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ABSTRACT: Construction delays in tunnel projects have persisted over several decades, often resulting in 

significant financial and scheduling impacts. Despite extensive efforts, the root causes of these delays and effective 

predictive modeling approaches remain insufficiently resolved. This study aims to identify the key factors 

contributing to construction delays and to develop predictive models based on empirical data from tunnel projects 

in Japan constructed using the New Austrian Tunneling Method (NATM). The dataset includes initial and final 

displacements, displacement rate, categorical geological classifications, and advance rate (dependent variable), 

compiled from detailed design and construction records. Descriptive statistical analysis revealed a high frequency 

of outliers and a non-normal distribution, suggesting underlying heterogeneity in ground conditions. Regression 

models—both standalone and integrated with K-means clustering—were developed and further refined using 

Adaptive Boosting (Adaboost) algorithms. Adaboost outperformed other models, achieving higher coefficients of 

determination (R²) and lower prediction errors. Feature importance and SHAP analysis confirmed final 

displacement as the most influential predictor of tunneling performance. The principal causes of delay were 

identified as insufficient geotechnical investigations and unanticipated disaster-related ground instabilities, both 

of which contributed to design revisions and prolonged construction periods. The study underscores the critical 

role of comprehensive geological surveys conducted at early project stages and demonstrates the utility of machine 

learning in enhancing delay prediction. These findings provide actionable insights for improving schedule 

reliability and risk management in future tunnel infrastructure development. 

 

Keywords: Construction delay, Predictive Modeling, Influential predictor, Adaptive Boosting (AdaBoost), 

Machine Learning. 

 

1. INTRODUCTION 

 

Over the past several decades, the demand for tunnels 

has significantly increased due to rapid infrastructure and 

other expansions. Despite advancements, tunnel projects 

utilizing the New Austrian Tunneling Method (NATM) 

often encounter construction delays, where the actual 

duration exceeds the planned schedule, even in the 

presence and absence of major hazard reports. These 

delays frequently result in substantial financial losses. 

Unfortunately, research specifically addressing the 

characteristics, causes, and consequences of these delays 

in civil and tunnel engineering remains limited and 

typically focuses on expert literature reviews and basic 

statistical analyses. The effectiveness of existing research 

in addressing these delays is therefore uncertain. 

Tunnel engineers have typically assessed tunnel 

planning based on advance rates relative to geological 

conditions. Anticipated progress rates have relied on 

engineering judgment, prior experience, reference 

projects, or limited statistical data. However, accurate 

models to predict advance rates in the early stages of 

tunnel projects are still lacking. A comprehensive study 

identifying the specific characteristics, causes, 

consequences, contributing factors, and predictive tools 

would enable early detection and mitigation of 

construction delays. 

Doloi et al. [1] used factor analysis and linear 

regression to identify causes of construction delays in 

India, based on surveys and interviews with construction 

specialists. They found that a lack of commitment, poor 

site management, and inadequate coordination were key 

contributors. Similarly, Marzouk and El-Rasas [2] used 

frequency and severity indices in Egypt, identifying 

financial issues as the main cause of delays. While these 

studies highlight contract management-related delays, 

they may not directly apply to excavation delays in 

NATM tunnel projects. 

A significant challenge in studying tunnel delays is 

limited access to reliable data. A comprehensive database 

spanning the period from 1980 to 2019 has been 

developed, encompassing information on hazards, tunnel 

dimensions, excavation techniques, and terrain types. 

Utilizing an edit distance search tool and fundamental 

statistical analysis, the study highlights the high variability 

associated with total delays in tunneling projects [3]. 

Building on this, Kongsung et al. (in press) [4]  examined 

four NATM tunnel projects in Japan and found that 
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discrepancies between preliminary and actual ground 

conditions during construction frequently required 

substantial design modifications. Their study identified 

initial displacement as a key indicator and developed 

predictive delay models using both univariate and 

multivariate regression analyses, achieving over 80% 

accuracy in estimating total delay periods.  

Although few studies have focused directly on 

NATM tunnel delays, there has been substantial work on 

predictive models for Tunnel Boring Machine (TBM) 

performance. Yagiz and Karahan [5] developed a highly 

accurate (𝑅2 ≈  0.80) TBM performance model using 

rock strength and discontinuity properties, leveraging 

Particle Swarm Optimization. Other studies have 

employed various hybrid AI techniques—such as 

Differential Evolution (DE) and Grey Wolf Optimizer 

(GWO)—to develop rate-of-penetration (ROP) models 

for tunnel boring machines (TBMs), achieving 

coefficients of determination (R²) of 0.80 or higher [6–8]. 

However, these models typically require substantial 

datasets, which are not readily available for NATM 

projects. 

The recent predictive Rate of Penetration (ROP) study 

[9] employed various variables, including Unconfined 

Compressive Strength (UCS), rock type, the distance 

between planes of weakness (DPW), and thrust force 

(TF), to perform descriptive statistical analysis and 

construct the ROP model. This was achieved by 

comparing robust machine learning techniques such as 

Gradient Boosting (GB), Extreme Gradient Boosting 

(XGBoost), Light Gradient Boosting Machine 

(LightGBM), Adaptive Boosting (AdaBoost), and 

CatBoost (which incorporates categorical features into 

GB). These models demonstrated R² values approaching 

unity, indicating excellent predictive performance. The 

study identified UCS as the most significant feature, as 

confirmed by the SHAP (SHapley Additive exPlanations) 

methodology. This artificial intelligence (AI) and 

machine learning (ML) techniques have demonstrated 

their utility in assisting tunnel engineers in developing 

accurate TBM performance models. However, a key 

limitation remains: the lack of substantial datasets for 

constructing similarly precise models for NATM 

tunneling. 

In civil engineering, AdaBoost has been successfully 

applied to various predictive modeling tasks. For instance, 

a concrete compressive strength prediction model 

achieved near-perfect R² values [10]. Simultaneously, 

the integrated simplicial homology global optimization 

method (SHGO), AdaBoost, and laboratory 

experiments were utilized to create a high-precision 

design model for the cement grouting industry [11]. 

Nguyen and Tran [12] also used AdaBoost and other tree-

based models to predict asphaltic concrete rutting depth, 

confirming the method's strong predictive capability. 

Meanwhile, Uaisova et al. [13] utilized an artificial neural 

network (ANN) to predict road surface deterioration, 

demonstrating high precision with an R² value close to 1. 

This study aims to bridge the gap in understanding the 

causes and consequences of construction delays in 

NATM tunnel projects and to refine predictive models by 

extending the dataset and analytical approach of 

Kongsung et al. Using data from five NATM tunnel 

projects in Japan, the study employs descriptive statistics, 

K-means clustering, regression analysis, and Adaptive 

Boosting (AdaBoost) to model advance rates, 

implemented using MATLAB (R2023b) and PyCharm. 

Hyperparameter tuning and SHAP (SHapley Additive 

exPlanations) analysis were also conducted to identify the 

most influential predictors of delay. 

The remainder of this paper is structured as follows. 

Section 2 highlights the significance of the study. Section 

3 presents descriptive statistics and explores various 

analytical approaches, including K-means clustering, 

regression analysis, and adaptive boosting. Section 4 

explains the key variables used in the analysis. Section 5 

outlines the study’s methodology. Section 6 discusses the 

results of the analysis. Finally, Section 7 provides the 

conclusions and implications of the findings. 

 

2. RESEARCH SIGNIFICANCE 

 

This study investigates the causes and consequences 

of construction delays in NATM tunnels and develops 

predictive delay models using K-means clustering, 

regression analysis, and AdaBoost. Data from five 

NATM tunnel projects in Japan were analyzed, with 

descriptive statistics and hyperparameter tuning to 

optimize model performance. Seven statistical metrics 

and SHAP analysis identified key delay predictors. This 

data-driven approach enhances understanding and 

prediction of tunnel construction delays, contributing to 

improved planning, risk management, and future research 

in tunnel infrastructure. 

 

3. DESCRIPTIVE STATISTICS, K-MEAN, 

REGRESSION, ADAPTIVE BOOSTING 

APPROACHES 

 This section describes the analytical approach 

employed in this study, incorporating descriptive 

statistics, K-means clustering, regression analysis, and 

adaptive boosting (AdaBoost) techniques. 

 3.1 Descriptive statistics 

 

Descriptive statistics were used to evaluate the 

fundamental characteristics of the dataset, including 

measures of central tendency (mean, median), 

dispersion (standard deviation, quartiles), and 

distribution shape (skewness, kurtosis). Visual 

representations, such as histograms, violin plots, and 

pair-plots, were employed to investigate data 

distribution patterns and detect potential outliers [14–

17]. Kernel density estimation (KDE) was applied to 

model nonparametric probability density functions for 

the dataset, providing insights into one-dimensional and 

multidimensional distribution structures [14]. Scatter 

plots and Pearson correlation coefficients were used to 
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identify potential multicollinearity issues among 

variables [17]. 

3.2 K-Means Clustering 

 

K-means clustering, an unsupervised learning 

technique, was utilized to segment numeric variables 

based on Euclidean distances [18]. The optimal 

number of clusters was determined using the Elbow 

method, which plots the number of clusters against 

the within-cluster sum of squares (WCSS) to identify 

the point of diminishing returns [19]. The centroids of 

the identified clusters were subsequently used as 

input features in regression models, providing a 

hybrid approach that leverages data structure to 

enhance prediction. 

3.3 Regression Analysis 

 

Regression models, including univariate and 

multivariate forms, were developed to examine the 

relationship between the advance rate (AR) and 

independent variables [20–22]. Both linear and 

nonlinear (power) regression models were tested to 

evaluate model performance using coefficient of 

determination (R²), adjusted R², root mean square error 

(RMSE), and p-values. Despite multicollinearity 

challenges observed in multivariate models, the optimal 

regression models balanced simplicity and predictive 

performance. Overarching mathematical expressions for 

multivariable linear and univariable power regressions 

can be articulated through the subsequent equations. 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑘𝑥𝑘 +  𝜀        (1) 

𝑦 = 𝛽0(𝑥)𝛽1 +  𝜀                                                    (2) 

3.4 Adaptive Boosting (AdaBoost) 

 

AdaBoost, an ensemble learning method, was 

implemented to improve predictive accuracy by 

combining multiple weak learners, specifically decision 

tree regressors, into a strong predictor [23–25]. 

Hyperparameter tuning was conducted using the 

RandomizedSearchCV function to optimize the number 

of weak learners, learning rates, and maximum tree depth 

[26–27]. Model performance was evaluated using seven 

statistical metrics: R², adjusted R², RMSE, mean absolute 

error (MAE), mean squared log error (MSLE), variance 

accounted for (VAF), and median absolute error 

(MedAE). 

Feature importance was assessed using relative 

importance measures and SHAP (SHapley Additive 

exPlanations) analysis, which provides a reliable 

interpretation of variable contributions to model outputs 

[28, 29]. The SHAP results consistently identified final 

displacement as the most influential predictor of AR, 

followed by initial displacement, with other variables 

playing lesser roles. 

The algorithm detail has been introduced as follows, 

proposed by Feng et al.: 

The dataset has been defined as vector: 

(Θ) = {(𝑋1, 𝑌1), (𝑋2, 𝑌2),…, (𝑋𝑚, 𝑌𝑚)}                  (3) 

Where 𝑋𝑖, 𝑌𝑖 (i = 1,…, m) represent the i-th sample in 

the training dataset, and m denotes the total number of 

samples. The subsequent stage involves using the training 

dataset to develop the weak learner G(X), after which the 

relative error (𝑒𝑖) for all samples may be assessed using 

the loss function L(∙). There are various loss functions, 

including linear, exponential, and squared loss functions.  

The conventional loss function (linear) is presented as 

follows: 

L(∙) = 
|𝑌𝑖−𝐺(𝑋𝑖)|

𝐸
                                                          (4) 

E represents the maximum of |𝑌𝑖 − 𝐺(𝑋𝑖)| . 

Notwithstanding the subpar performance of individual 

weak learners, Adaboost amalgamated a sequence of 

weak learners (𝐺𝑘 (X), k = 1,2,…,N) to construct a more 

robust learner H(X), as delineated in Equation (5). Note 

that the weak learner and the integration of weak learner 

have been performed with the adaptation of decision tree 

regression (DT), proposed by [24]. 

H(X) = 𝜈 ∑ (ln
1

𝛼𝑘

𝑁
𝑘=1 ) g(X)                                     (5) 

Where 𝛼𝑘 is the weight of weak learner 𝐺𝑘 (X); g(X) 

is the median of all the 𝛼𝑘𝐺𝑘  (X); 𝜈 𝜖  (0,1] is the 

regularization influence (Learning rate) to mitigate the 

overfitting. Adaboost addresses mismatched sampling by 

augmenting the weight, while the weight of corrected 

sampling is diminished in subsequent iterations. The 

overall error rate and the weight of the weak learner are 

established by Eqa. (6) and (7) while the update weight 

contribution 𝑤𝑘+1,𝑖 in the next training step can be 

examined by Eqa. (8). 

𝑒𝑘 = ∑ 𝑒𝑘𝑖
𝑚
𝑖=1                                                              (6) 

𝛼𝑘 = 
𝑒𝑘

1−𝑒𝑘
                                                                    (7) 

𝑤𝑘+1,𝑖 = 
𝑤𝑘,𝑖𝛼𝑘

1−𝑒𝑘𝑖

∑ 𝑤𝑘,𝑖𝛼𝑘
1−𝑒𝑘𝑖𝑚

𝑖=1

                                           (8) 

The Adaboost methodology can be delineated into 

four primary steps [10]: (1) Acquisition of experimental 

data; (2) Development of the robust learner; (3) 

Evaluation or validation of the learner; (4) 

Implementation of the learner in engineering problems. 

Figure 1 illustrates the operational procedure for 

Adaboost, with the input parameters including the 

number of weak learners (estimators), learning rate, and 

maximum tree depth.  

This study integrated approach, combining 

descriptive statistical analysis, clustering, regression, and 

adaptive boosting with hyperparameter tuning technique, 
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provides a comprehensive, data-driven framework for 

understanding the underlying factors contributing to 

delays in NATM tunnel projects. The insights gained 

from this analysis support the development of robust 

predictive models and contribute to improved planning 

and risk management strategies in tunnel engineering 

applications. 

4. VARIABLE EXPLANATIONS 

 

Variables in this study are classified into two primary 

types: dependent and independent. The dependent 

variable is the advance rate (AR), derived from tunnel 

face observation records. The independent variables 

consist of numeric and categorical variables, enumerated 

as follows:  

Numeric variables: 

• Initial displacement (Ini): Initial measured 

displacement on the first observation date. 

• Final displacement (Fi): Convergent or 

maximum measured displacement. 

• Displacement rate (Dir): Ratio between final 

displacement and duration. 

Categorical variables: 

• Rock mass strength (Rs): Classified in 

table 1. 

• Weathering/Alteration (Wa): Classified in 

table 2. 

• Spacing of discontinuity (Sdd): Classified in 

table 3. 

• Conditions of discontinuity (Cd): Classified 

in table 4. 

• Effect of discontinuity perpendicular to 

tunnel alignment (Edp): Classified in table 5. 

• Effect of discontinuity parallel to tunnel 

alignment (Edpa): Classified in table 6. 

• Mode of occurrence (Mo): Classified in 

table 7. 

• Patterns of crack (Pc): Classified in table 8. 

The numeric variables align with measurement programs 

detailed in the Standard Specifications for Tunneling 

(2016): Mountain Tunnels. In contrast, the categorical 

variables are aligned with the face observation records 

from the same standard. 

Table 1 Rock mass strength (Rs) category. 

Grade class Description 

1 Very hard (VH) 

2 Hard (H) 

3 Fair (F) 

4 Weak (W) 

5 Very Weak (VW) 

6 Extremely weak (EXW) 

Table 2 Weathering/Alteration (Wa) category. 

Grade class Description 

1 Fresh  

2 Weathered along discontinuities 

(WAD) 

3 Weathered to the rock mass core 

(WRC) 

4 Unconsolidated (US) 

Table 3 Spacing of discontinuity (Sdd) category. 

Grade class Description 

1 Very Widely, D > 1m. (VW) 

2 Widely, 1 m.≥ D > 0.50 m., (WI) 

3 Medium, 0.50 m.≥ D > 0.20 m., 

(ME) 

4 Closely, 0.20 m. ≥ D ≥ 0.05 m., (CL) 

5 Very Closely, 0.05 m. > D, (VCL) 

Table 4 Conditions of discontinuity (Cd) category. 

Grade class Description 

1 Close (CLO) 

2 Partially Open (POP) 

3 Mostly Open (MOP) 

4 Slightly Infilled Clay (SIC) 

5 Largely Infilled Clay (LIC) 

Table 5 Effect of discontinuity perpendicular to 

tunnel alignment (Edp) category. 

Grade class Description 

1 Very favorable (VF) 

2 Favorable (FAV) 

3 Normal (NOR) 

4 Unfavorable (UFAV) 

5 Fair (F) 

Table 6 Effect of discontinuity parallel to tunnel 

alignment (Edpa) category. 

Grade class Description 

1 Normal (NOR) 

2 Unfavorable (UFAV) 

3 Fair (F) 

Table 7 Mode of occurrence (Mo) category. 

 
Grade class Description 

1 Alternation (ALT) 

2 Unconformity (UCF) 

3 Intrusion (INT) 

4 Micro-folding (MIF) 

5 Fault (FAU) 

6 Others (OTH) 

Table 8 Patterns of crack (Pc) category. 

 

Grade class Description 

1 Random Squares (RAS) 

2 Columns (COL) 

3 Layers (LAY) 

4 Fragmented Unconsolidated (FRUS) 

5 Others (OTH) 
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Fig. 1 Schematic of Adaptive boost the in context of regression 

 

 

5. METHODOLOGY OF THIS STUDY 

Figure 2 presents the comprehensive methodological 

framework of this study. Initially, data were gathered from 

design and construction records of five tunnel projects in 

Japan, resulting in a dataset comprising 509 entries. 

Descriptive statistical analysis, as detailed in Section 3, was 

conducted using Seaborn [30] in PyCharm to assess data 

quality, distributions, and outliers. The causes and 

consequences of construction delays were identified through 

examination of design and construction documents. 

The dataset was partitioned into training and testing 

sets using the train-test split function from Scikit-learn. 

This process employed trial-and-error adjustments of 

test sizes (0.10–0.30) and pseudo-random seeds (0, 42, 

100) to ensure robust model validation. Two baseline 

(regression approach) and Adaptive Boost models were 

developed: conventional univariate and multivariate 

regressions (linear and power forms), hybrid K-means 

regression, and an AdaBoost model. Factor Analysis for 

Mixed Data (FAMD) [31] was applied in selected 

scenarios to reduce dimensionality. 

Hyperparameter optimization for the AdaBoost 

models was performed using RandomizedSearchCV, 

focusing on the number of weak learners, learning rate, 

and maximum tree depth. Final model performance was 

evaluated using seven statistical metrics: R², adjusted R², 

RMSE, MAE, MSLE, VAF, and MedAE. Feature 

importance and SHAP (SHapley Additive exPlanations) 

analyses were employed to interpret model outputs and 

identify the most influential variables. 

This integrated methodological approach—

combining descriptive statistics, hybrid clustering, 

regression analysis, and advanced machine learning— 

 

facilitates a comprehensive and data-driven 

understanding of the factors contributing to construction 

delays in NATM tunnel projects. The findings provide a 

foundation for developing predictive models to support 

improved planning, risk management, and decision-

making in future infrastructure projects. 

6. RESULTS OF ANALYSIS 

6.1 Descriptive statistics 

Table 9 summarizes the dataset for the tunnel projects 

analyzed in this study. The tunnel diameters range from 

10 m to 14.65 m, with total project delays spanning from 

40 to 94 days for projects A to D. Tunnel Project E 

experienced a substantial delay of approximately 11 years 

due to significant landslide issues. 

6.1.1 Quantitative independent variables 

The distribution of numeric variables (AR, Ini, Fi, 

Dir) is illustrated in the 4x4 pair plot in Figure 3. The 

descriptive statistics reveal that the standard deviation 

(SD) along the diagonal for these variables—except 

AR—equals or exceeds their respective means, indicating 

considerable variability. In particular, the SD for AR is 

approximately 50% of the mean. Skewness and kurtosis 

metrics indicate that Ini, Fi, and Dir exhibit moderate to 

strong positive skewness (right-skewed distributions), 

whereas AR shows a platykurtic distribution (negative 

excess kurtosis), suggesting light tails and fewer outliers. 

The excess kurtosis (Kurtosis-3.00) index for Ini, Fi, and 

Dir exhibits significantly positive values, indicating a 

leptokurtic distribution. 

The lower diagonal of Figure 3 presents scatter plots 

between AR and independent variables, revealing mild to 
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Fig. 2 Flowchart depicting the comprehensive methodology of the present study. 

 

 

moderate negative Pearson correlation coefficients. Some 

points appear as potential outliers. Pearson correlations 

among independent variables, notably Ini and Dir, 

suggest moderate to strong positive relationships, 

indicating possible multicollinearity. The upper diagonal 

of Figure 3 (KDE contours) confirms the right-skewed 

nature of the data distributions, consistent with the 

skewness results. The densest zones for AR in relation to 

Ini, Fi, and Dir are approximately 1.50–2.50 m/day, 

corresponding to 0–10 for Ini, 0–30 for Fi, and 0–5 for  

Dir. The Fi-Dir plot displays a bimodal distribution, 

as does the Ini-Fi plot. 

6.1.2 Categorical independent variables 

Figure 4 displays violin plots correlating categorical 

variables with AR. In Figure 4a, the “H” categorization 

shows the highest median AR of ~3.50 m/day, though 

with wide variability and many outliers. The “F” and “W” 

categories have similar medians, while “VW” shows 

broader variability. In the “EXW” group, AR is lower 

with a narrow distribution and few outliers. There are 

extremely few points of a highly challenging 

category, which is why there is no trend in the violin 

plot. Figure 4b shows similar patterns in Wa categories,  
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with “WRC” and “WAD” showing comparable median 

AR values (~2.20 m/day), though “WAD” has broader 

dispersion. The “US” category displays lower AR with 

smaller distributions while the “Fresh” category shares the 

same issue and rationale as the very hard rock mass 

strength category. 

Sdd violin plots (Figure 4c) reveal that the “ME” 

category has the highest AR (~3 m/day), with a broad 

distribution and numerous outliers due to varying rock 

types and conditions. The “CL” and “VCL” categories 

have similar median AR values (~1.80 m/day), but “CL” 

shows more outliers. Cd violin plots (Figure 4d) indicate 

that “MOP” has the highest AR and widest dispersion, 

followed by “POP”. The geological explanation for these 

results is unclear, as factors like rock type and strata may 

play roles. “SIC” and “LIC” show lower AR with more 

outliers, especially “SIC,” which has a bimodal 

distribution. 

Edp plots (Figure 4e) show “F” with the highest 

AR (~2.40 m/day) and non-normal distribution, 

followed by “VF” with wide dispersion and extreme 

outliers. Other categories show similar AR medians 

and distribution shapes. The “Edpa” plot (Figure 4f) 

shows that “UFAV” has the highest AR (~2.10 

m/day), while the “F” and “NOR” categories have 

similar, lower AR. Distributions approximate normal 

shapes but include significant outliers. 

Mo plot (Figure 4g) reveals that “OTH” exhibits the 

highest median advance rate (AR) at approximately 2.60 

m/day, characterized by a non-normal distribution with two 

distinct peaks. This is followed by “ALT”, “INT”, and 

“MIF”, each with median ARs around 2.00 m/day. Among 

these, “INT” shows a more skewed distribution with a 

higher occurrence of outliers. In contrast, “UCF” and “FAU” 

are identified as critical modes with significantly lower ARs, 

narrower non-normal distributions, and moderate levels of 

outliers. Pc (Figure 4h) data is limited. The “OTH” category 

shows the highest AR (~3.30 m/day) with wide distribution 

and significant outliers. “FRUS” and “LAY” categories 

show similar abnormal distributions, with “LAY” having 

more outliers while the “COL” and “RAS” categories 

display the same issue as “VH” category of rock mass 

variable.  

Overall, it is evident that uncertainties arising from 

variations in rock types, strata, and geological structures 

can lead to geological inconsistencies and significant 

variability. The dataset reflects this through substantial 

irregularities, including high variability, skewed 

distributions, and multicollinearity. These factors may 

adversely affect model fitting and reduce prediction 

accuracy in the subsequent analysis. 

6.2 Identification of causes and effects of 

construction delay 

The identification of construction delay causes and 

effects was primarily based on interviews with tunnel 

design engineers, supplemented by a detailed review of 

design and construction documents (Kongsung et al., in 

press) [4]. In tunnel project C, for example, delays were 

attributed to inconsistencies between the actual ground 

conditions and those classified during the design phase. 

The rock face was affected by multiple geological factors, 

including hydrothermal alteration and intersecting faults 

at approximately 45°, creating a complex structure prone 

to dislodgment. Although the design classification, based 

on drilling core results, identified the rock as tuff with high 

RQD and assigned it to class CII, field conditions during 

excavation revealed substantial fissures, prompting 

reclassification to class D for safety reasons. This 

reclassification led to significant additional labor and 

extended timelines for tunnel support installations. 

In tunnel project E, characterized by extremely weak 

ground conditions and a high risk of landslides, the 

identification of delays was more challenging. Three 

principal causes of delays were identified: 

1) The presence of deep, extremely weak argillaceous 

sandstone layers along bedding planes, compounded by 

low-angle reversal faults, extensive rock joints, and other 

discontinuities that created a high likelihood of landslides. 

2) Inadequate precision in the initial geological survey 

programs, which failed to detect these problematic 

conditions, leading to major discrepancies between 

design-stage classifications (DI to CII) and the actual in-

situ conditions (DII and E classes). 

3) The need for comprehensive monitoring programs, 

the establishment of specialized technical committees, 

and the implementation of extensive temporary and  

 

Table 9 Summary of tunnel database classified by tunnel project. 

 

Tunnel project lists Tunnel width (m.) Total Delay (day) Ground type 

A 14.65 93.42 Mudstone 

B 10.14 87.80 Granite 

C 12.20 73.82 Mylonite 

D 14.01 40.40 

E 14.64 4,130.25 Mixed sandstone and shale 
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Fig. 3 Pairwise correlation, basic statistics, and distribution matrix of AR, Ini, Fi, and Dir variables.

permanent mitigation measures. These processes 

required significant time to ensure safety, resulting in 

substantial project delays. 

 Overall, the findings highlight the discrepancies 

between design-stage classifications and actual ground 

conditions, especially in complex geological settings, 

it can lead to extensive delays. Inadequate site 

investigations, the need for continual safety 

verifications, and the development of revised support 

designs further compounded these delays. 

6.3 Conventional Regression, Hybrid Regression 

with K-means and Adaptive Boost 

6.3.1 Dataset splitting  

 To mitigate data leakage, the dataset was partitioned 

into training and testing subsets. Following the 

methodology outlined in Section 5, Adaptive Boosting 

was employed to optimize data segmentation for model 

training. A trial-and-error approach was integrated with 

cross-validation to tune hyperparameters, including the 

maximum tree depth (1–10), the number of weak learners 

(500–2,000), and the learning rate (0.001–0.01), using the 

Random-Search method. These parameters are elaborated 

in subsequent sections. 

 Test sizes were systematically evaluated in 

increments of 0.05, and the optimal test size was 

determined based on seven performance metrics. For 

most scenarios, a test size of 0.20 and a pseudo-random 

parameter of 0 were identified as optimal, except for the 

full dataset without FAMD, where the test size was 0.25 

and a pseudo-random parameter of 42 was used. 

Consequently, the final datasets comprised 381 to 407 

training samples and 128 to 102 testing samples. These 

datasets were used to develop curve-fitting models 

employing both conventional and hybrid regression 

techniques. This structured partitioning ensures robust 

model validation while minimizing data leakage. 

6.3.2 Conventional and hybrid regressions 

 A total of fifteen scenarios for conventional univariate 

and multivariate regression analyses were explored using 

independent variables Ini, Fi, Dir, Rs, and Wa, with 509 

data points. Univariate regressions were evaluated using 

linear and power models, while multivariate regressions 

employed linear functions. Three statistical metrics—R²,  
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Fig. 4 Violin Plot Comparison of Advance Rate Across Different Geological and Geotechnical Categories: (a) 

Rock mass strength category; (b) Weathering/alteration category; (c) Spacing of discontinuity category; (d) 

Conditions of discontinuity category; (e) Effect of discontinuity perpendicular to tunnel axis category; (f) Effect 

of discontinuity parallel to tunnel axis category; (g) Mode of occurrence category; (h) Patterns of crack category.

adjusted R², and RMSE—alongside p-values, were used to 

evaluate model performance. Criteria for model 

acceptability included R² and adjusted R² ≥ 0.28, RMSE ≤ 

0.751, and p-value ≤ 0.05. While all models achieved 

significant p-values, R² and adjusted R² remained below. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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The author enumerated the regression equations according 

to the subsequent criteria. R² ≥ 0.28, and RMSE ≤ 0.751; 

the equations are provided below: 

 

AR = 2.263 - 0.00693(Ini) - 0.01(Fi) +0.40(EXW) 

+0.1196(W)+0.172(F)+1.356(H)+0.963(VH), 𝑹𝟐 = 

0.285, 𝑹𝟐(adj.) = 0.272, and RMSE= 0.751                (10) 

 AR = 2.232 - 0.00972(Ini) - 0.01(Fi) +0.012(DIR) 

+0.379(EXW)+0.132(W)+0.192(F)+1.382(H)+0.98(VH), 

𝑹𝟐 = 0.285, 𝑹𝟐(adj.) = 0.271, and RMSE= 0.751       (11) 

 AR = 2.237- 0.00636 (Ini) - 0.009(Fi) +0.006(DIR) 

+0.315(EXW)+0.137(W)+0.35 (F)+1.88(H)+0.977(VH)-

0.178(US)-0.509(WAD), 𝑹𝟐 = 0.304, 𝑹𝟐(adj.) = 0.286, 

and RMSE= 0.743                                                         (12) 

 Although Equation (11) and (12) achieved slightly 

higher R² and adjusted R², it included six and eight 

additional variables compared to Equation (9), with 

negligible improvement in RMSE. Therefore, from a 

statistical standpoint, Equation (9) was deemed the most 

suitable for standard regression analysis. Validation of 

these baseline models using testing datasets (as described 

in Section 6.3.1) is discussed in subsequent sections. 

 For the hybrid regression approach, K-means 

clustering was applied to numeric variables (Ini, Fi, Dir), 

classifying the dataset into 10 clusters based on the Elbow 

method. The cluster centers were used as inputs for 

univariate and multivariate regressions. Results 

demonstrated that univariate power regression models 

outperformed linear and multivariate regressions, with R² 

values marginally below 0.56. In contrast, multivariate 

models showed only minor improvements and often had 

p-values exceeding 0.05, reflecting strong 

multicollinearity. The optimal fit for this methodology is 

seen in the subsequent equations: 

 AR = 3.662 (Ini)−𝟎.𝟑𝟔𝟏 , 𝑹𝟐  = 0.539, 𝑹𝟐  (adj.) 

=0.481, RMSE= 0.606                                                  (13) 

 AR = 5.263 (Fi)−𝟎.𝟑, 𝑹𝟐 = 0.558, 𝑹𝟐 (adj.) =0.503, 

RMSE= 0.593                                                               (14) 

 AR = 3.123 (Dir)−𝟎.𝟒𝟐𝟑 , 𝑹𝟐  = 0.523, 𝑹𝟐  (adj.) 

=0.463, RMSE= 0.616                                                  (15) 

 Among these, Equation (14) was identified as the best 

fit for the hybrid regression approach, exhibiting the 

highest R² and lowest RMSE. These results highlight the 

superior performance of univariate power regressions 

within the hybrid framework and provide robust baseline 

models for comparative analysis with Adaptive Boosting 

in subsequent sections. 

6.3.3 Adaptive boost  

 The Adaptive Boosting (AdaBoost) analysis 

encompassed five scenarios: Fi alone, displacements, 

displacements-Rs-Wa, all variables, and all variables with 

Factor Analysis of Mixed Data (FAMD). FAMD was 

employed to reduce dataset dimensionality, yielding 25 

principal components and accounting for a 3% variance 

loss. Hyperparameter optimization was conducted using a 

trial-and-error approach integrated with 10-fold cross-

validation and RandomizedSearchCV. The final 

configurations are summarized in Table 10, showing a 

consistent maximum tree depth of three across all scenarios, 

while the number of weak learners ranged from 500 to 

2,000 and learning rates from 0.001 to 0.01. 

 Model fitting was assessed using seven performance 

metrics (Table 11). Figure 5 depicts the relationship 

between measured and predicted AR for all AdaBoost 

cases. Among these, the Fi and displacements-Rs-Wa 

scenarios achieved the highest R² values (~0.43). Models 

incorporating all variables—both with and without 

FAMD—exhibited marginal improvements in error 

terms but suffered from overfitting and multicollinearity, 

Table 10 summary results of hyperparameter tuning for all adaptive boost cases. 

Lists of control 

parameter 

Adaptive boost cases analysis 

Fi Displacements Displacements-Rs-Wa All variables All variables with FAMD 

Maximum depth of 

tree 

3 3 3 3 3 

Maximum number of 

weak learners 

1,982 1,982 500 2,000 1,982 

Learning rate 0.001999 0.001999 0.001 0.01 0.001999 

Table 11 summary results of hyperparameter tuning for all adaptive boost cases. 

Lists of evaluated 

metrics 

Adaptive boost cases analysis 

Fi Displacements Displacements-Rs-Wa All variables All variables with FAMD 

𝑹𝟐 0.426 0.385 0.420 0.438 0.374 

𝑹𝟐 (adj.) 0.420 0.366 0.335 0.170 0.158 

MSE 0.547 0.586 0.552 0.407 0.505 

MAE 0.569 0.594 0.571 0.465 0.513 

MSLE 0.0695 0.0690 0.0659 0.0464 0.0572 

MedAE 0.427 0.424 0.445 0.354 0.327 

VAF (%) 42.82 38.49 42.04 44.74 37.85 
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Fig. 5 Predicted vs measured of AR scatter plots with R² and MSE for Adaptive boost models: (a) Fi case; (b) 

Displacements case; (c) Displacements-Rs-Wa case; (d) All variable cases without FAMD; (e) All variable cases with 

FAMD. 

rendering them less robust. The impact of FAMD on 

overall model performance was negligible, as the 

reduction in variable count did not substantially affect 

predictive accuracy. 

 Comparative analysis of optimal models indicates that 

the Fi and displacements–Rs–Wa scenarios consistently 

yielded superior performance compared to other 

combinations. However, the inclusion of additional 

variables in the latter scenario resulted in only marginal 

improvements in correlation and minimal reduction in 

fitting error (prone to overfitting) relative to the Fi-only 

model. This indicates that the additional variables do not 

significantly enhance the model's predictive capability. 

Therefore, the Fi scenario was identified as the optimal 

predictor configuration within the AdaBoost models. 

6.4 Assessment and validation of all predictive 

models 

 The evaluation of baseline and AdaBoost models 

was based on the correlation between predicted and 

(e) 

(d) (c) 

(a) (b) 
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measured AR, depicted in Figures 6 and 7. Adaptive 

Boost models generally outperformed conventional and 

hybrid baseline models, except for the Fi scenario with the 

baseline power regression, which exhibited comparable 

performance. This is likely due to multicollinearity 

challenges inherent in baseline models. 

 Despite the overall robustness of AdaBoost 

models, the correlation between observed and 

predicted AR values remained moderate. This can be 

attributed to dataset irregularities and several outliers 

as outlined in the descriptive statistics (Section 6.1). 

These issues highlight known limitations of adaptive 

boosting, particularly its sensitivity to noisy data, 

outliers, and class imbalance, as well as its tendency to 

overfit [32]. Additionally, the dataset exhibited 

fluctuations and instances of inaccurate sampling, for 

example, cases where similar independent variable 

values corresponded to medium to large differences in 

the dependent variable (AR). Such inconsistencies may 

have triggered multiple augmentation and other 

processes within the AdaBoost algorithm, ultimately 

reducing the accuracy of the model's fit. 

 The assessment also extended to overall delay 

periods, revealing that discrepancies in spatial stationing 

of predicted and measured AR can produce identical total 

delay sums despite underlying misalignments. Thus, 

correlation-based validation between measured and 

predicted AR is more reliable than total delay-based 

comparisons. In summary, Fi emerged as the most 

influential factor in predicting AR, with AdaBoost 

offering the highest overall predictive performance while 

recognizing its limitations in the presence of data noise 

and multicollinearity. 

6.5 Investigation of main contributed variables of 

Adaptive boosting 

 

 The relative importance of variables in Adaptive 

Boosting models was assessed, excluding the Fi scenario. 

Figure 8 presents the relative importance of variables for the 

displacements-Rs-Wa scenario. Fi exhibited the highest 

weight (~0.70), followed by Ini (~0.15) and Dir (~0.10). 

Other variables had weights below 0.05, reflecting minor 

contributions. Similar patterns were observed in other 

Adaptive Boosting scenarios, albeit with slight variations in 

variable weights. These findings corroborate the 

observations from Section 6.3.3, where the addition of 

variables did not significantly improve model fitting, 

confirming Fi as the most influential predictor in 

construction delay models. 

 Additionally, SHAP (SHapley Additive exPlanations), 

based on game theory, was employed to provide a more 

detailed interpretation of the “black box” Adaptive 

Boosting models. Figure 9a presents a bar plot of the mean 

SHAP value contributions for each variable, revealing that 

the three primary contributing features are consistent with 

the results of the previous feature importance analysis. 

Notably, Fi demonstrates the highest contribution (~0.44), 

followed by Ini (~0.05), indicating that Fi is the dominant 

influencing factor in the model. However, the 

interpretability of the Adaptive Boosting model should be 

carefully examined and validated through engineering 

judgment to ensure the robustness and practical relevance 

of its predictions. 

 Figure 9b presents a comprehensive bee swarm plot for 

the displacements–Rs–Wa scenario, further confirming 

that Fi is the third most influential predictor of AR. The 

SHAP values on the x-axis indicate both the magnitude and 

direction of each variable’s contribution to the predicted 

AR, with negative values suggesting a reduction in AR and 

positive values indicating an increase. The color gradient on 

the y-axis represents the feature value distribution, where 

red denotes higher values and blue indicates lower values. 

 For Fi, higher feature values are generally associated with 

negative SHAP values—implying a reduction in predicted  

 

Fig. 6 Comparison of R-square values between measured and predicted AR evaluation for conventional baseline models and 

adaptive boost models. 
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Fig. 7 Comparison of R-square values between measured and predicted AR evaluation for hybrid baseline models and 

adaptive boost models. 

AR—whereas lower Fi values tend to correspond with an 

increase in AR. In contrast, Ini exhibits a predominantly 

positive influence on AR, although some lower values of 

Ini contribute insignificantly or inconsistently. These 

patterns suggest that Fi is a more reliable and interpretable 

predictor from an engineering standpoint, while the role of 

Ini remains less conclusive. 

 The lower variable Dir exhibits a negative effect on 

AR, which contrasts with the positive influence of Fi and 

aligns with practical engineering expectations. Some data 

points from the “H” and “F” categories of Rs exhibit 

atypical one-sided effects—either predominantly positive 

or negative. However, the underlying pattern remains 

unclear. In contrast, the overall contribution of geological 

features to AR remains limited and largely insignificant, 

as shown in Figure 9b. This scenario presents challenges 

for validation through engineering judgment, as the 

observed patterns are still ambiguous and lack clear 

interpretability. 

 In conclusion, both the relative importance and 

SHAP analyses consistently identify Fi as the dominant 

predictor in the Adaptive Boosting models for tunnel 

excavation delays, reinforcing its significance as a 

key variable in predictive delay modeling. Moreover, 

this finding aligns with the results presented in 

Section 6.3.3, further validating that the Fi-based 

Adaptive Boosting model provides the most reliable 

and engineering-consistent predictions. 

7. CONCLUSION 

 This study comprehensively investigated the causes, 

consequences, and predictive modeling of construction 

delays in NATM tunnel projects in Japan. A robust dataset 

comprising 509 data points—including displacement 

geological factors, and the advance rate (AR) was analyzed. 

Statistical analysis revealed significant heterogeneity and 

outlier presence, suggesting complex ground conditions 

that complicate predictive efforts.

 

 

Fig. 8 Analysis of relative variable relevance for displacements in Ra-Wa scenarios (Adaboost). 
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Fig. 9 Schematics developed from the SHAP methodology of displacements in Ra-Wa cases employing Adaboost. (a) Bar 

plot; (b) Bee swarm plot

 Conventional and hybrid regression models were 

developed as baseline predictors for AR, while Adaptive 

Boosting was employed for enhanced predictive 

performance. Adaptive Boosting consistently 

outperformed other models, achieving higher R² values 

and lower error metrics, though it remains sensitive to 

outliers, variances and imbalanced datasets. Feature 

importance and SHAP analyses identified final 

displacement (Fi) as the most influential variable, 

underscoring its critical role in tunnel excavation 

performance. 

The principal causes of construction delays were 

found to be discrepancies between actual and design stage 

ground classifications, especially in weak ground 

conditions complicated by complex geology and 

landslide hazards. In such cases, extensive mitigation 

efforts, including supplementary investigations and 

continuous monitoring, are necessary but contribute to 

extended project timelines. 

 This study acknowledges key limitations and suggests 

directions for practical implementation and future 

research. The variability in rock formations and mineral 

compositions can result in differing ground behaviors, 

which constrains the direct generalizability of the 

developed models. However, to address uncertainties 

related to geological conditions, practitioner experience, 

and standard practices, the proposed methodology should 

be re-applied to diverse and site-specific datasets. The 

application of machine learning in tunneling contexts 

must be conducted with caution—models should be 

interpreted and validated in close collaboration with 

tunnel or mining engineers to ensure practical reliability. 

Furthermore, enhancing geological investigations during 

the early stages of a project and incorporating final 

displacement considerations into standard tunnel design 

guidelines may substantially reduce associated risks. 

 Finally, the study outlines several directions for future 

research. Future applications should consider utilizing 

exclusive or expanded datasets or adapt models to account 

for local geological variations. Additionally, upcoming 

studies should focus on enhancing predictive accuracy by 

exploring advanced machine learning boosting 

techniques, such as Gradient Boosting or XGBoost, while 

also addressing issues related to dataset imbalances and 

the effects of outliers. 
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