This artificial intelligence (AI) and
machine learning (ML) techniques have demonstrated
their utility in assisting tunnel engineers in developing
accurate TBM performance models. However, a key
limitation remains: the lack of substantial datasets for
constructing similarly precise models for NATM
tunneling.

In civil engineering, AdaBoost has been successfully
applied to various predictive modeling tasks. For instance,
a concrete compressive strength prediction model
achieved near-perfect R? values [10]. Simultaneously,
the integrated simplicial homology global optimization
method (SHGO), AdaBoost, and laboratory
experiments were utilized to create a high-precision
design model for the cement grouting industry [11].
Nguyen and Tran [ 12] also used AdaBoost and other tree-
based models to predict asphaltic concrete rutting depth,
confirming the method's strong predictive capability.
Meanwhile, Uaisova et al. [13] utilized an artificial neural
network (ANN) to predict road surface deterioration,
demonstrating high precision with an R? value close to 1.

This study aims to bridge the gap in understanding the

causes and consequences of construction delays in
NATM tunnel projects and to refine predictive models by
extending the dataset and analytical approach of
Kongsung et al. Using data from five NATM tunnel
projects in Japan, the study employs descriptive statistics,
K-means clustering, regression analysis, and Adaptive
Boosting (AdaBoost) to model advance rates,
implemented using MATLAB (R2023b) and PyCharm.
Hyperparameter tuning and SHAP (SHapley Additive
exPlanations) analysis were also conducted to identify the
most influential predictors of delay.

The remainder of this paper is structured as follows.
Section 2 highlights the significance of the study. Section
3 presents descriptive statistics and explores various
analytical approaches, including K-means clustering,
regression analysis, and adaptive boosting. Section 4
explains the key variables used in the analysis. Section 5
outlines the study’s methodology. Section 6 discusses the
results of the analysis. Finally, Section 7 provides the
conclusions and implications of the findings.

2. RESEARCH SIGNIFICANCE

This study investigates the causes and consequences
of construction delays in NATM tunnels and develops
predictive delay models using K-means clustering,
regression analysis, and AdaBoost. Data from five
NATM tunnel projects in Japan were analyzed, with
descriptive statistics and hyperparameter tuning to
optimize model performance. Seven statistical metrics
and SHAP analysis identified key delay predictors. This
data-driven approach enhances understanding and
prediction of tunnel construction delays, contributing to
improved planning, risk management, and future research
in tunnel infrastructure.

3. DESCRIPTIVE STATISTICS, K-MEAN,
REGRESSION, ADAPTIVE BOOSTING
APPROACHES

This section describes the analytical approach
employed in this study, incorporating descriptive
statistics, K-means clustering, regression analysis, and
adaptive boosting (AdaBoost) techniques.

3.1 Descriptive statistics

Descriptive statistics were used to evaluate the
fundamental characteristics of the dataset, including
measures of central tendency (mean, median),
dispersion  (standard deviation, quartiles), and
distribution shape (skewness, kurtosis). Visual
representations, such as histograms, violin plots, and
pair-plots, were employed to investigate data
distribution patterns and detect potential outliers [14—
17]. Kernel density estimation (KDE) was applied to
model nonparametric probability density functions for
the dataset, providing insights into one-dimensional and
multidimensional distribution structures [14]. Scatter
plots and Pearson correlation coefficients were used to
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identify potential multicollinearity issues among
variables [17].

3.2 K-Means Clustering

K-means clustering, an unsupervised learning
technique, was utilized to segment numeric variables
based on Euclidean distances [18]. The optimal
number of clusters was determined using the Elbow
method, which plots the number of clusters against
the within-cluster sum of squares (WCSS) to identify
the point of diminishing returns [19]. The centroids of
the identified clusters were subsequently used as
input features in regression models, providing a
hybrid approach that leverages data structure to
enhance prediction.

3.3 Regression Analysis

Regression models, including univariate and
multivariate forms, were developed to examine the
relationship between the advance rate (AR) and
independent variables [20-22]. Both linear and
nonlinear (power) regression models were tested to
evaluate model performance using coefficient of
determination (R?), adjusted R? root mean square error
(RMSE), and p-values. Despite multicollinearity
challenges observed in multivariate models, the optimal
regression models balanced simplicity and predictive
performance. Overarching mathematical expressions for
multivariable linear and univariable power regressions
can be articulated through the subsequent equations.

y=PBo+Pix1+ Boxa+ -+ Bx+ e (1)

y=PBo(x)fr + e @
3.4 Adaptive Boosting (AdaBoost)

AdaBoost, an ensemble learning method, was
implemented to improve predictive accuracy by
combining multiple weak learners, specifically decision
tree regressors, into a strong predictor [23-25].
Hyperparameter tuning was conducted using the
RandomizedSearchCV function to optimize the number
of weak learners, learning rates, and maximum tree depth
[26-27]. Model performance was evaluated using seven
statistical metrics: R? adjusted R?, RMSE, mean absolute
error (MAE), mean squared log error (MSLE), variance
accounted for (VAF), and median absolute error
(MedAE).

Feature importance was assessed using relative
importance measures and SHAP (SHapley Additive
exPlanations) analysis, which provides a reliable
interpretation of variable contributions to model outputs
[28, 29]. The SHAP results consistently identified final
displacement as the most influential predictor of AR,
followed by initial displacement, with other variables
playing lesser roles.

The algorithm detail has been introduced as follows,

proposed by Feng et al.:
The dataset has been defined as vector:
(©) ={(X1, Y1), (X2, Yo)se oo, (X, YD} 3)

Where X;, Y; (1= 1,..., m) represent the i-th sample in
the training dataset, and m denotes the total number of
samples. The subsequent stage involves using the training
dataset to develop the weak learner G(X), after which the
relative error (e;) for all samples may be assessed using
the loss function L(-). There are various loss functions,
including linear, exponential, and squared loss functions.
The conventional loss function (linear) is presented as
follows:

L= |Yi—c;<xi)| )

E represents the maximum of |¥; —G(X;)| .
Notwithstanding the subpar performance of individual
weak learners, Adaboost amalgamated a sequence of
weak learners (G, (X), k= 1,2,...,N) to construct a more
robust learner H(X), as delineated in Equation (5). Note
that the weak learner and the integration of weak learner
have been performed with the adaptation of decision tree
regression (DT), proposed by [24].

HX)=v T (n ) g(X) ®)

Where a, is the weight of weak learner G, (X); g(X)
is the median of all the a; G, (X); ve (0,1] is the
regularization influence (Learning rate) to mitigate the
overfitting. Adaboost addresses mismatched sampling by
augmenting the weight, while the weight of corrected
sampling is diminished in subsequent iterations. The
overall error rate and the weight of the weak learner are
established by Eqa. (6) and (7) while the update weight
contribution Wy, ; in the next training step can be
examined by Eqa. (8).

ex = X1 €k (6)
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The Adaboost methodology can be delineated into
four primary steps [10]: (1) Acquisition of experimental
data; (2) Development of the robust learner; (3)
Evaluation or validation of the Ilearner; (4)
Implementation of the learner in engineering problems.
Figure 1 illustrates the operational procedure for
Adaboost, with the input parameters including the
number of weak learners (estimators), learning rate, and
maximum tree depth.

This study integrated approach, combining
descriptive statistical analysis, clustering, regression, and
adaptive boosting with hyperparameter tuning technique,
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provides a comprehensive, data-driven framework for
understanding the underlying factors contributing to
delays in NATM tunnel projects. The insights gained
from this analysis support the development of robust
predictive models and contribute to improved planning
and risk management strategies in tunnel engineering
applications.

4. VARIABLE EXPLANATIONS

Variables in this study are classified into two primary
types: dependent and independent. The dependent
variable is the advance rate (AR), derived from tunnel
face observation records. The independent variables
consist of numeric and categorical variables, enumerated
as follows:

Numeric variables:

e Initial displacement (Ini): Initial measured
displacement on the first observation date.

e Final displacement (Fi): Convergent or
maximum measured displacement.

e  Displacement rate (Dir): Ratio between final
displacement and duration.

Categorical variables:

e Rock mass strength (Rs): Classified in
table 1.

e  Weathering/Alteration (Wa): Classified in
table 2.

e  Spacing of discontinuity (Sdd): Classified in
table 3.

e  Conditions of discontinuity (Cd): Classified
in table 4.

o Effect of discontinuity perpendicular to
tunnel alignment (Edp): Classified in table 5.

e  Effect of discontinuity parallel to tunnel
alignment (Edpa): Classified in table 6.

e Mode of occurrence (Mo): Classified in
table 7.

e  Patterns of crack (Pc): Classified in table 8.

The numeric variables align with measurement programs
detailed in the Standard Specifications for Tunneling
(2016): Mountain Tunnels. In contrast, the categorical
variables are aligned with the face observation records
from the same standard.

Table 1 Rock mass strength (Rs) category.

Grade class Description
1 Very hard (VH)
2 Hard (H)
3 Fair (F)
4 Weak (W)
5 Very Weak (VW)
6 Extremely weak (EXW)

Table 2 Weathering/Alteration (Wa) category.

Grade class Description
1 Fresh
2 Weathered along discontinuities
(WAD)
3 Weathered to the rock mass core
(WRCQ)
4 Unconsolidated (US)

Table 3 Spacing

of discontinuity (Sdd) category.

Grade class

Description

1

Very Widely, D> 1m. (VW)

2 Widely, 1 m.>D > 0.50 m., (WI)

3 Medium, 0.50 m.> D > 0.20 m.,
(ME)

4 Closely, 0.20 m. >D > 0.05 m., (CL)

5 Very Closely, 0.05 m. > D, (VCL)

Table 4 Conditions of discontinuity (Cd) category.

Grade class

Description

1

Close (CLO)

Partially Open (POP)

Mostly Open (MOP)

Slightly Infilled Clay (SIC)

[V R EN USR] S)

Largely Infilled Clay (LIC)

Table 5 Effect of discontinuity perpendicular to
tunnel alignment (Edp) category.

Grade class Description
1 Very favorable (VF)
2 Favorable (FAV)
3 Normal (NOR)
4 Unfavorable (UFAV)
5 Fair (F)

Table 6 Effect of discontinuity parallel to tunnel
alignment (Edpa) category.

Grade class Description
1 Normal (NOR)
2 Unfavorable (UFAV)
3 Fair (F)

Table 7 Mode of occurrence (Mo) category.

Grade class Description
1 Alternation (ALT)
2 Unconformity (UCF)
3 Intrusion (INT)
4 Micro-folding (MIF)
5 Fault (FAU)
6 Others (OTH)

Table 8 Patterns

of crack (Pc) category.

Grade class

Description

1

Random Squares (RAS)

Columns (COL)

Layers (LAY)

Fragmented Unconsolidated (FRUS)

(O E-N (USRS}

Others (OTH)
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Fig. 1 Schematic of Adaptive boost the in context of regression

5. METHODOLOGY OF THIS STUDY

Figure 2 presents the comprehensive methodological
framework of this study. Initially, data were gathered from
design and construction records of five tunnel projects in
Japan, resulting in a dataset comprising 509 entries.
Descriptive statistical analysis, as detailed in Section 3, was
conducted using Seabormn [30] in PyCharm to assess data
quality, distributions, and outliers. The causes and
consequences of construction delays were identified through
examination of design and construction documents.

The dataset was partitioned into training and testing
sets using the train-test split function from Scikit-learn.
This process employed trial-and-error adjustments of
test sizes (0.10-0.30) and pseudo-random seeds (0, 42,
100) to ensure robust model validation. Two baseline
(regression approach) and Adaptive Boost models were
developed: conventional univariate and multivariate
regressions (linear and power forms), hybrid K-means
regression, and an AdaBoost model. Factor Analysis for
Mixed Data (FAMD) [31] was applied in selected
scenarios to reduce dimensionality.

Hyperparameter optimization for the AdaBoost
models was performed using RandomizedSearchCV,
focusing on the number of weak learners, learning rate,
and maximum tree depth. Final model performance was
evaluated using seven statistical metrics: R?, adjusted R?,
RMSE, MAE, MSLE, VAF, and MedAE. Feature
importance and SHAP (SHapley Additive exPlanations)
analyses were employed to interpret model outputs and
identify the most influential variables.

This  integrated  methodological  approach—
combining descriptive statistics, hybrid clustering,
regression analysis, and advanced machine learning—

facilitates a  comprehensive  and  data-driven
understanding of the factors contributing to construction
delays in NATM tunnel projects. The findings provide a
foundation for developing predictive models to support
improved planning, risk management, and decision-
making in future infrastructure projects.

6. RESULTS OF ANALYSIS
6.1 Descriptive statistics

Table 9 summarizes the dataset for the tunnel projects
analyzed in this study. The tunnel diameters range from
10 m to 14.65 m, with total project delays spanning from
40 to 94 days for projects A to D. Tunnel Project E
experienced a substantial delay of approximately 11 years
due to significant landslide issues.

6.1.1 Quantitative independent variables

The distribution of numeric variables (AR, Ini, Fi,
Dir) is illustrated in the 4x4 pair plot in Figure 3. The
descriptive statistics reveal that the standard deviation
(SD) along the diagonal for these variables—except
AR—equals or exceeds their respective means, indicating
considerable variability. In particular, the SD for AR is
approximately 50% of the mean. Skewness and kurtosis
metrics indicate that Ini, Fi, and Dir exhibit moderate to
strong positive skewness (right-skewed distributions),
whereas AR shows a platykurtic distribution (negative
excess kurtosis), suggesting light tails and fewer outliers.
The excess kurtosis (Kurtosis-3.00) index for Ini, Fi, and
Dir exhibits significantly positive values, indicating a
leptokurtic distribution.

The lower diagonal of Figure 3 presents scatter plots
between AR and independent variables, revealing mild to



International Journal of GEOMATE, Nov., 2025 Vol.29, Issue 135, pp.1-15

Collected data:

1. Displacements (Ini, Fi and Dir) ( Stat )

2. Geological information ‘ ;
2.1 Weathering/ Alteration (Wa) T
2.2 Spacing of discontinuities (Sdd) r ]
2.3 Conditions of di ies (cd) [a);ila:oileclion
2.4 Discontinuity perpendicular (Edp)

I

Descriptive statistic
analysis

S

Identify causes and
consequences of delays

—

Predictive delays
model development

2.5 Discontinuity longitudinal (Edpa)
2.6 Mode of occurrence (Mo)
2.7 Patterns of crack (Pc)

3. Rock strength (Rs)

No

]

I S
'
i o Machine learning
Regression analysis (Adaboost)
' l :
Dataset from train- o sl
test spliting Cases analyss
plitting |
[ —_ —
Univariable Multivariable ! ) Data No.
powerd lincar linear Ini, Fi, and Dir 142,143

Full data

e

% )

Hyperparameter tuning

;

Adaboost regression
model development

Feature importances
and SHAP analysis

Is the result
statisfied?

Yes

%

Evaluate the accuracy
of each model

:

Evaluate the degree

|

—1

With FAMD
(Dimension
reduction)

I

[ 1 l 1 - Without FAMD
K-mean D{‘“f . ‘ K-mean Dal)a \‘; (Dimension
12143 122143 reduction)
Ini, Fi, and Dir Ini, Fi, and Dir

Trial and error of train
and test dataset splitting

Test size=0.10-0.30,
Random state = 0,42, 100

|

Regression decission
tree baseline model

investigation

of influence factors

H

Results and discussion
of database and
models

-

Conclusions and
recommendations

H

Fig. 2 Flowchart depicting the comprehensive methodology of the present study.

moderate negative Pearson correlation coefficients. Some
points appear as potential outliers. Pearson correlations

6.1.2 Categorical independent variables

among independent variables, notably Ini and Dir,
suggest moderate to strong positive relationships,
indicating possible multicollinearity. The upper diagonal
of Figure 3 (KDE contours) confirms the right-skewed
nature of the data distributions, consistent with the
skewness results. The densest zones for AR in relation to
Ini, Fi, and Dir are approximately 1.50-2.50 m/day,
corresponding to 0—10 for Ini, 030 for Fi, and 0-5 for
Dir. The Fi-Dir plot displays a bimodal distribution,
as does the Ini-Fi plot.

Figure 4 displays violin plots correlating categorical
variables with AR. In Figure 4a, the “H” categorization
shows the highest median AR of ~3.50 m/day, though
with wide variability and many outliers. The “F” and “W”
categories have similar medians, while “VW” shows
broader variability. In the “EXW” group, AR is lower
with a narrow distribution and few outliers. There are
extremely few points of a highly challenging
category, which is why there is no trend in the violin
plot. Figure 4b shows similar patterns in Wa categories,
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with “WRC” and “WAD” showing comparable median
AR values (~2.20 m/day), though “WAD” has broader
dispersion. The “US” category displays lower AR with
smaller distributions while the “Fresh” category shares the
same issue and rationale as the very hard rock mass
strength category.

Sdd violin plots (Figure 4c) reveal that the “ME”
category has the highest AR (~3 m/day), with a broad
distribution and numerous outliers due to varying rock
types and conditions. The “CL” and “VCL” categories
have similar median AR values (~1.80 m/day), but “CL”
shows more outliers. Cd violin plots (Figure 4d) indicate
that “MOP” has the highest AR and widest dispersion,
followed by “POP”. The geological explanation for these
results is unclear, as factors like rock type and strata may
play roles. “SIC” and “LIC” show lower AR with more
outliers, especially “SIC,” which has a bimodal
distribution.

Edp plots (Figure 4¢) show “F” with the highest
AR (~2.40 m/day) and non-normal distribution,
followed by “VF” with wide dispersion and extreme
outliers. Other categories show similar AR medians
and distribution shapes. The “Edpa” plot (Figure 4f)
shows that “UFAV” has the highest AR (~2.10
m/day), while the “F” and “NOR” categories have
similar, lower AR. Distributions approximate normal
shapes but include significant outliers.

Mo plot (Figure 4g) reveals that “OTH” exhibits the
highest median advance rate (AR) at approximately 2.60
m/day, characterized by a non-normal distribution with two
distinct peaks. This is followed by “ALT”, “INT”, and
“MIF”, each with median ARs around 2.00 m/day. Among
these, “INT” shows a more skewed distribution with a
higher occurrence of outliers. In contrast, “UCF” and “FAU”
are identified as critical modes with significantly lower ARs,
narrower non-normal distributions, and moderate levels of
outliers. Pc (Figure 4h) data is limited. The “OTH” category
shows the highest AR (~3.30 m/day) with wide distribution
and significant outliers. “FRUS” and “LAY” categories
show similar abnormal distributions, with “LAY” having
more outliers while the “COL” and “RAS” categories
display the same issue as “VH” category of rock mass
variable.

Overall, it is evident that uncertainties arising from

variations in rock types, strata, and geological structures
can lead to geological inconsistencies and significant
variability. The dataset reflects this through substantial
irregularities, including high variability, skewed
distributions, and multicollinearity. These factors may
adversely affect model fitting and reduce prediction
accuracy in the subsequent analysis.

6.2 Identification of causes and effects of
construction delay

The identification of construction delay causes and
effects was primarily based on interviews with tunnel
design engineers, supplemented by a detailed review of
design and construction documents (Kongsung et al., in
press) [4]. In tunnel project C, for example, delays were
attributed to inconsistencies between the actual ground
conditions and those classified during the design phase.
The rock face was affected by multiple geological factors,
including hydrothermal alteration and intersecting faults
at approximately 45°, creating a complex structure prone
to dislodgment. Although the design classification, based
on drilling core results, identified the rock as tuff with high
RQD and assigned it to class CII, field conditions during
excavation revealed substantial fissures, prompting
reclassification to class D for safety reasons. This
reclassification led to significant additional labor and
extended timelines for tunnel support installations.

In tunnel project E, characterized by extremely weak
ground conditions and a high risk of landslides, the
identification of delays was more challenging. Three
principal causes of delays were identified:

1) The presence of deep, extremely weak argillaceous
sandstone layers along bedding planes, compounded by
low-angle reversal faults, extensive rock joints, and other
discontinuities that created a high likelihood of landslides.

2) Inadequate precision in the initial geological survey
programs, which failed to detect these problematic
conditions, leading to major discrepancies between
design-stage classifications (DI to CII) and the actual in-
situ conditions (DII and E classes).

3) The need for comprehensive monitoring programs,
the establishment of specialized technical committees,
and the implementation of extensive temporary and

Table 9 Summary of tunnel database classified by tunnel project.

Tunnel project lists Tunnel width (m.) Total Delay (day) Ground type
A 14.65 93.42 Mudstone
B 10.14 87.80 Granite
C 12.20 73.82 Mylonite
D 14.01 40.40
E 14.64 4,130.25 Mixed sandstone and shale
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Fig. 3 Pairwise correlation, basic statistics, and distribution matrix of AR, Ini, Fi, and Dir variables.

permanent mitigation measures. These processes
required significant time to ensure safety, resulting in
substantial project delays.

Overall, the findings highlight the discrepancies
between design-stage classifications and actual ground
conditions, especially in complex geological settings,
it can lead to extensive delays. Inadequate site
investigations, the need for continual safety
verifications, and the development of revised support
designs further compounded these delays.

6.3 Conventional Regression, Hybrid Regression
with K-means and Adaptive Boost

6.3.1 Dataset splitting

To mitigate data leakage, the dataset was partitioned
into training and testing subsets. Following the
methodology outlined in Section 5, Adaptive Boosting
was employed to optimize data segmentation for model
training. A trial-and-error approach was integrated with
cross-validation to tune hyperparameters, including the
maximum tree depth (1-10), the number of weak learners
(500-2,000), and the learning rate (0.001-0.01), using the

Random-Search method. These parameters are elaborated
in subsequent sections.

Test sizes were systematically evaluated in
increments of 0.05, and the optimal test size was
determined based on seven performance metrics. For
most scenarios, a test size of 0.20 and a pseudo-random
parameter of 0 were identified as optimal, except for the
full dataset without FAMD, where the test size was 0.25
and a pseudo-random parameter of 42 was used.
Consequently, the final datasets comprised 381 to 407
training samples and 128 to 102 testing samples. These
datasets were used to develop curve-fitting models
employing both conventional and hybrid regression
techniques. This structured partitioning ensures robust
model validation while minimizing data leakage.

6.3.2 Conventional and hybrid regressions

A total of fifteen scenarios for conventional univariate
and multivariate regression analyses were explored using
independent variables Ini, Fi, Dir, Rs, and Wa, with 509
data points. Univariate regressions were evaluated using
linear and power models, while multivariate regressions
employed linear functions. Three statistical metrics—R?,
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0.751, and p-value < 0.05. While all models achieved

adjusted R?, and RMSE—alongside p-values, were used to

evaluate model performance.

Criteria for model

acceptability included R? and adjusted R? > 0.28, RMSE <

significant p-values, R? and adjusted R? remained below.
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The author enumerated the regression equations according
to the subsequent criteria. R2>0.28, and RMSE <0.751;
the equations are provided below:

AR =2.263 - 0.00693(Ini) - 0.01(Fi) +0.40(EXW)
+0.1196(W)+0.172(F)+1.356(H)+0.963(VH), R? =
0.285, R?(adj.) = 0.272, and RMSE= 0.751

AR =2.232 - 0.00972(Ini) - 0.01(Fi) +0.012(DIR)
+0.379(EXW)H0.132(W)+0.192(F)+1.382(H)+0.98(VH),
R? =0285, R%(adj.)=0.271,and RMSE=0.751  (11)

AR =2.237-0.00636 (Ini) - 0.009(Fi) +0.006(DIR)
+0.315(EXW)H0.137(W)+0.35 (F)+1.88(H)+0.977(VH)-
0.178(US)-0.509(WAD), R? =0.304, R2(adj.) = 0.286,
and RMSE=0.743 (12)

Although Equation (11) and (12) achieved slightly
higher R? and adjusted R? it included six and eight
additional variables compared to Equation (9), with
negligible improvement in RMSE. Therefore, from a
statistical standpoint, Equation (9) was deemed the most
suitable for standard regression analysis. Validation of
these baseline models using testing datasets (as described
in Section 6.3.1) is discussed in subsequent sections.

For the hybrid regression approach, K-means
clustering was applied to numeric variables (Ini, Fi, Dir),
classifying the dataset into 10 clusters based on the Elbow
method. The cluster centers were used as inputs for
univariate and multivariate regressions.  Results
demonstrated that univariate power regression models
outperformed linear and multivariate regressions, with R?
values marginally below 0.56. In contrast, multivariate
models showed only minor improvements and often had
p-values  exceeding  0.05, reflecting  strong
multicollinearity. The optimal fit for this methodology is
seen in the subsequent equations:

(10)

AR = 3.662 (Ini)~%361  R% = 0.539, R? (adj.)
=0.481, RMSE= 0.606 (13)

AR = 5263 (Fi)~°3, R? = 0.558, R? (adj.) =0.503,
RMSE= 0.593 (14)

AR = 3.123 (Dir)"%423 | R? = 0.523, R? (adj.)
=0.463, RMSE= 0.616 (15)

Among these, Equation (14) was identified as the best
fit for the hybrid regression approach, exhibiting the
highest R? and lowest RMSE. These results highlight the
superior performance of univariate power regressions
within the hybrid framework and provide robust baseline
models for comparative analysis with Adaptive Boosting
in subsequent sections.

6.3.3 Adaptive boost

The Adaptive Boosting (AdaBoost) analysis
encompassed five scenarios: Fi alone, displacements,
displacements-Rs-Wa, all variables, and all variables with
Factor Analysis of Mixed Data (FAMD). FAMD was
employed to reduce dataset dimensionality, yielding 25
principal components and accounting for a 3% variance
loss. Hyperparameter optimization was conducted using a
trial-and-error approach integrated with 10-fold cross-
validation and RandomizedSearchCV. The final
configurations are summarized in Table 10, showing a
consistent maximum tree depth of three across all scenarios,
while the number of weak learners ranged from 500 to
2,000 and learning rates from 0.001 to 0.01.

Model fitting was assessed using seven performance
metrics (Table 11). Figure 5 depicts the relationship
between measured and predicted AR for all AdaBoost
cases. Among these, the Fi and displacements-Rs-Wa
scenarios achieved the highest R? values (~0.43). Models
incorporating all variables—both with and without
FAMD—exhibited marginal improvements in error
terms but suffered from overfitting and multicollinearity,

Table 10 summary results of hyperparameter tuning for all adaptive boost cases.

Lists of control

Adaptive boost cases analysis

parameter Fi Displacements | Displacements-Rs-Wa | All variables | All variables with FAMD
Maximum depth of 3 3 3 3 3
tree
Maximum number of 1,982 1,982 500 2,000 1,982
weak learners
Learning rate 0.001999 0.001999 0.001 0.01 0.001999
Table 11 summary results of hyperparameter tuning for all adaptive boost cases.
Lists of evaluated Adaptive boost cases analysis
metrics Fi Displacements | Displacements-Rs-Wa | All variables | All variables with FAMD
R? 0.426 0.385 0.420 0.438 0.374
R? (adj.) 0.420 0.366 0.335 0.170 0.158
MSE 0.547 0.586 0.552 0.407 0.505
MAE 0.569 0.594 0.571 0.465 0.513
MSLE 0.0695 0.0690 0.0659 0.0464 0.0572
MedAE 0427 0.424 0.445 0.354 0.327
VAF (%) 42.82 38.49 42.04 44.74 37.85
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rendering them less robust. The impact of FAMD on
overall model performance was negligible, as the
reduction in variable count did not substantially affect
predictive accuracy.

Comparative analysis of optimal models indicates that
the Fi and displacements—Rs—Wa scenarios consistently
yielded superior performance compared to other
combinations. However, the inclusion of additional
variables in the latter scenario resulted in only marginal
improvements in correlation and minimal reduction in

11

fitting error (prone to overfitting) relative to the Fi-only
model. This indicates that the additional variables do not
significantly enhance the model's predictive capability.
Therefore, the Fi scenario was identified as the optimal
predictor configuration within the AdaBoost models.

6.4 Assessment and validation of all predictive
models

The evaluation of baseline and AdaBoost models
was based on the correlation between predicted and
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measured AR, depicted in Figures 6 and 7. Adaptive
Boost models generally outperformed conventional and
hybrid baseline models, except for the Fi scenario with the
baseline power regression, which exhibited comparable
performance. This is likely due to multicollinearity
challenges inherent in baseline models.

Despite the overall robustness of AdaBoost
models, the correlation between observed and
predicted AR values remained moderate. This can be
attributed to dataset irregularities and several outliers
as outlined in the descriptive statistics (Section 6.1).
These issues highlight known limitations of adaptive
boosting, particularly its sensitivity to noisy data,
outliers, and class imbalance, as well as its tendency to
overfit [32]. Additionally, the dataset exhibited
fluctuations and instances of inaccurate sampling, for
example, cases where similar independent variable
values corresponded to medium to large differences in
the dependent variable (AR). Such inconsistencies may
have triggered multiple augmentation and other
processes within the AdaBoost algorithm, ultimately
reducing the accuracy of the model's fit.

The assessment also extended to overall delay
periods, revealing that discrepancies in spatial stationing
of predicted and measured AR can produce identical total
delay sums despite underlying misalignments. Thus,
correlation-based validation between measured and
predicted AR is more reliable than total delay-based
comparisons. In summary, Fi emerged as the most
influential factor in predicting AR, with AdaBoost
offering the highest overall predictive performance while
recognizing its limitations in the presence of data noise
and multicollinearity.

6.5 Investigation of main contributed variables of
Adaptive boosting

The relative importance of variables in Adaptive
Boosting models was assessed, excluding the Fi scenario.
Figure 8 presents the relative importance of variables for the
displacements-Rs-Wa scenario. Fi exhibited the highest
weight (~0.70), followed by Ini (~0.15) and Dir (~0.10).
Other variables had weights below 0.05, reflecting minor
contributions. Similar patterns were observed in other
Adaptive Boosting scenarios, albeit with slight variations in
variable weights. These findings corroborate the
observations from Section 6.3.3, where the addition of
variables did not significantly improve model fitting,
confirming Fi as the most influential predictor in
construction delay models.

Additionally, SHAP (SHapley Additive exPlanations),
based on game theory, was employed to provide a more
detailed interpretation of the “black box” Adaptive
Boosting models. Figure 9a presents a bar plot of the mean
SHAP value contributions for each variable, revealing that
the three primary contributing features are consistent with
the results of the previous feature importance analysis.
Notably, Fi demonstrates the highest contribution (~0.44),
followed by Ini (~0.05), indicating that Fi is the dominant
influencing factor in the model. However, the
interpretability of the Adaptive Boosting model should be
carefully examined and validated through engineering
judgment to ensure the robustness and practical relevance
of its predictions.

Figure 9b presents a comprehensive bee swarm plot for
the displacements—Rs—Wa scenario, further confirming
that Fi is the third most influential predictor of AR. The
SHAP values on the x-axis indicate both the magnitude and
direction of each variable’s contribution to the predicted
AR, with negative values suggesting a reduction in AR and
positive values indicating an increase. The color gradient on
the y-axis represents the feature value distribution, where
red denotes higher values and blue indicates lower values.

For Fi, higher feature values are generally associated with
negative SHAP values—implying a reduction in predicted

R-square between measured and predicted AR evaluation

0.5+
0.45 0426

04 0.3
0.35 -
0.3 4
0.25 1
0.2 A
0.15 4
0.1 -
0.05 4

0.42
85

0.403

W
3
=

0.202
0.179

R-sqaure value
=3
o
g

Fi
Dis

Dis+Rst+Wa

(=]
s 5 o
DistGealogica! N ©
=]

Dis+Geological (FAMD)
Case 1.1 (Exp.)

Case 1.1 (Linear) - ;

Case 1.2 (Power)
Case 1.2 (Linear)

Adaboost

0.281

Case 1.3 (Power) |

Case 1.3 (Linear) - E

Univariate regression

0324 0328

0207 0213
. 0.177
0.154

Case 5

case .1 | :

Case 4.2

case23 |
Case 3.1

Case 2.1
Case 2.2
Case 3.2
Case 3.3

Multivariate regression

Fig. 6 Comparison of R-square values between measured and predicted AR evaluation for conventional baseline models and

adaptive boost models.

12



International Journal of GEOMATE, Nov., 2025 Vol.29, Issue 135, pp.1-15

R-square between measured and predicted AR evaluation

0.5 1
0.45 1 0426 oay a8
0.4 0385 0374
0.35 4
8 034
g
5 0.25 4
g8 021 0.171
3
o« 0.15
0.1 -
0.05 4
O J
= & & E &8 %
3 ) = &
) 5) < =
5 3 = -
2 3 = =
= I g 2
2 5L <
a s ]
(=]
23
&)
4
z
Adaboost

0.149

Case 1.1 (Linear)

Univariate regression (K-mean)

Case 1.2 (Power)

0.225

0.202 0.197
0.158 0.153
0.003 0.0006

1

Case 1.2 (Linear)

Case 1.3 (Power)

Case 1.3 (Linear)
Case 2
Case 2.2
Case 2.3
Case 3.1

Multivariate regression (K-mean)

Fig. 7 Comparison of R-square values between measured and predicted AR evaluation for hybrid baseline models and

adaptive boost models.

AR—whereas lower Fi values tend to correspond with an
increase in AR. In contrast, Ini exhibits a predominantly
positive influence on AR, although some lower values of
Ini contribute insignificantly or inconsistently. These
patterns suggest that Fi is a more reliable and interpretable
predictor from an engineering standpoint, while the role of
Ini remains less conclusive.

The lower variable Dir exhibits a negative effect on
AR, which contrasts with the positive influence of Fi and
aligns with practical engineering expectations. Some data
points from the “H” and “F” categories of Rs exhibit
atypical one-sided effects—either predominantly positive
or negative. However, the underlying pattern remains
unclear. In contrast, the overall contribution of geological
features to AR remains limited and largely insignificant,
as shown in Figure 9b. This scenario presents challenges
for validation through engineering judgment, as the
observed patterns are still ambiguous and lack clear
interpretability.

In conclusion, both the relative importance and
SHAP analyses consistently identify Fi as the dominant
predictor in the Adaptive Boosting models for tunnel
excavation delays, reinforcing its significance as a
key variable in predictive delay modeling. Moreover,
this finding aligns with the results presented in
Section 6.3.3, further validating that the Fi-based
Adaptive Boosting model provides the most reliable
and engineering-consistent predictions.

7. CONCLUSION

This study comprehensively investigated the causes,
consequences, and predictive modeling of construction
delays in NATM tunnel projects in Japan. A robust dataset
comprising 509 data points—including displacement
geological factors, and the advance rate (AR) was analyzed.
Statistical analysis revealed significant heterogeneity and
outlier presence, suggesting complex ground conditions
that complicate predictive efforts.
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Conventional and hybrid regression models were
developed as baseline predictors for AR, while Adaptive
Boosting was employed for enhanced predictive
performance.  Adaptive  Boosting  consistently
outperformed other models, achieving higher R? values
and lower error metrics, though it remains sensitive to
outliers, variances and imbalanced datasets. Feature
importance and SHAP analyses identified final
displacement (Fi) as the most influential variable,
underscoring its critical role in tunnel excavation
performance.

The principal causes of construction delays were
found to be discrepancies between actual and design stage
ground classifications, especially in weak ground
conditions complicated by complex geology and
landslide hazards. In such cases, extensive mitigation
efforts, including supplementary investigations and
continuous monitoring, are necessary but contribute to
extended project timelines.

This study acknowledges key limitations and suggests
directions for practical implementation and future
research. The variability in rock formations and mineral
compositions can result in differing ground behaviors,
which constrains the direct generalizability of the
developed models. However, to address uncertainties
related to geological conditions, practitioner experience,
and standard practices, the proposed methodology should
be re-applied to diverse and site-specific datasets. The
application of machine learning in tunneling contexts
must be conducted with caution—models should be
interpreted and validated in close collaboration with
tunnel or mining engineers to ensure practical reliability.
Furthermore, enhancing geological investigations during
the early stages of a project and incorporating final
displacement considerations into standard tunnel design
guidelines may substantially reduce associated risks.

Finally, the study outlines several directions for future
research. Future applications should consider utilizing
exclusive or expanded datasets or adapt models to account
for local geological variations. Additionally, upcoming
studies should focus on enhancing predictive accuracy by
exploring advanced machine learning boosting
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techniques, such as Gradient Boosting or XGBoost, while
also addressing issues related to dataset imbalances and
the effects of outliers.
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