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ABSTRACT: This study constructs an artificial intelligence (AI) model to evaluate water environments, and 
applies an artificial neural network system to this AI model construction. This AI model has been tested in a 
real urban river basin. The evaluation results based on the model reveal that most parts of the river do not meet 
its management goal of being suitable for fireflies to inhabit. Therefore, a sensitivity analysis based on the AI 
Model is carried out to select and rank the river environment improvement measures in terms of the 
effectiveness of improvement. This study has shown that an AI Model is able to reveal and simulate the 
complicated relationships between river management goals and diverse river environment factors and also is 
able to make the sensitivity analysis and the selecting of effective river environment improvement measures 
much more convenient and reliable. This study will contribute to establishing a more reliable river environment 
planning and management methodology. 
 
Keywords: Water Environment, Artificial Intelligence (AI), Firefly Habitability, Sensitivity Analysis 
 
1. INTRODUCTION 
 

Water environment evaluation is neccessery not 
only for water environment planning but also for 
selecting the most effective and most efficient water 
environment improvement measures. The 
traditional water environment evaluation methods 
can be classified into three groups [1-3]. 

The most-widely applied water environment 
evaluation method is the one based on the physical, 
chemical or biochemical indexes of river water 
quality, such as PH, Dissolved Oxygen (DO), 
Biochemical Oxygen Demand (BOD), and total 
coliforms. Objectivity is considered to be the most 
significant and most important character of this 
method which, however, also leads to critiques that 
relatively subjective resident/human demands for 
water environments have not been taken into 
consideration with this method. Furthermore, this 
method has only evaluated water bodies with no 
consideration on the spaces around water bodies, 
which is why it usually classified as a water quality 
evaluation method. 

In order to maximize the utility of the residents 
in a river basin, the water environment evaluation 
method based on the satisfaction of all residents has 
been applied quite frequently, particularly in urban 
river planning in which resident satisfaction is the 
main water environment management goal. 
Questionnaire survey is the central tool of this 
method. 

The third common method for water 
environment evaluation is based  on the biodiversity 
of the water environment, which takes the 
perspective that the water environment is not only 
for human beings but also for the entire ecosystem. 

Every method is suitable for some specific water 
environment planning goals, and there are no 
particular standards or characteristics that can be 
used to distinguish one from the others as good or 
bad. But there is one very strong common critism 
which applies to all three methods [3]: each method 
has only evaluated the final water 
quality/environment. No direct connections 
between evaluation results and the causes or related 
environmental factors inside the river basins have 
been taken into any consideration in all of the 
methods although water environment is 
neccessarily considered as a whole system. 

Artificial intelligence (AI) has achieved great 
successes in a broad range of fields such as image 
recognition, automatic driving, and gaming due to 
AI’s strong capability to identify causal relations [3, 
4]. An AI model is expected to be a powerful 
analytic tool for water environment evaluation 
when the water environment of a specific river is 
considered to be a result caused by all possible 
water-environment-related factors in the river basin. 
This study will construct an AI model specifically 
for water environment evaluation and establish a 
more reliable methodology for river environment 
planning and management. 

 
2. ARTIFICIAL INTELLIGENCE MODEL 
 

An artificial intelligence model, specifically a 
neural network model has been adopted to compose 
a water environment evaluation method for 
evaluation or prediction problems due to the 
suitability of neural network models [4, 5]. 
 
2.1 Structure of A Neural Network 
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A neural network is a network system 

constructed artificially by idealizing the neurons 
(nerve cells), and consists of a number of nodes and 
lines that are called units and connections (or links) 
respectively. Based on the differences in network 
structures, neural networks generally are classified 
into two types: layered networks and interconnected 
networks. It has been shown that a layered network 
is suitable for evaluation/prediction problems due to 
its abilities in learning (self-organization) and 
parallel processing of information. 

Figure 1 shows the structure of a typical layered 
neural network, which has a layer of input units at 
the top, a layer of output units at the bottom, and a 
number of hidden layers between the input layer and 
the output layer. Connections exist only between 
the units in the adjacent layers, and connections 
within a layer or from a higher to lower layers are 
forbidden. 

 

 
 
Fig. 1   Structure of a layered neural network. 
 

2.2 Modelling A Neural Network 
 

For the sake of simplicity, consider a neural 
network consisting of three layers.  

Let the unit numbers of the input layer, hidden 
layer and output layer be N, M, and 1, respectively. 
When an input {𝐼𝐼𝑖𝑖 , 𝑖𝑖 = 1,2,⋯ , 𝑁𝑁 } is given to the 
units of the input layer, the inputs and outputs of the 
hidden layer units as well as the output layer units 
are represented as follows. 

 
𝑌𝑌𝑗𝑗 = 𝑓𝑓�𝑋𝑋𝑗𝑗�,   𝑗𝑗 = 1,2,⋯ ,𝑀𝑀                                    (1) 

                            

𝑋𝑋𝑗𝑗 = �𝑤𝑤𝑖𝑖𝑗𝑗𝐼𝐼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+ 𝜃𝜃𝑖𝑖    ,    𝑗𝑗 = 1,2,⋯ ,𝑀𝑀                 (2) 

 
𝑂𝑂 = 𝑓𝑓(𝑍𝑍)                                                                   (3) 

 

𝑍𝑍 = �𝑤𝑤𝑗𝑗𝑌𝑌𝑗𝑗

𝑀𝑀

𝑗𝑗=1

+ 𝜃𝜃                                                       (4) 

 
Where 𝑌𝑌𝑗𝑗 : output from the unit 𝑗𝑗 of the hidden layer. 
           𝑋𝑋𝑗𝑗 : input the unit 𝑗𝑗 of the hidden layer. 
        𝑓𝑓(∙) : unit output function. 
          w𝑖𝑖𝑗𝑗: connection weight between the input 

 layer unit 𝑖𝑖 and hidden layer unit 𝑗𝑗. 
           𝜃𝜃𝑗𝑗 : threshold value of the hidden layer unit 𝑗𝑗 
          O  :  output from the output layer unit. 
           Z  :  input to the output layer unit. 
           w𝑗𝑗: connection weight between the hidden 

 layer unit 𝑗𝑗 and the output layer unit. 
           Θ : threshold value of the hidden layer unit 𝑗𝑗  
 
      For the unit output function 𝑓𝑓(∙) , some 
expressions have been proposed. The following 
Sigmoid function has been applied frequently. 
However, it is not necessarily the best one in terms 
of learning efficiency. A testing process for 
different output functions is strongly suggested. 
 

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
                             (5) 

 
      Theoretically, the neural network model 
expressed by Eqs. (1) through (5) is able to 
approximate any non-linear relationship between 
inputs and outputs with any degree of accuracy by 
using enough hidden layer units and setting 
connection weights and thresholds to be appropriate 
through proper learning processes [5]. 

 
2.3 Learning Process of Neural Network Model 

 
For a neural network model, the process of 

setting the connection weights unit thresholds is 
called learning. The term learning here means the 
self-organization process through which the neural 
network model automatically adjusts all the 
parameters (i.e. all the connections and thresholds) 
to the appropriate values, when a series of samples 
of input-output data (called teacher data or teacher 
signals) are shown to the model. If we consider the 
information processing in a neural network model 
as a transformation of input data to output data, then 
model learning can be considered to be a process 
through which the neural network model gradually 
becomes capable of imitating the transforming 
patterns represented by the teacher data. 

A lot of learning algorithms have been proposed, 
and among them the Error Back Propagation 
Algorithm is the most widely used and most 
successful algorithm. The following is the summary 
of the Error Back Propagation Algorithm [6]. 

Suppose T sets of teacher data are given. 
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�𝐼𝐼1
(𝑡𝑡), 𝐼𝐼2

(𝑡𝑡),⋯ , 𝐼𝐼𝑁𝑁
(𝑡𝑡),𝑂𝑂(𝑡𝑡) ;   𝑡𝑡 = 1,2,⋯ ,𝑇𝑇�        (6) 

 
Notice that the teacher data consists of two parts: 
the input part �𝐼𝐼1

(𝑡𝑡),  𝐼𝐼2
(𝑡𝑡),⋯ ,  𝐼𝐼𝑁𝑁

(𝑡𝑡);   𝑡𝑡 = 1, 2,⋯ ,𝑇𝑇� 
and the output part�𝑂𝑂(𝑡𝑡) ;   𝑡𝑡 = 1,2,⋯ ,𝑇𝑇� .  

Now consider an initial value 
 

𝑤𝑤𝑖𝑖𝑗𝑗
[𝑘𝑘],𝑤𝑤𝑗𝑗

[𝑘𝑘],𝜃𝜃𝑗𝑗
[𝑘𝑘],𝜃𝜃[𝑘𝑘]   ,  𝑘𝑘 = 0                               (7) 

 
for each of the connection weights and threshold 
values, respectively. Notice that the superscript [k] 
indicates the number of learning iterations and 
[k=0] means the initial values for all the parameters 
directly preceding the start of the learning process. 
Then the outputs corresponding to the inputs of the 
teacher data �𝐼𝐼1

(𝑡𝑡),  𝐼𝐼2
(𝑡𝑡),⋯ ,  𝐼𝐼𝑁𝑁

(𝑡𝑡);   𝑡𝑡 =

1, 2,⋯ ,𝑇𝑇�   can be obtained from Eq. (1) ~ Eq. (5). 
Let these outputs be �𝑈𝑈[𝑘𝑘](𝑡𝑡);   𝑡𝑡 = 1, 2,⋯ ,
𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 = 0� . Clearly, �𝑈𝑈[𝑘𝑘](𝑡𝑡);   𝑡𝑡 = 1, 2,⋯ ,
𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 = 0� are different from the outputs of the 
teacher data �𝑂𝑂(𝑡𝑡) ;   𝑡𝑡 = 1,2,⋯ ,𝑇𝑇� , and an error 
function can be defined with the two different kinds 
of outputs as follows. 

 

𝑅𝑅[𝑘𝑘] = ��𝑂𝑂(𝑡𝑡) − 𝑈𝑈[𝑘𝑘](𝑡𝑡)�2
𝑇𝑇

𝑡𝑡=1

,   𝑘𝑘 = 0            (8) 

 
Obviously, 𝑅𝑅[𝑘𝑘]  is a function of connection 

weights and threshold values because �𝑈𝑈[𝑘𝑘](𝑡𝑡);   𝑡𝑡 =
1, 2,⋯ , 𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 = 0� are calculated after all 𝑤𝑤𝑖𝑖𝑗𝑗

[𝑘𝑘],
𝑤𝑤𝑗𝑗

[𝑘𝑘],𝜃𝜃𝑗𝑗
[𝑘𝑘] 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃[𝑘𝑘] are given. 

The Error Back Propagation Algorithm makes 
use of the connection weights and threshold values 
that minimize the above error function  𝑅𝑅[𝑘𝑘] . 
Usually a non-linear programming method is 
required to solve the optimization problem along 
with an iteration process in order to obtain the 
optimal (but possibly suboptimal) connection 
weights and threshold values. The final iteration 
procedures derived from a non-linear programming 
method known as the Method of Gradient Descent 
are as follows. 

 

𝑤𝑤𝑗𝑗
[𝑘𝑘+1] = 𝑤𝑤𝑗𝑗

[𝑘𝑘] − 𝜂𝜂 ⋅��𝛿𝛿[𝑘𝑘](𝑡𝑡) ⋅ 𝑌𝑌𝑗𝑗
[𝑘𝑘](𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1

                             (9) 

 

𝜃𝜃[𝑘𝑘+1] = 𝜃𝜃[𝑘𝑘] − 𝜂𝜂 ⋅�𝛿𝛿[𝑘𝑘](𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

                                              (10) 

 

𝑤𝑤𝑖𝑖𝑗𝑗
[𝑘𝑘+1] = 𝑤𝑤𝑖𝑖𝑗𝑗

[𝑘𝑘] − 𝜂𝜂 ⋅��𝛿𝛿[𝑘𝑘](𝑡𝑡) ⋅ 𝑤𝑤𝑗𝑗
[𝑘𝑘+1] ⋅ 𝛾𝛾𝑗𝑗

[𝑘𝑘](𝑡𝑡) ⋅ 𝐼𝐼𝑖𝑖
(𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1

      (11) 

 

𝜃𝜃𝑗𝑗
[𝑘𝑘+1] =  𝜃𝜃𝑗𝑗

[𝑘𝑘] −  𝜂𝜂 ∙��𝛿𝛿[𝑘𝑘](𝑡𝑡) ⋅ 𝑤𝑤𝑗𝑗
[𝑘𝑘+1] ⋅ 𝛾𝛾𝑗𝑗

[𝑘𝑘](𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1

              (12) 

 
where the superscript [k] indicates the number of 
learning iterations as mentioned earlier, and η is a 
small positive number that indicates the step size of 
the Method of Gradient Descent for optimization 
iteration process, and we have set  η = 0.25 in this 
study. The other variables which occurred in the 
final learning procedures are defined as follows. 
 
𝛿𝛿[𝑘𝑘](𝑡𝑡) = (𝑂𝑂(𝑡𝑡) − 𝑈𝑈[𝑘𝑘](𝑡𝑡)) ∙ 𝑂𝑂(𝑡𝑡) ∙ (1 − 𝑂𝑂(𝑡𝑡) )                        (13) 

 
𝛾𝛾𝑗𝑗

[𝑘𝑘](𝑡𝑡) = 𝑌𝑌𝑗𝑗
[𝑘𝑘](𝑡𝑡) ∙ �1 − 𝑌𝑌𝑗𝑗

[𝑘𝑘](𝑡𝑡)�                                                (14) 
 
In order to avoid the overfitting (or over-

learning) problem, a criterion is usually required to 
make a judgement when the iterative learning 
process should be terminated. In this study the 
learning process will be stopped when the Mean 
Relative Error (MRE) of the outputs is less than a 
specified relative error expectation for 
prediction/evaluation results, which is a common 
treatment for a learning process of teacher data with 
random errors (i.e. white noise). In this study we 
have set the error expectation to 2%, which is 
considered an accuracy that is good enough for the 
expected result in this study.  Needless to say, this 
error expectation should be set according to the 
required accuracy of the problem which is being 
dealt with. 

 
2.4 Verification of Neural Network Model 

 
The proposed neural network model has been 

verified by applying it to an urban daily water 
demand prediction problem [7], which has been 
studied with several different models, and for which 
there is clarity regarding what is a good or an 
acceptable prediction for daily water demand. We 
will examine whether the proposed neural network 
model is able to predict daily water demand with the 
same or even higher accuracy by using the same 
information as the other prediction models used. 

Specifically, the neural network model has been 
compared with three different prediction models: 
Multiple Regression Model [8], ARIMA (Auto-
Regressive Integrated Moving Average) Model [9, 
10] and Kalman-Filtering Model [10]. All the 
models used the same daily water delivery records 
from April 1982 to March 1990 for a city in Japan, 
the weather information during the same time 
period and each day’s characteristics (weekday or 
weekend/ national holiday) to calibrate or identify 
the model parameters. This historical data is used 
because the comparison models are composed with 
these data. For the neural network model, these 
records are used as the teacher data to train the 
model. As for the weather information, the records 
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of daily high temperature, weather (sunny, cloudy 
or rainy) and daily precipitation are included.   

Three accuracy indexes have been applied to 
compare the models to identify which model is able 
to give the most accurate prediction for daily water 
demands. Mean Relative Error (MRE, %) is a very 
straight index:  the smaller the Mean Relative Error 
is, the better the predictions are. Correlation 
Coefficient (CC) between predictions and records 
indicates how good the predictions are: the 
predictions are perfect when CC=1.0, and the 
predictions are totally random when CC=0. Relative 
Root Mean Square Error (RRMSE) are similar to 
CC and reflect how good the predictions are: 
RRMSE=0 for perfect predictions and RRMSE=1 
when all the predictions are equal to the mean of the 
records. 

Table 1 shows the prediction accuracies of daily 
water demands over the course of a year for the 
same city from April 1991 to March 1992 by 
different models. The neural network model gave 
the best predictions by far in terms of all the three 
accuracy indexes. The improvement magnitudes of 
prediction accuracy in each index show the 
reliability and the potential of the neural network 
model.  

 
Table 1 Prediction accuracy comparison of 

different models. 
Model MRE(%) CC RRMSE 

Multiple Regression Model 2.90 0.764 0.659 

ARIMA Model 2.80 0.794 0.623 

Kalman Filtering Model 2.69 0.808 0.599 

Neural Network Model 2.13 0.877 0.483 

 
In order to understand the error structure of the 

predictions given by the neural network model, the 
prediction error distribution is shown in Table 2, 
and the possible causes have been examined for the 
5 days which have a prediction relative error greater 
than 10%, which is shown in Table 3. Per Table 3, 
the largest prediction error was yielded when 
important information that affected daily water 
demands was missed. In other words, prediction 
accuracy is expected to be further improved when 
this missed information, such as typhoon, 
continuous rain periods, extreme weather events or 
atypical days, are taken into consideration by 
including all of them into the teacher data for neural 
network training. This demonstrates that careful 
teacher data hunting is important in artificial 
intelligence application research. 

Based on these results, it is reasonable to 
conclude that the proposed neural model is a 
reliable and capable tool in information processing 
of data. In the next section we will apply this neural 
network model to river environment evaluations 
and predictions in order to provide better 

information for water environment planning and 
management. 

 
Table 2 Relative error distribution of the predictions 

 made by the Neural Network Model 
Relative Error Range 

(%) 
No. of 
Days 

Composition 
(%) 

[0.0, 3.0) 278 76.2 
[3.0, 5.0)   61 16.7 
[5.0, 8.0)  19  5.2 
[8.0, 10.)   2  0.5 
[10. , ∞)   5 1.4 

 
Table 3   The possible causes for the days with 

       a relative error more than 10%. 

Date 
Demand 

prediction 
(m3/day) 

Delivery 
record 

(m3/day) 

Relative 
error 
(%) 

Possible causes 

May 
5 354.5 320.0 10.8 

The last day of 
Japanese 

holiday “Golden 
Week” and 

sunny after a 
rainy week. 

Sept. 
17 364.9 319.5 14.2 Hit by typhoon. 

Oct. 
5 362.9 315.0 15.2 Heavy rain. 

(105.5mm/day) 

Oct. 
7 361.4 404.4 10.6 

Sunny after 5 
continuous 
rainy days. 

Jan. 
 2 358.5 315.0 13.8 

New Year 
Holiday and 

sunny. 
 
3. TRAINING OF NEURAL NETWORK 

 MODEL 
 

3.1 Teacher Data 
 
The neural network model proposed above is 

now ready to be applied to a water environment 
evaluation problem, which is the purpose of this 
study. As for the water environment evaluation 
index, the habitability of a water environment to 
Genji fireflies (Luciola cruciate) is adopted. Genji 
fireflies are highly prized in Japanese culture, and 
are widely regarded as a symbol for a good water 
environment. Firefly habitability has even been 
adopted as a river environment management goal in 
many urban river basins in Japan. 

As for the factors that affect the habitability of 
fireflies, five highly critical factors have been 
selected to be included in the teacher data although 
there are many factors that impact firefly 
habitability [11]. Additionally, these five factors 
have been selected because they are the main 
changeable factors through common river 
environment improvement measures. The five 
factors are 1) Concentration of Dissolved Oxygen 
(DO), 2) Brightness of lighting during nighttime, 3) 
Inflow of sewage, 4) Riverbed situation, and 5) 
Type of revetment construction. 
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3.2 Quantification of Habitability and Factors 
 

Firefly habitability and related factors have been 
quantified by utilizing information and knowledge 
about Genji fireflies from existing research [11, 12]. 

First, firefly habitability is treated as a 
continuous variable which ranges from 0.0 (for 
extremely unlivable water environments) to 1.0 (for 
an idealistic water environment). Then, all the 
factors are categorized although most are usually 
measured quantitatively as a continuous figure. This 
resolves the issue that the same number can mean 
different things for different rivers. For example, 
the sewage inflow rate 1.0 ton/hour is an extremely 
strong pollution source for small urban rivers, but 
could mean almost nothing for a river with a flow 
rate of more than 100 m3/s. 

As an example, Concentration of Dissolved 
Oxygen (DO) is categorized as 1 for a DO saturated 
situation, 0 for the DO concentration above 6.8 mg/l 
(which means a livable environment for fireflies), 
and -1 for the DO concentration below 6.8 mg/l 
(which means an undesirable/deadly living 
environment). In the same way, the other four 
factors are also categorized as shown in Table 4. 

  
Table 4   Factor Quantification 

Factor Category Meaning 
Concentration 
 Of Dissolved 
 Oxygen  (DO) 

1 DO saturated 
0 ≥6.8mg/l, livable 
-1 <6.8mg/l, undesirable 

Inflow 
of 

sewage 

1 No sewage inflow 

0 A small amount of 
inflow 

-1 Constant inflow 
Brightness 

 Of 
 lighting 

1 Dark (no artificial light)  
0 Relatively dark 
-1 Bright 

Riverbed 
situation 

1 Natural riverbed with 
soil, sands or pebbles 

-1 Artificial riverbed 
Type of 

 revetment 
construction 

1 Natural 
0 Partially natural  
-1 Artificial 

 
Table 5   Teacher data samples. 

C
oncentration 

of D
O

 

Inflow
 of 

sew
age 

B
rightness of 
lighting 

R
iverbed 

situation 

Type of 
revetm

ent 

H
abitability 

0 1 1 1 0 0.915 
-1 1 1 1 0 0.000 
1 0 1 1 0 0.875 
0 0 1 1 0 0.865 
-1 0 1 1 0 0.000 
1 -1 1 1 0 0.000 
1 1 1 1 1 1.000 

 
The firefly habitability and the five related 

factors together make the teacher data. Samples of 
teacher data which are used in this study are shown 

in Table 5. 162 teacher data have been collected 
from a variety of research references on Genji 
firefly habitability [11, 12]. 

 
3.3 Training of Neural Network Model 

 
The neural network model has been trained (put 

under a learning process) with the collected teacher 
data. The training process is based on the learning 
procedures as explained before, but it is still a 
process of trial and error because there are still a lot 
of details that remain undecided, such as a suitable 
step size of optimization, a suitable output function, 
an efficient order to present the teacher data to the 
neural network model, and a proper initial network 
size (layers and units in each layers). An 
experienced AI engineer may be able to assist in 
accelerating the learning process.  

Figure 2 shows the reproduction accuracy of the 
teacher data with the trained neural network model. 
Here the reproduction accuracy is represented by 
the absolute error between the habitability in the 
teacher data and the habitability generated with the 
trained neural network model. Based on the results 
in Fig. 2, there are only 6 out of 162 teacher data 
that have the same order of absolute error as the 
smallest significant figure (±0.001) of habitability, 
and all the 156 teacher data have an error less than 
the smallest significant figure, which means that the 
trained neural network model is able to reproduce 
the teacher data with almost no errors. In the next 
section, this well-trained neural network model will 
be used to evaluate the firefly habitability of an 
urban river. 

 

 
Fig. 2   Reproduction accuracy of teacher data 
 

 
4. WATER ENVIRONMENT EVALUATION 

 
4.1 Firefly Habitability of Aise River 

 
The trained neural network model has been 

applied to evaluate the firefly habitability of Aise 
River. Aise River passes through Inuyama City in 
Aichi prefecture, Japan,  and is a typical urban river 
which receives sewage and urban drainage. Aise 
River also receives fresh water inflow at its 
uppermost location from Kisogawa River, a 
regional water supply source with a high flow rate. 
The fresh water from Kisogawa River has improved 
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the water environment of Aise River in its upper 
segments significantly, but the improvement effects 
have been gradually cancelled out by the constant 
sewage inflow when the river runs downstream. In 
this study, Aise River has been divided into four 
segments according to the present water 
environment: upper, mid-upper, mid-lower and 
lower. Fig. 3 shows the images of the four segments 
of Aise River. 

The present water environment factors of Aise 
River and its firefly habitability yielded by the 
trained neural network model are shown in Table 6. 
The evaluation results can be summarized as 
follows. 
 The upper segment of Aise River is a habitat 

very suitable to Genji fireflies. 
 The habitability has decreased sharply 

downstream. 
 The mid-lower and the lower segments of Aise 

River are no longer habitable to Genji fireflies. 
   

 
(a) Upper Segment 

 
(b) Mid-Upper Segment 

 
(c) Mid-Lower Segment 

 
(d) Lower segment 

Fig. 3   Images of Aise River 
 
The above conclusions derived from the 

evaluation results that are given by the trained 
neural network model match well with the 
observation that there are no fireflies during 

summer along the mid-lower and lower segments of 
Aise River for many years. 

 
Table 6   The firefly habitability of Aise River 

Location 

C
oncentration 

of D
O

 

Inflow
 of 

Sew
age 

B
rightness of 
lighting 

R
iverbed 

situation 

Type of 
revetm

ent 

H
abitability 

Upper 1 1 1 1 1 0.999 
Mid-

Upper 1 1 0 1 0 0.874 

Mid-
Lower 1 0 0 1 -1 0.471 

Lower 1 -1 -1 -1 -1 0.003 

 
4.2 Sensibility Analyses of Factors 

 
The trained neural network model has also been 

used to carry out a sensibility analysis for all the 
factors related to firefly habitability. The sensibility 
coefficient of a factor is defined as the partial 
derivative of the habitability regarding the factor as 
follows. 

 
 𝑆𝑆𝑖𝑖 =  𝜕𝜕𝜕𝜕(𝑋𝑋1,𝑋𝑋2,⋯,𝑋𝑋𝑁𝑁)

𝜕𝜕𝑋𝑋𝑖𝑖
|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑝𝑝 𝑣𝑣𝑓𝑓𝑣𝑣𝑣𝑣𝑝𝑝𝑝𝑝         (15)  

 
𝑆𝑆𝑖𝑖  is the sensitivity coefficient of factor 𝑋𝑋𝑖𝑖  at the 
present factor values. For all the factors, the 
sensitivity coefficients have been calculated and 
shown in Table 7. The whole number 0 means a 
coefficient value less than the smallest significant 
figure. 
 

Table 7   Sensibility coefficients of factors. 

Location 

C
oncentration 

of D
O

 

Inflow
 of 

Sew
age 

B
rightness of 
lighting 

R
iverbed 

situation 

Type of 
revetm

ent 

Upper 0.0003 0.0042 0.0016 0.0002 0.0016 
Mid-
Upper 0.0749 0.0585 0.4608 0.1195 4.4079 
Mid-

Lower 0.0010 0 0.0002 0.0002 0.0011 

Lower 0 0 0 0 0 

 
For the upper segment of Aise River, all the 

factors have a relatively small sensibility coefficient, 
which is because the present values of all the factors 
are good enough and there is no room for further 
improvement. 

For the mid-lower and lower segments, all the 
factors also have a relatively small sensibility 
coefficient, which is because the present values of 
all the factors are so poor that a small improvement 
will not make a meaningful change in firefly 
habitability along these river segments. 
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For the mid-upper segment, the revetment has a 
large sensitivity coefficient, this indicates that 
improving the present revetment (partially natural) 
will increase the firefly habitability significantly. 
The brightness factor also has a large sensitivity 
coefficient, which means that removing all the 
artificial lighting will improve the firefly 
habitability. The other three factors all have a 
relatively small sensitivity coefficient, which is 
because the present values of these factors are 
already good, and there is no need for further 
improvement. 
 
4.3 Selecting Improvement Measures 

 
The evaluation results of firefly habitability 

along with the sensibility analysis results have 
drawn a clear picture about the most effective water 
environment improvement measures, which can be 
summarized as follows. 
 For the upper segment, no improvement 

measures are necessary because the present 
situation is already good enough. 

 For the mid-upper segment, changing the 
revetment into natural revetment and 
removing all the artificial lighting are 
expected to raise firefly habitability 
significantly. 

 For the mid-lower and lower segments, 
significant improvement for all factors are 
necessary because a small change for either 
factor is not expected to cause any meaningful 
improvement in firefly habitability due to the 
poor situation at present. 

 
5. CONCLUSIONS 
 

With the purpose of developing a better 
methodology for water environment planning and 
management, a neural network model has been 
proposed for water environment evaluation in this 
study. 

 The neural network model was tested with the 
daily water demand prediction problem, a well-
studied problem suitable for testing. The test has 
shown the reliability and potential of an artificial 
intelligence model. 

The verified neural network model was applied 
to a water environment evaluation problem, 
specifically the Genji firefly habitability problem. 
The application results have shown that, with a 
neural network model, not only can the 
environment of an urban river be evaluated with a 
high level of accuracy and detail, but also that the 
most effective environment improvement measures 
can be clearly identified. These results demonstrate 
that artificial intelligence is an effective and 

efficient tool for water environment evaluation. 
The firefly habitability was studied with only 

select critical factors in this study, which is 
insufficient for genuine habitability research 
because there are many other factors which affect 
firefly habitability. The factors were limited to the 
critical ones due to the limitations of data hunting. 
This illustrates  that  one of  the significant  
challenges  of practical research on artificial 
intelligence applications will be the gathering of 
teacher data. In spite of these difficulties, artificial 
intelligence is a promising tool for water 
environment planning and management.  
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