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ABSTRACT: The finite element method (FEM) based on the Galerkin approach is an effective technique for
modeling groundwater flow and analyzing seepage, particularly in complex and heterogeneous geological
environments. It allows for accurate simulation of groundwater levels, seepage velocity, and pore water pressure,
supporting reliable predictions essential for water resource and geotechnical engineering. This study applies the
Galerkin-based FEM to evaluate groundwater behavior in Kon Tum City, Vietnam. A computational program
developed by the authors using the Fortran language was employed to simulate various groundwater extraction
scenarios. Using field data, the model assessed the storage capacity, predicted changes in groundwater levels, and
calculated seepage velocity under different pumping conditions. The method’s ability to handle complex boundary
conditions contributed to the precision of the simulations. The results demonstrate the FEM’s effectiveness in
groundwater modeling and its practical applicability in managing water resources and planning sustainable
groundwater extraction strategies.

Keywords: Galerkin Finite Element Method, Two-Dimensional Horizontal Seepage Flow, Groundwater
Extraction

1. INTRODUCTION domain geometries, represent heterogeneous and
anisotropic conditions, and accommodate intricate
There are two methods in groundwater modeling boundary conditions [5]. The study of groundwater
and seepage analysis, namely the traditional has been investigated by researchers using various
experimental method and the numerical method. methods [6-17].
Traditional approaches in groundwater modeling The Galerkin FEM is particularly well-suited for
and seepage analysis [1]. (i) Classical analytical complex seepage and groundwater flow problems
methods to groundwater flow problems are based on due to its ability to implement adaptive meshing,
Darcy’s law and the continuity equation. These thereby enhancing accuracy in critical zones such as
methods are well-suited for simple geometries and seepage faces, drains, or impermeable barriers. It
homogeneous, isotropic media. Although they yield supports heterogeneous and anisotropic media
exact solutions, their applicability is limited by through element-wise assignment of material
simplifying assumptions such as homogeneity of the properties. The method also offers high-order
porous medium, steady-state or linearized flow accuracy and the flexibility to handle irregular
conditions and geometrically regular boundaries. (ii) geometries—capabilities that are often limited in
Traditional  field investigations rely on finite difference approaches. Galerkin FEM
measurements of groundwater levels from represents a robust and comprehensive modeling
observation wells and piezometers. However, they tool [18-24].
are generally unsuitable for heterogeneous or Surface water from rivers in Kon Tum City -
anisotropic conditions. Viet Nam is heavily impacted by overexploitation
Numerical Methods in Groundwater Flow and for agriculture, industry, and domestic use,
Seepage modeling: (i) The finite difference method combined with climate change causing prolonged
(FDM) is widely employed to simulate flow in both droughts and reduced river flows. Groundwater
saturated and unsaturated porous media [2-4]. It serves as a sustainable alternative, providing a more
solves the governing differential equations by stable water supply during dry seasons. However,
discretizing them over a rectangular grid, making it groundwater extraction must be strictly managed to
suitable for modeling large-scale aquifer systems. prevent depletion of aquifers, land subsidence...
However, FDM is limited in its ability to handle Previous studies on groundwater reserves and
complex geometries and irregular boundaries, and it exploitation potential in Kon Tum City have
lacks flexibility in mesh refinement. (ii) The FEM primarily relied on exploratory drilling methods,
has become a powerful tool in groundwater utilizing data from water pumping experiments
modeling due to its capacity to manage complex conducted at boreholes. No scientific research on
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this topic has yet employed modern numerical
methods, such as the finite difference method or the
finite element method. In this paper, we determine
the storage capacity, changes in groundwater levels,
and seepage velocity during groundwater extraction
in Kon Tum City, Vietnam. The authors have
developed a computational program based on the
Galerkin FEM to solve the unsteady seepage
equation. The model’s computational results have
predicted changes in groundwater levels and seepage
velocity under various water resource exploitation
scenarios.

2. RESEARCH SIGNIFICANCE

This study holds significant value in advancing
the understanding and management of groundwater
resources in Kon Tum City, Vietnam. By applying
the Galerkin FEM to model two-dimensional
unsteady horizontal seepage flow, the research
provides a robust computational framework for
predicting groundwater level fluctuations and
seepage velocities under various extraction
scenarios. This approach overcomes the limitations
of traditional analytical and field-based methods,
offering a more precise and flexible tool for
geotechnical engineering and water resource
management. The findings contribute critical
insights into sustainable groundwater exploitation
and provide a scientific foundation for urban
planning and resource management in water-scarce
regions of Vietnam.

3. THEORY OF COMPUTATION

The seepage flow in soil is calculated based on
the seepage equation, which is established using
Darcy's law and the continuity equation for seepage
flow. In conditions where the geological distribution
with depth wvaries little, the two-dimensional
horizontal (2DH) seepage equation can be applied
for calculations.

3.1. The Equation of Unsteady Two-Dimensional
Horizontal Flow:

The equation of unsteady two-dimensional

horizontal flow is  written as  follows:
0 oh 0 oh Oh (1
—| K, — |[+=—| K,— =85, —
8x[ x@x]+6’y£ yay}“q S ot

Where g : the storativity (dimensionless); #: time

(sec); h: Hydraulic head (m); K: Hydraulic
conductivity (m/s), typically assumed to be constant
in the medium; x,y: spatial coordinates in the
horizontal plane; g: Flow rate at the source point; ¢
has a negative value (-) if the flow is extracted from
the domain and (+) if the flow is added to the
domain.
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3.2. Discretization in Space

In space, the Galerkin finite element method is
applied; the interpolation function is chosen as
follows:

W =>"N, )
i=l

h@: The approximate value of the hydraulic head in
element A“; N;: The shape function at node i in
element A@; n: The number of nodes in element 4@;
hi: The unknown value of the hydraulic head at node
i of element 4.

Applying the Galerkin finite element method
established in weak form, using integration by parts
with second-order derivatives; assuming that at each
element 4@, the permeability coefficients in the x
and y directions remain constant, we have:

27() 2 7€) AO)
Rl.(e) — _J'J' Nim |:K,ie) aahl +Krf,“) aahZ +q© _S,f” Oh :|
X 4

) ot
dxdy =0
3)
27 (e) 27 (e)
—” N@| K@ o h7 + K@ o +q' |dxdy
W LT e G

e 82 };@)
+J’j N©s§© o dxdy =0
Integration by parts (Green's formula). Consider the
boundary segment dI” of a curve enclosing a two-
dimensional region Q= 4@, in the case of a closed

curve, we have:
jjﬂqﬁ%’c’dxdy = —jjﬂ%wdxdy+§r¢y/nxdr
Ijﬁgzﬁ%’jdxdy = —J‘L%wdxdy+§r¢wn},dl“

Substituting into equation 3, we obtain equation 4.

(@ Ap(e) @  Ap(e)
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[, m: Cosines of the direction of the outward normal
vector at the boundary; K Kif) : Permeability

C( e)

coefficients in the x and y directions, respectively, of
element A@; A©@: Area of element e. Based on the
above results, we define the algebraic sum of the first
two terms of equation 4 as:

(e) (e) (e)
R h 5 9°
@) (e) (e)
Ry b 1R % (5)
:‘:K(e)} R S .
2© ol e g
n n n

The third term is determined as follows:
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It can be rewritten in matrix form as follows:

Oh,
R@ ot @)
i an,
R{® [ ] ot
—[c@]d.
R,(f) Oh,,
C ot

[C(e)}: capacity element matrix, with:

(e)
Nl

[CW’J:H‘ [S][N©....N ey

A(L’) .
N(E)
In this paper, we use the lumped element formulation
to calculate [C“]. For a triangular element with three
vertices at nodes i, j, and k, we obtain the following

®)

result:
1., .
N =3 i ®
0 ifi=j
We have:
100 (10)
(©) 4
[C@}:L 4 {0 1 0}
3
001
3.3. The Element Matrix Equation:
[KK]{qq}:{BB} (11
Where: {616]} _ (hln+1,h2n+1’h3n+1 )T (12)

k"' The hydraulic head height at node i at time step
n+1. [ KK } The element stiffness matrix of size 3x3.

{ BB} : A vector with 3 components:

{(BB) =(BB,,BB,,BB,)' (13)

3.4. Discretization in time Using Weighted Finite
Difference

For the entire computational domain, we have the
overall capacitance matrix with p nodes and m
elements:

[C]- EZZ[C(E)}

Assembling the equations written for all elements of
the entire computational domain, we obtain:

(14)
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o,
ot hl (15)
(€1 K] =+
oh, ,
ot
The two vectors {#*} and {h} are defined as follows:
ohy
ot h (16)
CRINCE
oh,, h,
ot
Equation 15 can be rewritten as:
[C{r'}+[K]{n}={F}+{G} (17
Applying time difference:
Oh _ h(t+At)—h(t) (18)

ot At
W@ =h(0+e -0 0 =he)+(z— 1A= (19)

The variable ¢ is defined as follows:
JCED)

At
Where: w is the time weight
We have reversed the positions of equations 19 and
20 to be more logical

(20)

h(e) =(1-w)h(t)+ wh(t + At) 21
Extension for vectors &, F, G:

{nf=A-o){n}, +oihf, @2)
{Fl=(-o){F} +o{F} 23)
{G}=0-»){G}, +»{G},_,, (24)

Substitute the above formulas into equation 17 we
have:

([Cl+ewar K]){n},,,, =
([C]—(l—w)At[K] ){h}t +
At((—w){F}, +w{F}

(25)

t+At ) +

At((1-){G}, + 0{G}

t+At)
The value of {h} at the initial time ¢ = ¢, is: { h}

lo
prescribed value. Using equation 25 to solve for the
value of {h} at the end of the first time step {/} w0+
Then, set: {h};= {h}w+4. This process is repeated for
subsequent time steps. Depending on the choice of
the value @, we have: Choosing @ = 0 (forward
difference), equation 25 becomes:
[CUAY, a =([Cl-A [ K] )i, (26)
+AL{F}, +At{G},

Choosing w = > (central difference), equation 25
becomes:

(T4 &7 Jiah,, o, =([€1-500K i,

F S )+ 59, )

Choosing @ =1 (backward difference), equation

@7
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25 gives us:

([CT+a[K)in),,, =[Cln), +ar(Fy,,, (C8)
+At{G}

1+At

3.5. Pairing the Elements

Assume we are considering a seepage problem
with pressure in a domain (), where the domain is
divided into multiple triangular elements. At each
node, there are s degrees of freedom (number of
unknowns at the node). Here, s = 1 represents the
seepage water column. Each triangular element has
3 nodes (r = 3), so the number of degrees of freedom
for each element is r X s =3 x 1 = 3. Each triangular
element is numbered at its nodes (i, j, k) in a
conventional direction (counterclockwise), with
node i conventionally defined as the leftmost and
lowest node (see Fig 1). For any arbitrary element #e,
we have the element matrix [K]. as follows:

k

Fig 1. Node numbering convention and element
matrix

K; K; K;
[KL =|K; K, Kj

Global matrix :

[x]=33[K]

Similarly for the global matrices of other element
matrices. In the global matrix, the non-zero elements
do not have a diagonal form (also known as a banded
form). To save memory and computational time,
only the non-zero elements are stored, and the
algorithm only performs calculations with these non-
zero elements.

3.6. Global Matrix Equation

[K]{a}={B) (29)
Where: [K] The global matrix; {gq} The global
unknown vector.

3.7. Assigning Boundary Conditions

After obtaining the system matrix in banded
form, to simplify programming, the size of the global
matrix for the problem is fixed regardless of the
number of boundary conditions. The equation takes
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the form :

[K1.{g} = {B} (30)
If the i = r unknown is known to be «, it means q, =
a;, then the coefficients of the system matrix are
modified as follows :

Krj =0 if ];él”
K =0 if i#r (31)
Ky=1
The right-hand side vector of the system will be :
B = k.
B, — ko
(32)
1=,
Bn knr'ai

Then eliminate row » and column 7 from the system
of matrix equations.

3.8. Linear Algebraic Equations

The system of linear algebraic equations has the

form :

Riasd

Equation 33 is in matrix form ; which solution we
choose depends on the type of problem, the
properties of the storage matrix, and the way the
overall matrix is stored. It can be solved by Gauss,
Seidel, Cholesky elimination methods... In this
paper, we choose the Cholesky solution because it is
simple, computationally efficient, saves memory,
and has good numerical stability.

(33)

3.9. Programming in Fortran

To solve the seepage problem, the program is
written according to the block diagram (see Fig 2).

The algorithm and computational program have
been validated for assessing the extent of saltwater
intrusion from the East Sea into the Bau Tro
reservoir, Quang Binh Province, Vietnam, under
conditions of freshwater extraction during the dry
season [25].

4. APPLYING CALCULATIONS TO THE
STUDY AREA.

4.1. Introduction to the Study Area

Kon Tum City is located in the North Central
Highlands, currently the water source for the city is
mainly surface water taken from the Dak Bla River.
Urban development in recent years has led to a rapid
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increase in water demand. Therefore, in addition to
using surface water taken from rivers in the region,
it is necessary to study groundwater. For Kon Tum
City in the long-term development strategy,
groundwater is still the best water source for
drinking, daily life and other activities.

Input data of the
problem
Call subprograms: Nodes,
Elements, Material, Bound,
Initsal, Dump ...
!

| Call subroutine ASMBKC |

|

‘ Call subroutine DECOMP, RHS ‘

]
*

Solving the problem of unstable
seepage at each time step At
'

Solve matrix equations to
calculate sroundwater

l

| Determine the velocity field |

i

Print the results of water level
and velocity fjleld calculation

/

‘ Increase the calculatmn time step At ‘

Fig 2. Algorithm diagram of seepage problem using
finite element method.

Based on the synthesized hydrogeological survey
data, it has been identified that the Kon Tum City
area contains two principal aquifers: the Pleistocene
aquifer (Qp) and the Neogene aquifer (m4). In
general, the groundwater quality in both aquifers
meets the permissible standards for basic domestic
use. The Neogene aquifer is widely distributed,
covering nearly the entire study area with an
estimated surface area of approximately 122 km? In
contrast, the Pleistocene aquifer is more limited in
extent, primarily located in the central part of the
city, with a surface area of around 20 km?. According

to research conducted by the Department of Science
and Technology of Kon Tum City, the
hydrogeological parameters of the region are
presented in Table 1. The exploitable groundwater
reserves at boreholes, estimated using simplified
analytical formulas, are shown in Tables 2 [26].

Table 1. Hydrogeological parameters of Kon Tum
City

Pump flow K Ky, Kin
No. Boreholes (m/day) (m/day)  (m?/day) n, p*
1 BH TD4 527,9 1,42 68,18 0,138
2 BH DK1 623,0 5,05 2323 0,263
3 BH T.Doi 259,2 3,0 48,6 0,203
4 BH 160 363,6 2,66 106,4 0,191
5 BH 158 522,5 5,31 84,96 0,27
6 BH 154 394,6 3,78 68,04 0,227

K: Permeability coefficient; Ky, K., : hydraulic conductivity, u,
w*: coefficient of water release

Table 2. Water reserves exploited at boreholes

No. Boreholes S(m) Q(m’day) Si(m)  Q (m’/day)
1 BH T.Doi 8,6 259,2 19,3 582
2 BH TD4 9,0 5279 19,8 1160
3 BH 160 4,01 363,6 8,8 798
4 BH 154 12,34 394,6 27,0 863
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4.2. Computational Domain

Based on the hydrogeological map of the Kon
Tum city area, the calculation zone is delineated. The
GMS model is used to automatically generate a two-
dimensional  horizontal (2D) mesh. The
computational domain and coordinate system (see
Fig 3).

y
15000
[BH160 [k
10000
5000
c o cococ o oo ooo o %
S S DS S S S &S S S
o o080 o 00 OC O 8
A F D ® O A QA

Fig 3. Computational domain and finite element
mesh

Permeability coefficient of the aquifer in the
calculated domain: K, = K, = 2.67m/day. The
storativity S, = 0.185

4.3. Boundary Conditions and Initial Conditions

+ Initial condition: At time ¢ = 0, the average
groundwater level elevation is taken across the entire
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domain H = 515(m)

+ Water level boundary condition: Based on the
static water levels in the boreholes, the groundwater
level elevation (relative to sea level) along the
boundary of the calculation domain is calculated and
interpolated, with values provided in Table 3.

Table 3. Head boundary condition at the nodes

No. Node H(m) No. Node H(m)

1 531 514.5 14 350  513.45
2 399 514.5 15 304 513.45
3 442 514.5 16 261 513.45
4 489 514.5 17 223 513.45
5 523 514.5 18 183 526.2
6 536 514.5 19 141 526.2
7 538 514.5 20 105 526.2
8 540 514.5 21 74 526.2
9 535 51345 22 7 515
10 522 51345 23 6 515
11 488 51345 24 5 515
12 441 51345 25 4 515
13 398 513.45

+ On the remaining boundaries the inflow is zero
(Q=0).

+ In the area there are 04 experimental pumping
boreholes with the following pumping flow rates:

- BH T.Doi: Q = 259,2m%/day, node : 500,
coordinate (16053.0, 13222.0)

- BH 160: Q = 363,6m’day, node : 375,
coordinate (12207.0, 11433.0)

- BH TD4: Q = 5279 m%day, node : 515,
coordinate (13924.0, 10199.0)

- BH 154: Q = 394,6 m’/day, node : 217,
coordinate (13334.0, 5727.0)

+ Calculation time T = 100 days

+ Calculation time step dt = 1 day

4.4. Results

From the established program, we proceed to
enter input data corresponding to the given boundary
conditions and initial conditions. From the

calculation results, we draw the water level and
seepage velocity contours (Fig 4 + 15).

15000 T

10000 T

5000 T

2000 +
4000 +
6000 +
8000 +
10000 +
12000 +
20000 +
22000 T

Fig 4. Groundwater level contour, experimental
pumping flow, T = 15 days
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Fig 5. Groundwater level contour, experimental
pumping flow, T = 50 days
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Fig 6. Groundwater level contour, experimental
pumping flow, T = 100 days
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Fig 7. Groundwater level contour, the pumping flow
rate, T = 100 days.
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days
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pumping flow rate, T = 100 days

Table 4. Results of calculating groundwater level in
the calculation domain, pumping test; T= 100 days

Node H(m) Node H(m) Node H(m)
1 515.01 10 515.00 19 515.01
2 514.99 11 515.00 20 515.00
3 515.00 12 515.01 21 514.99
4 515.00 13 515.00 22 515.00
5 515.00 14 515.01 23 514.97
6 515.00 15 514.99 24 514.97
7 515.00 16 515.00 25 515.01
8 515.01 17 515.01 26 514.99
9 515.02 18 515.00 27 515.00

Table 5. Results of calculating seepage velocity in
the calculation domain, pumping test; T = 100 days

Node Vx Vv Node Vi Vy
1 3,023E-05  3,393E-05 10 3,585E-06  -1,72E-05
2 1,354E-05  -3,53E-05 11 1,625E-05  -1,03E-05
3 -3,621E-05  2,007E-05 12 1,459E-05  5,107E-06
4 -3,739E-05  -1,11E-05 13 9,169E-06  -9,28E-07
5 -1,496E-05  -2,84E-05 14 5,443E-06  1,920E-05
6 1,521E-06  2,364E-06 15 1,247E-04  -2,78E-05
7 -2,557E-05  2,968E-05 16 8,949E-05  1,013E-04
8 -3,473E-05  -1,85E-05 17 8,108E-05  1,035E-04
9 5,069E-06  -4,24E-06 18 9,809E-05  7,002E-05

The computational results from the model are
crucial for establishing the foundation for the
placement of pumps for groundwater extraction in
the future. These results serve as one of the bases for
determining land subsidence as well as the potential
for subsurface erosion during water pumping.
Additionally, the lowering of the groundwater level
negatively impacts the groundwater exploitation of
existing nearby structures and gives rise to several
other issues, such as the growth and development of
industrial crops.
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4.5 Comments

From the results calculated by the mathematical
model, the following basic parameters are obtained:

+ With the experimental pumping flow rate: The
groundwater level at the boreholes fluctuates from
Hmin = 498 m to Hmax = 513.5 m, with a maximum
seepage velocity Vmax = 0.383 m/day.

+ With the extraction pumping flow rate (Table
2): The groundwater level fluctuates from Hpin =478
m to Hmax = 511.5 m, with a maximum seepage
velocity Vmax = 0.842 m/day.

Based on the results obtained from the
aforementioned mathematical model, it can be
concluded that the groundwater resources in Kon
Tum City are sufficient to meet the exploitable
reserve demands. The model also provides
predictions of groundwater level fluctuations within
the urban area, serving as a foundational basis for the
rational design and planning of groundwater
extraction facilities.

5. CONCLUSION:

This study has developed an algorithm and
program to solve the two-dimensional horizontal
seepage equation. In the spatial direction, the
equation is discretized using the Galerkin finite
element method; in the time direction, it is
discretized using the weighted difference method;
the computational mesh is divided into triangular
elements.

Based on the -calculation results of the
exploitable reserves for the Kon Tum city area; the
exploitable reserves for structures and piezometric
heads, and the seepage velocity with different
planned extraction well configurations in the city
area, the study concludes: With the future water
demand for domestic use and other purposes in Kon
Tum city potentially reaching 20.000 m*/day, the
calculated exploitable reserves in the area are
sufficient to meet the demand. However, appropriate
extraction measures are necessary to ensure the long-
term sustainability of the groundwater resources.

The fluctuation of groundwater levels combined
with a relatively high seepage velocity may cause
subsidence and underground erosion, affecting the
quality of extraction and utilization of construction
projects in the area. At the location where fluid flows
from the wellbore, the significant pressure gradient
differential may lead to potential erosion. Therefore,
it is recommended to implement reverse filtration
layers to mitigate erosion.

This procedure was applied and validated for the
case of the Bau Tro reservoir in Quang Binh
province, Vietnam [25]. The results confirm the
suitability of the computational program developed
by the research team.
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