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ABSTRACT: The finite element method (FEM) based on the Galerkin approach is an effective technique for 
modeling groundwater flow and analyzing seepage, particularly in complex and heterogeneous geological 
environments. It allows for accurate simulation of groundwater levels, seepage velocity, and pore water pressure, 
supporting reliable predictions essential for water resource and geotechnical engineering. This study applies the 
Galerkin-based FEM to evaluate groundwater behavior in Kon Tum City, Vietnam. A computational program 
developed by the authors using the Fortran language was employed to simulate various groundwater extraction 
scenarios. Using field data, the model assessed the storage capacity, predicted changes in groundwater levels, and 
calculated seepage velocity under different pumping conditions. The method’s ability to handle complex boundary 
conditions contributed to the precision of the simulations. The results demonstrate the FEM’s effectiveness in 
groundwater modeling and its practical applicability in managing water resources and planning sustainable 
groundwater extraction strategies. 
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1. INTRODUCTION 
 

There are two methods in groundwater modeling 
and seepage analysis, namely the traditional 
experimental method and the numerical method. 
Traditional approaches in groundwater modeling 
and seepage analysis [1]. (i) Classical analytical 
methods to groundwater flow problems are based on 
Darcy’s law and the continuity equation. These 
methods are well-suited for simple geometries and 
homogeneous, isotropic media. Although they yield 
exact solutions, their applicability is limited by 
simplifying assumptions such as homogeneity of the 
porous medium, steady-state or linearized flow 
conditions and geometrically regular boundaries. (ii) 
Traditional field investigations rely on 
measurements of groundwater levels from 
observation wells and piezometers. However, they 
are generally unsuitable for heterogeneous or 
anisotropic conditions. 

Numerical Methods in Groundwater Flow and 
Seepage modeling: (i) The finite difference method 
(FDM) is widely employed to simulate flow in both 
saturated and unsaturated porous media [2-4]. It 
solves the governing differential equations by 
discretizing them over a rectangular grid, making it 
suitable for modeling large-scale aquifer systems. 
However, FDM is limited in its ability to handle 
complex geometries and irregular boundaries, and it 
lacks flexibility in mesh refinement. (ii) The FEM 
has become a powerful tool in groundwater 
modeling due to its capacity to manage complex 

domain geometries, represent heterogeneous and 
anisotropic conditions, and accommodate intricate 
boundary conditions [5]. The study of groundwater 
has been investigated by researchers using various 
methods [6-17]. 

The Galerkin FEM is particularly well-suited for 
complex seepage and groundwater flow problems 
due to its ability to implement adaptive meshing, 
thereby enhancing accuracy in critical zones such as 
seepage faces, drains, or impermeable barriers. It 
supports heterogeneous and anisotropic media 
through element-wise assignment of material 
properties. The method also offers high-order 
accuracy and the flexibility to handle irregular 
geometries—capabilities that are often limited in 
finite difference approaches. Galerkin FEM 
represents a robust and comprehensive modeling 
tool [18-24]. 

Surface water from rivers in Kon Tum City  – 
Viet Nam is heavily impacted by overexploitation 
for agriculture, industry, and domestic use, 
combined with climate change causing prolonged 
droughts and reduced river flows. Groundwater 
serves as a sustainable alternative, providing a more 
stable water supply during dry seasons. However, 
groundwater extraction must be strictly managed to 
prevent depletion of aquifers, land subsidence… 

Previous studies on groundwater reserves and 
exploitation potential in Kon Tum City have 
primarily relied on exploratory drilling methods, 
utilizing data from water pumping experiments 
conducted at boreholes. No scientific research on 
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this topic has yet employed modern numerical 
methods, such as the finite difference method or the 
finite element method. In this paper, we determine 
the storage capacity, changes in groundwater levels, 
and seepage velocity during groundwater extraction 
in Kon Tum City, Vietnam. The authors have 
developed a computational program based on the 
Galerkin FEM to solve the unsteady seepage 
equation. The model’s computational results have 
predicted changes in groundwater levels and seepage 
velocity under various water resource exploitation 
scenarios. 

 
2. RESEARCH SIGNIFICANCE 
 

This study holds significant value in advancing 
the understanding and management of groundwater 
resources in Kon Tum City, Vietnam. By applying 
the Galerkin FEM to model two-dimensional 
unsteady horizontal seepage flow, the research 
provides a robust computational framework for 
predicting groundwater level fluctuations and 
seepage velocities under various extraction 
scenarios. This approach overcomes the limitations 
of traditional analytical and field-based methods, 
offering a more precise and flexible tool for 
geotechnical engineering and water resource 
management. The findings contribute critical 
insights into sustainable groundwater exploitation 
and provide a scientific foundation for urban 
planning and resource management in water-scarce 
regions of Vietnam. 

 
3. THEORY OF COMPUTATION 
 

The seepage flow in soil is calculated based on 
the seepage equation, which is established using 
Darcy's law and the continuity equation for seepage 
flow. In conditions where the geological distribution 
with depth varies little, the two-dimensional 
horizontal (2DH) seepage equation can be applied 
for calculations. 

 
3.1. The Equation of Unsteady Two-Dimensional 
Horizontal Flow:  
 

The equation of unsteady two-dimensional 
horizontal flow is written as follows:     

x y s
h h hK K q S

x x y y t
  
       

∂ ∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂ ∂

               (1) 

Where sS : the storativity (dimensionless); t: time 
(sec); h: Hydraulic head (m); K: Hydraulic 
conductivity (m/s), typically assumed to be constant 
in the medium; x,y: spatial coordinates in the 
horizontal plane; q: Flow rate at the source point; q  
has a negative value (-) if the flow is extracted from 
the domain and (+) if the flow is added to the 
domain. 

3.2. Discretization in Space 
 

In space, the Galerkin finite element method is 
applied; the interpolation function is chosen as 
follows: 
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h(e): The approximate value of the hydraulic head in 
element A(e); Ni: The shape function at node i in 
element A(e); n: The number of nodes in element A(e); 
hi: The unknown value of the hydraulic head at node 
i of element A(e).  
Applying the Galerkin finite element method 
established in weak form, using integration by parts 
with second-order derivatives; assuming that at each 
element A(e), the permeability coefficients in the x 
and y directions remain constant, we have:
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Integration by parts (Green's formula). Consider the 
boundary segment dΓ of a curve enclosing a two-
dimensional region Ω= A(e), in the case of a closed 
curve, we have: 
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Substituting into equation 3, we obtain equation 4. 
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l, m: Cosines of the direction of the outward normal 
vector at the boundary; ( )e

xK ( )e
yK : Permeability 

coefficients in the x and y directions, respectively, of 
element A(e); A(e): Area of element e. Based on the 
above results, we define the algebraic sum of the first 
two terms of equation 4 as: 

 
                          

(5) 
 
 
 

 
 
The third term is determined as follows:
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It can be rewritten in matrix form as follows:
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: capacity element matrix, with: 
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In this paper, we use the lumped element formulation 
to calculate [C(e)]. For a triangular element with three 
vertices at nodes i, j, and k, we obtain the following 
result: 
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3.3. The Element Matrix Equation: 
 

{ } { }qq BBKK   =                                  (11) 
Where: { } ( )1 1 1

1 2 3, ,
Tn n nqq h h h+ + +=                                 (12) 

1n
ih + The hydraulic head height at node i at time step 

n+1. KK  The element stiffness matrix of size 3x3.

{ }BB : A vector with 3 components: 

{ } ( )1 2 3, , TBB BB BB BB=                                 (13) 
 
3.4. Discretization in time Using Weighted Finite 
Difference 
 

For the entire computational domain, we have the 
overall capacitance matrix with p nodes and m 
elements: 
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Assembling the equations written for all elements of 
the entire computational domain, we obtain: 
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The two vectors {h*} and {h} are defined as follows: 
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Equation 15 can be rewritten as: 
{ } { } { } { }*h h F GC K      + = +                       (17) 

Applying time difference: 
                                         (18) 
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The variable ε is defined as follows: 
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t
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Where: ω is the time weight 
We have reversed the positions of equations 19 and 
20 to be more logical
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have: 
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The value of {h} at the initial time t = to is: { }
ot

h

prescribed value. Using equation 25 to solve for the 
value of {h} at the end of the first time step {h}to+Δt. 
Then, set: {h}t = {h}to+Δt. This process is repeated for 
subsequent time steps. Depending on the choice of 
the value ω, we have: Choosing ω = 0 (forward 
difference), equation 25 becomes: 
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Choosing ω = ½ (central difference), equation 25 
becomes: 
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Choosing ω =1 (backward difference), equation 
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25 gives us: 
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3.5. Pairing the Elements 
 

Assume we are considering a seepage problem 
with pressure in a domain Ω , where the domain is 
divided into multiple triangular elements. At each 
node, there are s degrees of freedom (number of 
unknowns at the node). Here, s = 1 represents the 
seepage water column. Each triangular element has 
3 nodes (r = 3), so the number of degrees of freedom 
for each element is r × s = 3 × 1 = 3. Each triangular 
element is numbered at its nodes (i, j, k) in a 
conventional direction (counterclockwise), with 
node i conventionally defined as the leftmost and 
lowest node (see Fig 1). For any arbitrary element ne, 
we have the element matrix [K]e as follows: 

 

 
 
Fig 1. Node numbering convention and element 
matrix 
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Global matrix :  
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1

n

e
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Similarly for the global matrices of other element 
matrices. In the global matrix, the non-zero elements 
do not have a diagonal form (also known as a banded 
form). To save memory and computational time, 
only the non-zero elements are stored, and the 
algorithm only performs calculations with these non-
zero elements. 

 
3.6. Global Matrix Equation 
 

{ } { }K q B=                                     (29) 
Where: [𝐾𝐾]  The global matrix; {𝑞𝑞}  The global 
unknown vector. 

 
3.7. Assigning Boundary Conditions 
 

After obtaining the system matrix in banded 
form, to simplify programming, the size of the global 
matrix for the problem is fixed regardless of the 
number of boundary conditions. The equation takes 

the form :    
[ K ].{q} = {B}                                                    (30) 
If the i = r unknown is known to be αi, it means qr = 
αi, then the coefficients of the system matrix are 
modified as follows : 

Krj = 0  if  j≠r 
Kir = 0  if  i≠r                                               (31) 
Krr = 1   

The right-hand side vector of the system will be :
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Then eliminate row r and column r from the system 
of matrix equations. 

 
3.8. Linear Algebraic Equations 
 

The system of linear algebraic equations has the 
form : 
{ }{ } { }* * *
K q B=                       (33) 

Equation 33 is in matrix form ; which solution we 
choose depends on the type of problem, the 
properties of the storage matrix, and the way the 
overall matrix is stored. It can be solved by Gauss, 
Seidel, Cholesky elimination methods… In this 
paper, we choose the Cholesky solution because it is 
simple, computationally efficient, saves memory, 
and has good numerical stability. 

 
3.9. Programming in Fortran 
 

To solve the seepage problem, the program is 
written according to the block diagram (see Fig 2). 

The algorithm and computational program have 
been validated for assessing the extent of saltwater 
intrusion from the East Sea into the Bau Tro 
reservoir, Quang Binh Province, Vietnam, under 
conditions of freshwater extraction during the dry 
season [25]. 

 
4. APPLYING CALCULATIONS TO THE 
STUDY AREA. 
 
4.1. Introduction to the Study Area 
 

Kon Tum City is located in the North Central 
Highlands, currently the water source for the city is 
mainly surface water taken from the Dak Bla River. 
Urban development in recent years has led to a rapid 
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increase in water demand. Therefore, in addition to 
using surface water taken from rivers in the region, 
it is necessary to study groundwater. For Kon Tum 
City in the long-term development strategy, 
groundwater is still the best water source for 
drinking, daily life and other activities. 

 

 
 
Fig 2. Algorithm diagram of seepage problem using 
finite element method. 

 
Based on the synthesized hydrogeological survey 

data, it has been identified that the Kon Tum City 
area contains two principal aquifers: the Pleistocene 
aquifer (Qp) and the Neogene aquifer (m4). In 
general, the groundwater quality in both aquifers 
meets the permissible standards for basic domestic 
use. The Neogene aquifer is widely distributed, 
covering nearly the entire study area with an 
estimated surface area of approximately 122 km². In 
contrast, the Pleistocene aquifer is more limited in 
extent, primarily located in the central part of the 
city, with a surface area of around 20 km². According 

to research conducted by the Department of Science 
and Technology of Kon Tum City, the 
hydrogeological parameters of the region are 
presented in Table 1. The exploitable groundwater 
reserves at boreholes, estimated using simplified 
analytical formulas, are shown in Tables 2 [26]. 

 
Table 1. Hydrogeological parameters of Kon Tum 
City 
 
No. Boreholes Pump flow 

(m/day) 
K  

(m/day) 
KH, Km  

(m2/day) μ, μ* 

1 BH TD4 527,9 1,42 68,18 0,138 
2 BH DK1 623,0 5,05 232,3 0,263 
3 BH T.Doi 259,2 3,0 48,6 0,203 
4 BH 160 363,6 2,66 106,4 0,191 
5 BH 158 522,5 5,31 84,96 0,27 
6 BH 154 394,6 3,78 68,04 0,227 

K: Permeability coefficient; KH, Km : hydraulic conductivity; μ, 
μ*: coefficient of water release 
 
Table 2. Water reserves exploited at boreholes 
 

No. Boreholes S (m) Q (m3/day) Skt(m) Qkt (m3/day) 
1 BH T.Doi 8,6 259,2 19,3 582 
2 BH TD4 9,0 527,9 19,8 1160 
3 BH 160 4,01 363,6 8,8 798 
4 BH 154 12,34 394,6 27,0 863 
 
4.2. Computational Domain 

 
Based on the hydrogeological map of the Kon 

Tum city area, the calculation zone is delineated. The 
GMS model is used to automatically generate a two-
dimensional horizontal (2D) mesh. The 
computational domain and coordinate system (see 
Fig 3). 

 
 

Fig 3. Computational domain and finite element 
mesh 
 

Permeability coefficient of the aquifer in the 
calculated domain: Kx = Ky = 2.67m/day. The 
storativity Ss = 0.185 

 
4.3. Boundary Conditions and Initial Conditions 
 

+ Initial condition: At time t = 0, the average 
groundwater level elevation is taken across the entire 
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domain H = 515(m) 
+ Water level boundary condition: Based on the 

static water levels in the boreholes, the groundwater 
level elevation (relative to sea level) along the 
boundary of the calculation domain is calculated and 
interpolated, with values provided in Table 3. 

 
Table 3. Head boundary condition at the nodes 
 

No. Node H(m) No. Node H(m) 
1 531 514.5 14 350 513.45 
2 399 514.5 15 304 513.45 
3 442 514.5 16 261 513.45 
4 489 514.5 17 223 513.45 
5 523 514.5 18 183 526.2 
6 536 514.5 19 141 526.2 
7 538 514.5 20 105 526.2 
8 540 514.5 21 74 526.2 
9 535 513.45 22 7 515 

10 522 513.45 23 6 515 
11 488 513.45 24 5 515 
12 441 513.45 25 4 515 
13 398 513.45    

 
+ On the remaining boundaries the inflow is zero 

(Q = 0). 
+ In the area there are 04 experimental pumping 

boreholes with the following pumping flow rates: 
- BH T.Doi: Q = 259,2m3/day, node : 500, 

coordinate (16053.0, 13222.0) 
- BH 160: Q = 363,6m3/day, node : 375, 

coordinate (12207.0, 11433.0) 
- BH TD4: Q = 527,9 m3/day, node : 515, 

coordinate (13924.0, 10199.0) 
- BH 154: Q = 394,6 m3/day, node : 217, 

coordinate (13334.0, 5727.0) 
+  Calculation time T = 100 days 
+  Calculation time step dt = 1 day 
 

4.4. Results 
 

From the established program, we proceed to 
enter input data corresponding to the given boundary 
conditions and initial conditions. From the 
calculation results, we draw the water level and 
seepage velocity contours (Fig 4 ÷ 15). 
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Fig 4. Groundwater level contour, experimental 
pumping flow, T = 15 days 

 

 
 

Fig 5. Groundwater level contour, experimental 
pumping flow, T = 50 days  
 
 

 
 

Fig 6. Groundwater level contour, experimental 
pumping flow, T = 100 days 
 
 

 
 

Fig 7. Groundwater level contour, the pumping flow 
rate, T = 100 days. 
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Fig 8. Statistical chart of groundwater level 
occurrence frequency, experimental pumping flow, 
T = 15 days 
 

 
 

Fig 9. Statistical chart of groundwater level 
occurrence frequency, experimental pumping flow, 
T = 50 days 
 

 
 

Fig 10. Statistical chart of groundwater level 
occurrence frequency, experimental pumping flow, 
T = 100 days 
 

 
 

Fig 11. Statistical chart of groundwater level 
occurrence frequency, pumping flow rate,  T = 100 
days 
 

 
 

Fig 12. Statistical chart of seepage velocity, 
experimental pumping flow, T = 15 days 
 

 
 

Fig 13. Statistical chart of seepage velocity, 
experimental pumping flow, T = 50 days 
 

 
 

Fig 14. Statistical chart of seepage velocity, 
experimental pumping flow, T = 100 days 
 

Based on the graph plotted from the calculation 
results, it is observed that the closer to the boreholes, 
the lower the groundwater level. For example, at 
borehole TD4, corresponding to a calculation period 
of 100 days, the radius of influence R = 135m and 
the drawdown S = 17m. 
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Fig 15. Statistical chart of seepage velocity, 
pumping flow rate, T = 100 days 
 
Table 4. Results of calculating groundwater level in 
the calculation domain, pumping test; T= 100 days 
 

Node H(m) Node H(m) Node H(m) 
1 515.01 10 515.00 19 515.01 
2 514.99 11 515.00 20 515.00 
3 515.00 12 515.01 21 514.99 
4 515.00 13 515.00 22 515.00 
5 515.00 14 515.01 23 514.97 
6 515.00 15 514.99 24 514.97 
7 515.00 16 515.00 25 515.01 
8 515.01 17 515.01 26 514.99 
9 515.02 18 515.00 27 515.00 

 
Table 5. Results of calculating seepage velocity in 
the calculation domain, pumping test; T = 100 days 
 

Node VX VY Node Vx Vy 

1 3,023E-05 3,393E-05 10 3,585E-06 -1,72E-05 

2 1,354E-05 -3,53E-05 11 1,625E-05 -1,03E-05 

3 -3,621E-05 2,007E-05 12 1,459E-05 5,107E-06 

4 -3,739E-05 -1,11E-05 13 9,169E-06 -9,28E-07 

5 -1,496E-05 -2,84E-05 14 5,443E-06 1,920E-05 

6 1,521E-06 2,364E-06 15 1,247E-04 -2,78E-05 

7 -2,557E-05 2,968E-05 16 8,949E-05 1,013E-04 

8 -3,473E-05 -1,85E-05 17 8,108E-05 1,035E-04 

9 5,069E-06 -4,24E-06 18 9,809E-05 7,002E-05 

 
The computational results from the model are 

crucial for establishing the foundation for the 
placement of pumps for groundwater extraction in 
the future. These results serve as one of the bases for 
determining land subsidence as well as the potential 
for subsurface erosion during water pumping. 
Additionally, the lowering of the groundwater level 
negatively impacts the groundwater exploitation of 
existing nearby structures and gives rise to several 
other issues, such as the growth and development of 
industrial crops. 

4.5 Comments 
 

From the results calculated by the mathematical 
model, the following basic parameters are obtained: 

+ With the experimental pumping flow rate: The 
groundwater level at the boreholes fluctuates from 
Hmin = 498 m to Hmax = 513.5 m, with a maximum 
seepage velocity Vmax = 0.383 m/day. 

+ With the extraction pumping flow rate (Table 
2): The groundwater level fluctuates from Hmin = 478 
m to Hmax = 511.5 m, with a maximum seepage 
velocity Vmax = 0.842 m/day. 

Based on the results obtained from the 
aforementioned mathematical model, it can be 
concluded that the groundwater resources in Kon 
Tum City are sufficient to meet the exploitable 
reserve demands. The model also provides 
predictions of groundwater level fluctuations within 
the urban area, serving as a foundational basis for the 
rational design and planning of groundwater 
extraction facilities. 

 
5. CONCLUSION: 
 

This study has developed an algorithm and 
program to solve the two-dimensional horizontal 
seepage equation. In the spatial direction, the 
equation is discretized using the Galerkin finite 
element method; in the time direction, it is 
discretized using the weighted difference method; 
the computational mesh is divided into triangular 
elements. 

Based on the calculation results of the 
exploitable reserves for the Kon Tum city area; the 
exploitable reserves for structures and piezometric 
heads, and the seepage velocity with different 
planned extraction well configurations in the city 
area, the study concludes: With the future water 
demand for domestic use and other purposes in Kon 
Tum city potentially reaching 20.000 m³/day, the 
calculated exploitable reserves in the area are 
sufficient to meet the demand. However, appropriate 
extraction measures are necessary to ensure the long-
term sustainability of the groundwater resources. 

The fluctuation of groundwater levels combined 
with a relatively high seepage velocity may cause 
subsidence and underground erosion, affecting the 
quality of extraction and utilization of construction 
projects in the area. At the location where fluid flows 
from the wellbore, the significant pressure gradient 
differential may lead to potential erosion. Therefore, 
it is recommended to implement reverse filtration 
layers to mitigate erosion. 

This procedure was applied and validated for the 
case of the Bau Tro reservoir in Quang Binh 
province, Vietnam [25]. The results confirm the 
suitability of the computational program developed 
by the research team. 

 



International Journal of GEOMATE, Oct., 2025 Vol.29, Issue 134, pp.110-119 

118 

 

6. ACKNOWLEDGEMENTS 
  

The authors sincerely thank the Department of 
Science and Technology of Kon Tum City for 
providing documents and previous research results. 
Financial support from Nam Can Tho University, 
Vietnam, is also gratefully acknowledged. 
Additionally, we express our gratitude to the 
anonymous reviewers for their invaluable feedback, 
which greatly improved the manuscript. 

 
7. REFERENCES 
 
[1] Pinder G.F. and Gray W.G, Finite Element 

Simulation in Surface and Subsurface 
Hydrology. Elsevier, 2013. 

[2] Anderson M.P, Woessner W.W, and Hunt R.J, 
Applied Groundwater Modeling: Simulation of 
Flow and Advective Transport, Second edition. 
London ; San Diego, CA: Academic Press, 2015. 

[3] Ma R, “Modeling Groundwater Flow and 
Contaminant Transport,” Vadose Zone Journal, 
vol. 10, p. 769, May 2011, doi: 
10.2136/vzj2010.0151. 

[4] Sugimoto S. and Ishizuka Y, “Slope Deformation 
Monitoring using Wireless Sensor Network and 
Evaluation of Mechanical Stability by FDM 
Simulation,” GEOMATE Journal, vol. 22, no. 
94, Art. no. 94, June 2022. 

[5] Narasimhan T.N. and Witherspoon P.A, 
“Overview of the Finite Element Method in 
Groundwater Hydrology,” in Finite Elements in 
Water Resources, K. P. Holz, U. Meissner, W. 
Zielke, C. A. Brebbia, G. Pinder, and W. Gray, 
Eds., Berlin, Heidelberg: Springer, 1982, pp. 29–
44. doi: 10.1007/978-3-662-02348-8_2. 

[6] Karatzas G.P, “Developments on Modeling of 
Groundwater Flow and Contaminant Transport,” 
Water Resour Manage, vol. 31, no. 10, pp. 3235–
3244, Aug. 2017, doi: 10.1007/s11269-017-
1729-z. 

[7] Scudeler C, Paniconi C, Pasetto D, and Putti M, 
“Examination of the Seepage Face Boundary 
Condition in Subsurface and Coupled 
Surface/Subsurface Hydrological Models,” 
Water Resources Research, vol. 53, no. 3, pp. 
1799–1819, 2017, doi: 
10.1002/2016WR019277. 

[8] Sikdar P.K, “Numerical Groundwater 
Modeling,” in Groundwater Development and 
Management: Issues and Challenges in South 
Asia, P. K. Sikdar, Ed., Cham: Springer 
International Publishing, 2019, pp. 191–207. doi: 
10.1007/978-3-319-75115-3_7. 

[9] Karamouz M, Ahmadi A, and Akhbari M, 
Groundwater Hydrology: Engineering, Planning, 
and Management, 2nd ed. Boca Raton: CRC 
Press, 2020. doi: 10.1201/9780429265693. 

[10]Říha J, “Groundwater Flow Problems and Their 

Modelling,” in Assessment and Protection of 
Water Resources in the Czech Republic, M. 
Zelenakova, J. Fialová, and A. M. Negm, Eds., 
Cham: Springer International Publishing, 2020, 
pp. 175–199. doi: 10.1007/978-3-030-18363-
9_8. 

[11]Ke X, Wang W, Xu X, Li J, and Hu H, “A 
Saturated–Unsaturated Coupling Model for 
Groundwater Flowing into Seepage Wells: a 
Modeling Study for Groundwater Development 
in River Basins,” Environ Earth Sci, vol. 80, no. 
21, p. 711, Oct. 2021, doi: 10.1007/s12665-021-
10035-8. 

[12]Intui S, Jindawutthiphan J, Inazumi S, 
“Evaluation of Displacement on Unsaturated 
Soils in Bangkok Plain,” GEOMATE Journal, 
vol. 23, no. 100, Art. no. 100, Dec. 2022. 

[13]Bakker M. and Post V, Analytical Groundwater 
Modeling: Theory and Applications using 
Python. London: CRC Press, 2022. doi: 
10.1201/9781315206134. 

[14]El Rawy M, Zijl W, Salem A, Awad A, 
Eltarabily M.G. and Negm A.M, “Fundamentals 
of Groundwater Modeling Methods and a 
Focused Review on the Groundwater Models of 
the Nile Valley Aquifer,” in Sustainability of 
Groundwater in the Nile Valley, Egypt, A. M. 
Negm and M. El-Rawy, Eds., Cham: Springer 
International Publishing, 2022, pp. 39–70. doi: 
10.1007/978-3-031-12676-5_3. 

[15]Wang K. and Shih D.S, “A Method Combining 
Seepage Theory and Model Simulation for the 
Identification of Potential Groundwater 
Resources,” Journal of Hydrologic Engineering, 
vol. 27, no. 12, p. 04022030, Dec. 2022, doi: 
10.1061/(ASCE)HE.1943-5584.0002223. 

[16]Schwartz F.W. and Zhang H, Fundamentals of 
Groundwater. John Wiley & Sons, 2024. 

[17]Phoban H, Seeboonruang U, and Lueprasert P, 
“Numerical Investigation on Pile Behavior due to 
the Rising Groundwater Effect,” GEOMATE 
Journal, vol. 20, no. 78, Art. no. 78, Nov. 2021. 

[18]Desitter A, Bates P.D, Anderson M.G. and 
Hervouet J.M, “Development of One, Two and 
Three-Dimensional Finite Element Groundwater 
Models within a Generalized Object-Oriented 
Framework,” Hydrological Processes, vol. 14, 
no. 13, pp. 2245–2259, 2000, doi: 10.1002/1099-
1085(200009)14:13<2245::AID-
HYP26>3.0.CO;2-Q. 

[19]Idris Dag and Aynur Canivar, “Taylor-Galerkin 
Method for Advection-Diffusion Equation,” 
Kybernetes, June 2011, doi: 
10.1108/03684921111142304. 

[20]Karim I.A, Lee C.H, Gil A.J. and Bonet J, “A 
two-step Taylor-Galerkin Formulation for Fast 
Dynamics,” Engineering Computations, vol. 31, 
no. 3, Art. no. 3, Apr. 2014, doi: 10.1108/EC-12-
2012-0319. 



International Journal of GEOMATE, Oct., 2025 Vol.29, Issue 134, pp.110-119 

119 

 

[21]Lewis R.W, Nithiarasu P. and Seetharamu K.N, 
Fundamentals of the Finite Element Method for 
Heat and Fluid Flow, 1st ed. Wiley, 2004. doi: 
10.1002/0470014164. 

[22]Mehra M. and Kumar V, “Fast wavelet-Taylor 
Galerkin Method for Linear and Non-linear 
Wave Problems,” Applied Mathematics and 
Computation, vol. 189, no. 2, pp. 1292–1299, 
June 2007, doi: 10.1016/j.amc.2006.12.013. 

[23]Roig B, “One-step Taylor–Galerkin Methods for 
Convection–Diffusion Problems,” Journal of 
Computational and Applied Mathematics, vol. 
204, no. 1, pp. 95–101, July 2007, doi: 
10.1016/j.cam.2006.04.031. 

[24]Zienkiewicz O.C, Taylor R.L. and Nithiarasu P, 
The Finite Element Method for Fluid Dynamics, 
6th edition. Amsterdam Heidelberg: 
Butterworth-Heinemann, 2005. 

[25]Nguyen T.H. and Thai H.P, “Assessment of 
Saltwater Intrusion into Bau Tro Lake when 
Fresh Water is Exploited in the Dry Season,” in 
Proceedings of National Conference on Fluid 
Mechanics, Vietnam Publishing House of 
Natural Science and Technology, 2006, pp. 398–
415. 

[26]Kon Tum City Department of Science and 
Technology, “Scientific Report on the 
Implementation Results of the Kon Tum City 
Groundwater Project (1997–2000),” Department 
of Science and Technology, Kon Tum City, Viet 
Nam, 2001. 

 

 

Copyright © Int. J. of GEOMATE All rights reserved, 
including making copies, unless permission is obtained 
from the copyright proprietors.  


	3.1. The Equation of Unsteady Two-Dimensional Horizontal Flow:
	3.2. Discretization in Space
	3.3. The Element Matrix Equation:
	(11)
	3.4. Discretization in time Using Weighted Finite Difference
	3.5. Pairing the Elements
	3.6. Global Matrix Equation
	(29)
	3.7. Assigning Boundary Conditions
	3.8. Linear Algebraic Equations
	3.9. Programming in Fortran
	To solve the seepage problem, the program is written according to the block diagram (see Fig 2).
	The algorithm and computational program have been validated for assessing the extent of saltwater intrusion from the East Sea into the Bau Tro reservoir, Quang Binh Province, Vietnam, under conditions of freshwater extraction during the dry season [25].
	4.1. Introduction to the Study Area
	4.2. Computational Domain
	4.3. Boundary Conditions and Initial Conditions
	4.4. Results
	4.5 Comments

