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ABSTRACT: Breast cancer is the most common and lethal type of cancer among women in the world. 

Epimutation is the leading cause of the tumorigenesis of breast cancer. DNA methyltransferase 1 (DNMT1) is the 

key enzyme involved in the regulation of DNA methylation pattern. In this research, the fragment-based drug 

design approach on natural products was performed to discover a novel inhibitor of the DNMT1 as a therapeutic 

strategy against breast cancer. About 2,601 fragments out of 168,646 compounds were obtained from the Lipinski’s 

Rule of Three and toxicity screening. The fragments were docked into the S-Adenosyl-L-methionine (SAM) 

binding site of DNMT1. The potential fragments were merged with S-Adenosyl-L-homocysteine (SAH), 

generating nine ligands. The ligands underwent flexible docking simulation and ADME-Tox prediction by using 

AdmetSAR, Toxtree, SwissADME software. Three ligands show favorable characteristics as a new drug candidate 

for the DNMT1 inhibitor according to the interaction of the amino acid residues, RMSD, and ∆Gbinding. MAHI1 

being the best ligands in term of ∆Gbinding -12.6300 kcal/mol, molecular interaction, and pharmacological 

properties. 
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1. INTRODUCTION 

 

Cancer is a major public health problem 

worldwide [1]. Breast cancer is among the leading 

causes of death in women [2]. It is also the current 

most cancer in women worldwide with 1.7 million 

diagnosed cases [3]. The human genome consists of 

genetic information and epigenetic. Epigenetics 

regulate how and where genetic information should 

be used [4]. DNA methylation is one of the essential 

mechanism in functional epigenetic [5]. DNA 

methyltransferases (DNMTs) is the leading enzyme 

in the epigenetic regulation of gene expression in 

mammalian cells [6]. DNMT1 is the most abundant 

DNMTs in the mammalian cells and have a role in 

maintaining the methylation pattern [7]. 

DNA methylation, whether hypomethylation or 

hypermethylation, affects gene expression and 

chromosomal instabilities. Hypomethylation causes 

overexpression of transcription of proto-oncogenes, 

and reactivation of transposable elements and 

demethylation of xenobiotic [8]. On the other hand, 

hypermethylation causes suppression of tumor 

suppressor genes and downregulation of DNA repair 

genes. DNA hypermethylation also plays an essential 

role in silencing the tumor suppressor genes as one of 

the most consistent hallmarks of human cancer [7].  

Aberrant DNMT1 activity leads to local 

hypermethylation in DNA promoter gene and global 

hypomethylation which pose potential causes for the 

abnormal growth of cancer cells [8]. Thus, the 

inhibition of DNMT1 activity has been established as 

a possible way to reactivate gene silenced by 

methylation of their promoters in some disease, 

including breast cancer [9] 

Natural products have been known as one of a 

candidate drug. It is a potential source of drugs due to 

their molecular diversity and low toxicity [9,10]. One 

of the methods for lead compound discovery is 

fragment-based drug design (FBDD). One of the 

advantages of FBDD is that it results in a lower 

molecular weight lead, that is likely to have higher 

oral bioavailability [11]. Fragment merging is an 

elaboration of the fragment which incorporates a 

structural portion of overlapping molecules, usually 

an already known substrate or inhibitor of the target 

protein, into a fragment [12]. Hence, preserving the 

essential molecular interaction of the initial substrate 

or inhibitor while improving the activity by the 

introduction of the new fragment. In this research, the 

fragment merging approach is utilized on the 

potential natural product compounds and the already 

known product of the DNMT1 enzymatic reaction, S-

Adenosyl-L-homocysteine (SAH), to generate lead 

compounds as an inhibitor for DNMT1 through in 

silico molecular docking simulation method and 

pharmacological test.  

 

2. RESEARCH METHODOLOGY 
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This research done through an in the silico method 

by employing Molecular Operating Environment 

(MOE) v2014.09, DataWarrior v04.07.02, 

ChemBioDraw Ultra v14.0, Toxtree v2.6.13, 

SwissADME (http://www.swissadme.ch/), and 

AdmetSAR (http://lmmd.ecust.edu.cn/1) software. 

The 3D structure of DNMT1 protein was obtained 

from Protein Data Bank at the Research 

Collaboratory for Structural Bioinformatics (RCSB 

PDB). The database of natural products was acquired 

from PubChem database. 

 

2.1 Preparation of DNMT1 Protein  

 

The 3D structure of DNMT1 with PDB ID 3AV5, 

3AV6, 3PTA, 3SWR, and 4WXX were obtained from 

the RCSB. The chosen 3D structures were saved in 

PDB format. The optimization DNMT1 was done 

using MOE v2014.09 by removing water molecules 

and unnecessary metal atoms and optimizing the 

structure using LigX with the default setting. Lastly, 

all of the DNMT1 protein were saved in .moe format. 

 

2.2 Protein-Ligand Interaction Fingerprints 

(PLIF) 

 

PLIF was applied to summarize the interaction 

between ligands and protein using a fingerprinting 

scheme. This method has been done using MOE 

v2014.09 with potential setup AMBER10: EHT, 

forcefield, R-field solvation and superpose. 

Superpose generated sequence alignment, structure 

alignments, PDB coordinates, Root Mean Square 

Deviation (RMSD) statistics, difference distance 

plots, and an interactive image of the superimposed 

structures [13,14]. The procedure of PLIF has been 

done based on standard default in MOE v2014.09.  

 

2.3 Preparation of the Natural Product Fragments 

 

The standard ligands SAH, S-Adenosyl-L-

methionine (SAM), and Sinefungin (SFG), as well as 

the natural products as candidate fragment, were 

obtained from PubChem database. The ligands were 

then optimized through MOE v2014.09. The 

MMF94x force field with RMS gradient of 0.001 was 

selected as the optimization parameters. Natural 

products of The optimized ligands were stored in 

.mdb format. The prepared natural products were 

screened to get fragments which fulfill Lipinski’s 

Rule of Three (RO3) and Toxicity test by 

DataWarrior v04.07.02. 

 

2.4 Molecular Docking of Natural Product 

Fragments and Fragment Merging 

 

The selected fragments were on docked into the 

SAM-binding site of DNMT1 by using 

pharmacophore query through MOE v2014.09. The 

fragments with favorable Gibbs binding energy 

(∆Gbinding), RMSD, and molecular interaction were 

selected to be merged with the standard molecule, 

SAH. This merging process of fragments and 

standards was done by utilizing MOE v2014.09 and 

ChemBioDraw Ultra 14.0.  

 

2.5 Molecular Docking of Ligands 

 

The molecular docking simulation for ligands and 

standard were initiated with rigid docking and 

followed by the flexible docking protocol. All the 

parameters for the molecular docking simulation were 

selected according to MOE v2014.09 standard 

protocol with AMBER10: EHT as the forcefield.  

 

2.6 Pharmacological Properties ADME-Tox 

 

The potential ligands from molecular docking 

simulation underwent pharmacological properties 

prediction. Toxtree v2.6.13 was used to screen the 

carcinogenicity and mutagenicity. The toxic 

properties of the ligands were analyzed using 

DataWarrior v04.07.02 and AdmetSAR. The health 

effects of the ligands on human organ were predicted 

using SWISSADME. 

 

3. RESULT AND DISCUSSIONS 

 

3.1 Preparation and Visualization of DNMT1 

 

DNMT1 is responsible for discharging the DNA 

methylation during replication. DNMT1 has also 

been considered as an essential target for cancer 

therapy [15]. In this research, the 3D structures of 

DNMT1 were obtained from RCSB PDB. The water 

molecules and other unnecessary molecules were 

eliminated because the solvation effect is not taken 

into account in the molecular docking simulation 

[16]. Hydrogen atoms were incorporated into the 

protein. The protein structures from RCSB PDB is 

generated from X-ray crystallography which 

commonly does not have a hydrogen atom because of 

the limited resolution of the instrumentation. The 

presence of a complete atom on protein structures is 

essential because it will affect the molecular 

mechanics, dynamics, and electrostatic calculations 

involved in molecular docking simulation [16,17]. 

The last step of protein preparation was energy 

minimization to generate zero gradients of all atoms; 

the lowest energy and the most stable condition that 

can be used to investigate the mechanism of a 

chemical or biological process [18]. The PLIF method 

was employed to quantify and compare ligand-protein 

interactions. Through the PLIF method, the 

fingerprints were covered into a normalized 

quantitative score that expresses the similarity 

between the interaction profile of docking pose and 

that of a reference protein-ligand complex [19].  

http://www.swissadme.ch/
http://lmmd.ecust.edu.cn/admetsar1
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Furthermore, the pharmacophore was validated to 

assess its ability to distinguish active compounds that 

have potentially inhibit DNMT1 to the other [20]. In 

addition, the purpose of pharmacophore validation 

was to evaluate the quality of pharmacophore features 

which created from the previous step. Standard 

ligands were utilized to perform the validation test. 

Visualization on the binding site of DNMT1 was done 

with ‘Surface Navigation and Maps’ tools in MOE 

2014.09 (Fig. 1).  

 

 

 

Fig. 1. Binding site visualization of DNMT1 with 

pharmacophore, the green, pink, and blue color is 

HydA, Don&Acc, and Acc, respectively. 

3.2 Preparation of Natural Product Fragments 

 

About 168,646 compounds of natural products 

were obtained from PubChem database. It was 

screened by RO3 which has parameters such as, 

molecular weight lower than 300 Da, LogP lower 

than 3.0, the number of hydrogen donor less than 3, 

and the number of hydrogen acceptor less than 3, 

which suitable for the screening of small compound 

for fragment development [21]. The natural products 

also screened based on the veber rule [22], rotatable 

bond no more than 3 and topological polar surface 

area (TPSA) lower than 60 Ǻ. Natural products which 

drug-likeness lower than 0, and shows the toxicity 

potential such as mutagenic, tumorigenic, 

reproductive effective and irritant were also 

eliminated. From the initial screening, 2,601 

compounds were saved in a .mdb format as the 

fragment for the next experiment. 

 

3.3 Analysis of Molecular Docking Simulation of 

DNMT1 Protein and Fragments 

 

Molecular docking simulation has become an 

irreplaceable tool in drug design and discovery to 

predict the conformation of small molecule ligands 

with compatible target binding site and define binding 

affinity of the ligand to form a stable complex 

structure [23,24]. The selected fragments from the 

previous step were further screened molecular 

docking simulation. In the first molecular docking 

simulation, only 543 compounds bind to the 

pharmacophore points in the binding pocket. Then, 

the second molecular docking simulation produced 

only 282 compounds that bind to the pharmacophore 

points. Only 77 compounds fulfilled the RMSD value 

lower than 2.0. The ∆Gbinding, the number of a 

hydrogen bond between the ligand and the protein, 

and the position of the fragment in the binding site 

were determined to choose the best fragments (Table 

1). 

 

3.4 Preparation of Natural Product Ligands  

 

The fragment merging was performed by 

deploying MOE v2014.09. The fragments were 

connected to the part of the lead compound (SAH) by 

building a bond and replace the overlap part. New 

ligands were generated based on Lipinski's Rule of 

Five (RO5) and Veber rule which include molecular 

weight lower than 500 Da, TPSA lower than 140 Ǻ, 

logP between -0.5 and 5.6, number of hydrogen donor 

no more than 5, and number of hydrogen acceptor no 

more than 10 [25]. The produced ligands must 

underwent the ADME-Tox screening following drug-

likeness and toxicity prediction test (carcinogenic, 

mutagenic, irritant, and reproductive effect risks); a 

total of 9 ligands selected from this process. The best 

ligands through this process were shown in Fig. 2. 

 

 

               (A)                                   (B) 

 

 

 

 

 

 

(C) 

 

Fig. 2. The Selected Fragments and the merging 

position (A) MAHI1. (B) MAHI2. (C) MAHI3. The 

red and black color is the part of the lead compounds 

and the fragment, respectively. 

3.5 Analysis of Molecular Docking Simulation of 

DNMT1 Protein and the Ligands 

 

Nine ligands and standards underwent molecular 

docking simulation using MOE v2014.09. ‘Rigid 

Receptor’ protocol was used for first and second 
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simulation with the retain of 1 and 30 repetitions, 

respectively. In the first step, only 7 ligands bind to 

the site and have RMSD value lower than 2.0. Only 6 

ligands have potential properties such as ∆Gbinding 

lower than standard. The 6 ligands were docked with 

‘Induced Fit’ protocol, and retain the value of 100. 

The most potential ligands were obtained by 

examining the molecular interaction of the ligands 

with the binding pocket of DNMT1. The result of the 

best three ligands along with the standards from 

flexible molecular docking simulation is shown in 

Table 2. 

Table 1. List of the best natural product fragments 

 

No Compound Name logP TPSA Weight 
H-

Acc 
H-

Don 

1 2-hydroxy-1-methoxy-5,6,6a,7-tetrahydro-4H-

dibenzo[de,g]guinolin-6-ium 

2.69 46.07 268.34 3 2 

2 2-(3-hydroxyphenyl)-4-propylmorpholin-4-um -0.25 33.90 222.31 3 2 

3 2-(3-hydroxyphenyl)-5-methyl-4-propylmorpholin-4-ium 0.08 33.90 236.33 3 2 
4 (Z)-1-((1-hydroxy-2-

methylbutylidene)amino)octahydropyrrolizin-4-ium 

-0.47 37.03 211.33 3 2 

5 1-(hydroxymethyl)octahydropyrrolizin-4-ium 1.26 40.46 299.44 3 3 
6 (E)-1,3-bis(2-hydroxyphenyl)prop-2-en-1-one 2.61 57.53 240.26 3 2 

7 (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one 2.96 37.30 224.26 2 1 

 

Table 2. The ∆Gbinding, RMSD value, and molecular properties of ligands 

 

Ligand ∆Gbinding RMSD logP TPSA Weight H-Acc H-Don 

MAHI1 -12.6301 0.4025 -0.49 132.98 457.55 10 4 

MAHI2 -12.7872 1.6431 0.57 130.31 490.63 9 5 

MAHI3 -11.6353 1.0117 -0.46 112.15 428.54 9 3 

SAM* -11.2605 1.3306 -3.94 187.08 399.45 11 4 

SAH* -11.2323 1.8644 -3.73 212.38 384.47 11 4 

SFG* -10.9262 1.6747 -3.96 214.72 382.40 12 5 

 

 

 
 

Fig. 3. Interaction of SAMI1 ligand with Amino acid 

residue (A) in 3D and (B) in 2D visualization. 

 

As the best ligand, MAHI1 has lower ∆Gbinding 

value than standards and bound on the best position 

in the binding site. As shown in Fig. 3, MAHI1 has 

20 interaction with the amino acids residue in the 

binding site. Seven hydrogen bonds are binding the 

ligands in the pocket binding such as Asp1190, 

Cys1191, Gly1223, Phe1145, Asn 1578, and 

Glu1168. 

 

3.6 Analysis of Molecular Docking Simulation and 

ADME-Tox the Ligands 

 

The ADME-Tox analysis of the best ligands that 

have been obtained from the molecular docking 

simulation was performed by employing admeSAR 

[26], and SwissADME [27] software. Determining 

the pharmacological properties is essential because 

not all of the best ligands may be ready to prepare as 

drug candidates due to its toxicity and low ADME 

properties that may reduce the efficiency of the 

ligands to served as a drug in the human body. The 

result of the ADME-Tox analysis using admeSAR 

and SwissADME is shown in Table 3. The 

gastrointestinal (GI) absorption and Cytochrome 

P450 (CYP) inhibitors parameters were analyzed 

using SwissADME software, and the subcellular 

localization, organic cation transporter, AMES 

toxicity, carcinogens, and biodegradation parameters 
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were checked using the admetSAR software. Two of 

the best ligands have subcellular localization in 

lysosome and the other one is in the nucleus. The 

ADME-Tox properties should be the same for all of 

the best ligands. Besides, standard ligands have 

several bad ADME-Tox properties. For example, 

SFG has low GI absorption compared to other 

ligands. 

The drug-likeness and the medicinal chemistry 

properties of the best and standard ligands were 

obtained by using SwissAdme software. The drug-

likeness based on Veber’s and Egan’s rule was 

determined, and the bioavailability value was 

obtained. Furthermore, the Pan-assay interference 

compounds (PAINS), Brenk, and synthetic 

accessibility value were also predicted. The result is 

shown in Table 4. Based on this test, all of the best 

ligands have good drug-likeness according to both 

Veber’s and Egan’s Rule. All of the ligands shown 

the same bioavailability value (0.55). According to 

the result of analysis from SwissADME software, the 

bioavailability of all the best ligands was at a similar 

level. The synthetic accessibility score of the ligands 

was relatively the same as well, varying from 4.82 

(MAHI1) to 5.13 (MAHI2). Furthermore, MAHI1 

and MAHI3 were not determined to have any Brenk 

fragments. However, some of the best ligands were 

obtained to have one molecular fragment that 

contains PAINS property. In addition, MAHI1 were 

not predicted to have PAINS property. 

Table 3. ADME-Tox prediction using admetSAR and SwissADME software 

 

Ligand 
GI 

Absorption 

Subcellular 

Localization 
CYP Inhibitor 

Organic Cation 
Transporter 

(SLC22A2) 

AMES toxicity Carcinogens 
Biodegrad

ation 

MAHI1 High Lysosome None Non-inhibitor No No No 

MAHI2 High Lysosome None Non-inhibitor No No No 

MAHI3 High Nucleus None Non-inhibitor No No No 
SAM* High Nucleus None Non-inhibitor No No No 

SAH* High Nucleus None Non-inhibitor No No No 

SFG* Low Nucleus None Non-inhibitor No No No 

Note: *Standard Ligand 

Table 4. The drug-likeness and medicinal chemistry properties of selected and standards compounds using 

SwissADME software 

 

Ligand 

Drug-likeness Medicinal Chemistry 

Veber Egan 
Bioavailability 

score 
PAINS Brenk 

Synthetic 

accessibility 

MAHI1 Yes Yes 0.55 0 alert 0 alert 4.82 

MAHI2 Yes Yes 0.55 1 alert 0 alert 5.13 

MAHI3 Yes Yes 0.55 0 alert 1 alert 5.05 

SAM* No No 0.55 1 alert 1 alert 4.94 

SAH* No No 0.55 0 alert 0 alert 4.69 

SFG* No No 0.55 0 alert 0 alert 4.78 

Note: *Standard Ligand

4. CONCLUSION 

 

MAHI1, MAHI2, and MAHI3 have lower 

∆Gbinding energy and better interaction with DNMT1 

compared to the standards. After all analysis, the 

selected ligands, MAHI1, shows the best 

conformation and interaction in the binding site of 

DNMT1 and have better ADME-Tox properties than 

the other ligands. The result indicates that fragment-

based drug design can be an essential method to 

discovered in developing a new drug for inhibiting the 

DNMT1. Finally, our result must be examined 

through in vitro and in vivo methods to determine its 

potential in the biological condition. 

 

5. ACKNOWLEDGMENTS 

 

This research is financially supported by the 

Directorate of Research and Community Engagement 

of Universitas Indonesia (DRPM UI) through Hibah 

Publikasi Internasional Terindeks Untuk Tugas Akhir 

Mahasiswa (PITTA) UI No: 

2328/UN2.R3.1/HKP.05.00/2018 All authors were 

responsible for the writing of the manuscript. 

Herewith, the authors declare that there is no conflict 

of interest regarding the manuscript.  

 

6. REFERENCES 

 

[1] Siegel R. L., Miller K. D.,  Jemal A., Cáncer 



International Journal of GEOMATE, Oct., 2019 Vol.17, Issue 62, pp. 41 - 46 

46 

 

Statistics. Ca Cáncer J, Vol. 67, Issue. 1, 2017, 

pp. 7–30. 

[2] Ghoncheh M., Pournamdar Z., and Salehiniya H., 

Incidence and Mortality and Epidemiology of Breast 

Cancer in the World. Asian Pac. J. Cancer Prev, Vol. 

17, Special Issue, 2016, pp. 43–46. 

[3] World cancer Research Fund., Breast cancer statistics 

| World Cancer Research Fund International. 

[4] Lyko F., The DNA methyltransferase Family: A 

Versatile Toolkit for Epigenetic Regulation. Nature 

Reviews Genetics, Vol. 19, Issue 2, 2018, pp. 81-92 

[5] Miletic V., Odorcic I., Nikolic P., and Svedruzic M. 

Z., In Silico Design of The First DNA-Independent 

Mechanism-based Inhibitor of Mammalian DNA 

methyltransferase DNMT1. PLoS One, Vol. 12, Issue 

4, 2017, pp. 1–21. 

[6] Subramaniam D., Thombre R., Dhar A., and Anant 

S., DNA Methyltransferases: A Novel Target for 

Prevention and Therapy. Front. Oncol., Vol. 4, Issue 

May 2014, pp. 1–13. 

[7] Mirza S., Sharma G., Parshad R., Gupta S. D., Pandya 

P., and Ralhan R., Expression of DNA 

methyltransferases in Breast Cancer Patients and to 

Analyze The Effect of Natural Compounds on DNA 

methyltransferases and Associated Proteins. J. Breast 

Cancer, Vol. 16, Issue 1, 2013, pp. 23–31. 

[8] Agrawal A., Murphy R. F., and Agrawal D. K., DNA 

methylation in Breast and Colorectal Cancers. 

Modern Pathology, Vol. 20, Issue 7, 2007, pp. 711–

721. 

[9] Maldonado-Rojas W., Olivero-Verbel J., and 

Marrero-Ponce Y., Computational Fishing of New 

DNA methyltransferase Inhibitors from Natural 

Products. J. Mol. Graph. Model, Vol. 60, Issue July 

2015, pp. 43–54. 

[10] Cragg G. M., Newman D. J., and Snader K. M, 

Natural Products in Drug Discovery and 

Development. Journal of Natural Product, Vol. 60, 

Issue 1, 1997, pp. 52–60. 

[11] Scoffin R., and Slater M., The Virtual Elaboration of 

Fragment Ideas : Growing, Merging and Linking 

Fragments with Realistic Chemistry. Drug Discovery, 

Development & Delivery, Vol. 7, Issue 2, 2015, pp. 

2–5. 

[12] Scott D. E., Coyne A. G., Hudson S. A., and Abell C., 

Fragment-Based Approaches in Drug Discovery and 

Chemical Biology. Biochemistry, Vol. 51, Issue 25, 

2012, pp. 4990–5003. 

[13] Kelly K., Multiple Sequence and Structure Alignment 

in MOE. Chemical Computing Group ULC, 2018.  

[14] Maiti R., Domselaar G. H. V., Zhang H., and Wishart 

D. S., SuperPose: A Simple Server for Sophisticated 

Structural Superposition. Nucleic Acids Res, Vol. 32, 

Issue Web Server, 2004 pp. 590–594. 

[15] Medina-Franco J. L., and Caulfield T., Advances in 

The Computational Development of DNA 

methyltransferase Inhibitors. Drug Discov. Today, 

Vol. 16, Issue 9–10, 2011, pp. 418–425. 

 

 

 

 

 

 

 

 

 

[16] Tambunan U. S. F., Alkaff A. M.,  Nasution M. A. F., 

Parikesit A. A., and Kerami J., Screening of 

Comemercial Cyclic Peptide Conjugated to HIV-1 

Tat peptide as Inhibitor of N-terminal Heptad Repeat 

Glycoprotein Ectodomain Ebola Virus Through In 

Silico Analysis. J. Mol. Graph. Model, Vol. 74, Issue 

-, 2017, pp. 1–7. 

[17] Labute P., MOE Forcefield Facilities. Chemical 

Computing Group Inc, Vol. -, Issue -, 1997.  

[18] Taylor R. D., Jewsbury P. J., and Essex J. W., A 

Review of Protein-small Molecule Docking Methods. 

J. Comput. Aided. Mol, Vol. 16, Issue 3, 2002, pp. 

151–166. 

[19] Da C., and Kireev D., Structural Protein − Ligand 

Interaction Fingerprints (SPLIF) for Structure-Based 

Virtual Screening: Method and Benchmark Study. 

Chem. Inf. Model, Vol. 54, Issue -, 2015, pp. 2555-

2561. 

[20] Krishna S., Shukla S., Lakra A. D.,  Meeran S. M., 

and Siddiqi M. I., Identification of Potent Inhibitors 

of DNA methyltransferase 1 (DNMT1) Through A 

Pharmacophore-based Virtual Screening Approach. 

J. Mol. Graph. Model., vol. 75, 2017, pp. 174–188. 

[21] Rees C. D., Congreve M., Murray C. W., and Carr R., 

Fragment-Based Lead Discovery. Nat. Drug Discov, 

Vol. 3, Issue August 2004, pp. 660–672.  

[22] Veber D. F.,  Johnson S. R.,  Cheng H. Y., Smith B. 

R., Ward K. W., and Kopple K. D.,  Molecular 

Properties That Influence The Oral Bioavailability of 

Drug Candidates. Journal of Medicinal Chemistry, 

Vol. 45, 2002, pp. 2615–2623. 

[23] Ferreira L. G., Santos R. N., Oliva G., and 

Andricopulo A. D., Molecular Docking and 

Structure-Based Drug Design Strategies. Molecules, 

Vol. 20, Issue 7, 2015, pp. 13384–13421. 

[24] Tripathi A., and Misra K., Molecular Docking : A 

Structure-Based Drug Designing Approach JSM 

Chem, Vol. 5, Issue 2, 2017, pp. 1042. 

[25] Lipinski C. A., Lead Profiling Lead and Drug-Like 

Compounds : The Rule of Five Revolution. Drug 

Discov. Today Technol., Vol. 1, Issue 4, 2004, pp. 

337–341. 

[26] Cheng F., Li W., Zhou Y., Shen J., Wu Z., Liu G., Lee 

P. W., and Tang Y., AdmetSAR: A Comprehensive 

Source and Free Tool for Assessment of Chemical 

ADMET properties. J. Chem. Inf. Model, Vol. 52, 

Issue 11, 2012, pp. 3099–3105. 

[27] Daina A., Michielin O., and Zoete V., SwissADME: 

A Free Web Tool to Evaluate Pharmacokinetics, 

Drug-likeness and Medicinal Chemistry Friendliness 

of Small Molecules.  Sci. Rep, Vol. 7, Issue October 

2016, 2017, pp. 1–13. 

 

Copyright © Int. J. of GEOMATE. All rights reserved, 

including the making of copies unless permission is 

obtained from the copyright proprietors.  


