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ABSTRACT: Expansive soils are predominant in arid and semi-arid regions, and they are highly moisture 
sensitive. The investigation of the climate-ground interaction of expansive soils is extremely important to 
understand the hydro-mechanical responses of such soils. During the past decade, the low cost and simple 
methods to reliably monitor the soil volumetric water content have been popular among geotechnical 
practitioners. As a result, EC-5 moisture sensors have been widely used in agricultural and scientific projects 
due to the minimized salinity and textural effects on the final volumetric water content readings. The changes 
in soil volumetric water content profile can be effectively monitored using soil-specifically calibrated EC-5 
sensors. However, due to the temperature sensitivity of EC-5 sensors, a suitable correction factor is essential 
to determine the actual volumetric water content of the expansive soil. In this study, the authors present a 
practical and straightforward approach to calibrate EC-5 sensors incorporating the temperature effect. This 
simple calibration approach enhances the accuracy of the EC-5 moisture profiling and eventually leads to safe 
decision-making of geotechnical practitioners. 
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1. INTRODUCTION 
 

Unsaturated soil behaviour and the soil 
properties are significantly dependent on the soil 
moisture conditions [1-5]. Therefore, it is 
imperative to identify accurate methods and 
instrument to investigate the moisture variations in 
soil profiles [1-8]. These investigations include 
laboratory-based element tests, model tests and 
field-based investigations. The moisture sensitivity 
of expansive clays are considerably greater 
compared to non-reactive soils and hence, much 
attention has been given to these soils lately [3-12]. 

Expansive soils are widely distributed in arid 
and semi-arid regions in the world [9-10]. The 
surface soils in Queensland, Australia consists of 
more than 40% of these reactive soils. The swell-
shrink characteristics of expansive soils when 
subjected into alternate wet-dry cycles have caused 
severe repercussions for the light-weight structures 
founded on these clays [11-12]. Therefore, the 
geotechnical practitioners and researchers have 
identified the importance of the climate-ground 
interaction in expansive soils and investigated their 
behaviour under field and laboratory conditions 
during the past 2 decades [9-15]. Based on the 
current research, the variations in soil moisture 
causes changes in soil suction which eventually 
results in surface and sub-soil movements in 
expansive soil strata [9-11], [16-17]. Therefore, it is 
utmost important to determine the changes in soil 
moisture profile to investigate the expansive soil 

behaviour under different climatic conditions 
[9,10,16]. 

Monitoring of the soil water content in 
expansive soils has been conducted based on both 
destructive and non-destructive methods; however, 
the non-destructive methods are widely accepted 
due to minimum disturbance to long-term in-situ 
monitoring [18-20]. The radioactive non-
destructive methods such as gamma-ray attenuation 
and neutron scattering have been mostly avoided 
due to possible health hazards. As a result, the non-
destructive methods based on the dielectric constant 
of the media have been trending during the past 
decade to monitor the volumetric water content 
profile in expansive clays [21-24]. EC-5 moisture 
sensors can be identified for its wide application in 
research as non-destructive, dielectric sensors based 
on capacitance principle. The simplicity, cost and 
the ability to take point measurements due to small 
size have been beneficial for geotechnical 
practitioners when compared to the other 
commercially available options [26-30]. 

According to Decagon, EC-5 sensors use 70 
MHz frequency which minimizes the textural and 
salinity effects [9,10,16,17]. The volumetric water 
content measurement of EC-5 sensors depend on 
the surrounding soil volume of the probes. The 
change in volumetric water content in expansive 
clays occurs due to the volume changes in both the 
surrounding soil and water [9,10,30,31]. Therefore, 
additional considerations for embedment and 
calibration of EC-5 sensors are required. Generally, 
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these sensors capable of measuring the volumetric 
water contents of saturated soils up to 60%; 
however, is highly dependent on the soil 
[11,12,16,19,21,23]. 

EC-5 sensors are mostly soil-specifically 
calibrated for volumetric water content without 
incorporating the temperature effect due to the 
complexities involved in expansive soils [31-34]. 
This study presents a simple and practical approach 
to determine the temperature correction function for 
a given expansive clay. These findings may be 
useful for geotechnical practitioners and researchers 
to soil specifically calibrate EC-5 sensors 
maintaining high accuracy and thereby obtain a 
reliable moisture profile for their project-related 
decisions. 

 
2. RESEARCH SIGNIFICANCE 
 

EC-5 moisture sensors are highly used in 
research and industrial applications due to their 
simplicity and relatively low cost. The significance 
of this study is to introduce a practical approach to 
determine the temperature correction for EC-5 
moisture sensors embedded in expansive clays to 
improve the accuracy of the output. 

 
 

3. TEST MATERIAL 
 

Natural expansive grey clay collected from 
Sherwood, Queensland, in Australia was used in 
this study. These grey Vertosol soils are widespread 
in the south-east Queensland region and 
representative of subsoil conditions in Brisbane. 
Infiltration in these soils is moderate-to-low and 
known for swell-shrink responses due to climate 
changes [36]. For laboratory model and element 
tests, 250 kg (dry soil mass) of expansive grey 
Vertosol was extracted and carefully transported to 
Queensland University of Technology (QUT) with 
in-kind support from ‘The SoilTesters’. 

The basic soil classification of the test material 
was conducted according to Australian Standards 
(AS 1289.3. 6.3, 2003; AS 1289.3.5.1, 2006; AS 
1289.3.4.1, 2008; AS 1289.3.1.1, 2009a; AS 
1289.3.2.1, 2009b; AS 1289.3. 6.1, 2009c). The 
grain size distribution of the test material was 
obtained from the combination of sieve and 
hydrometer analyses. It contains 77.3% fines 
(particles finer than 75 microns) and 50.2% of clay 
(particles finer than 2 microns). Other basic 
properties of the clay, including liquid limit (LL), 
plasticity index (PI), linear shrinkage (LS), and the 
specific gravity were determined in accordance 
with Australian Standard test methods, and they are 
67%, 37.2 %, 13.4%, and 2.68, respectively [29-34]. 
The soil is classified as CH (Clay of High Plasticity) 
according to the Unified Soil Classification System 

(USCS). The compaction properties (MDD = 1.75 
g/cm3, OMC = 18%) were determined from the 
modified proctor compaction test. X-ray diffraction 
(XRD) analysis carried out on the test material 

Fig.1 EC5 moisture sensor calibration and data 
acquisition 

Fig.2 EC5 moisture sensor embedment in 
expansive soil 
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identified smectite minerals, which predominantly 
contribute to the expansive nature of the soil. 

 
3.  METHODOLOGY 
 
EC-5 sensors are ideal for measuring soil moisture 
content in localized areas due to the small sensor 
length (50 mm) and its small area of influence. 
These sensors need to be properly calibrated for the 
temperature variations to obtain a precise 
representation of the sensor output due to the 
moisture variations within the range of 0-60% vwc. 
The independence to salinity and soil texture 
accompanied with low-cost build-up makes EC-5s 
preferable to use in research subsequent to rigorous 
soil-specific calibration, resulting in 1-2% accuracy. 

In this study, soil samples of five different 
known gravimetric moisture contents (i.e. 15%, 
20%, 25%, 30% & 35%) were statically compacted 
to achieve dry density of 1.2 g/cm3. The entire 
sensor body of EC-5 sensors were embedded on the 
compacted soil as shown in fig. 1. The minimum 
sample height for the sensor calibration was 
maintained more than that of sensor body (i.e. 50 
mm) to ensure the entire area is contacted by the soil 
to obtain a precise correlation between volumetric 
water content (%) and the sensor output voltage as 
shown in fig. 2. 

Since EC-5 moisture measurements are 
susceptible to temperature, temperature correction 
factors were developed by measuring soil moisture 
at different temperatures. Calibrated temperature 
sensor (Therm-EP) was embedded to acquire the 
temperature variation throughout the measuring 
duration. Soil moisture was maintained constant 
during the experimentation by applying a thick 
grease layer on the topsoil surface. The final 
gravimetric moisture content of the soil was 
measured by oven drying the test sample to make 
sure the moisture is successfully maintained. 
Likewise, the same procedure was adopted for all 
the moisture contents to derive a correlation 
between the volumetric water content (%), 
temperature (°C), and the sensor voltage output (V). 
 
4.  RESULTS & DISCUSSION 
 

The results of this study investigate the 
volumetric water content variations of grey 
Vertosol at different temperature conditions. Fig.3 
illustrates the variation of EC-5 moisture sensor 
responses under controlled temperature variation 
inside the environmental chamber. Relative 
humidity inside the chamber was maintained at a 
reasonable value of 60% during the investigation. 
The experimental results indicated a significant 
variation of dielectric responses of EC-5 moisture 
sensors (vwc) when the temperature varies from 
15°C to 33°C during heating and cooling cycles. 

The volumetric water content of grey Vertosol 
at a given soil temperature can be derived with 
respect to 20°C. Equations (1) and (2) demonstrate 
the representative calibration equation for EC-5 
moisture sensor. 

 

 
𝛉𝛉𝐓𝐓 =  𝛉𝛉𝟐𝟐𝟐𝟐 −  𝛆𝛆𝐓𝐓(𝐦𝐦,∆𝐓𝐓)        (1) 
 
𝛉𝛉𝐓𝐓 = (𝟏𝟏.𝟑𝟑𝟑𝟑𝟑𝟑 × 𝐀𝐀𝐄𝐄𝐄𝐄𝐄𝐄 − 𝟏𝟏.𝟐𝟐𝟑𝟑𝟎𝟎𝟑𝟑) − [𝐦𝐦 × (𝐓𝐓 −
𝟐𝟐𝟐𝟐)]          (2) 

 
Where; 
𝛉𝛉𝐓𝐓 = Volumetric water content at T°C temperature 

Fig.4 Sample slope variation with respect to the 
volumetric water content at reference temperature 

Fig.3 EC5 moisture sensor responses with 
temperature variations 
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𝛉𝛉𝟐𝟐𝟐𝟐= Volumetric water content at 20°C temperature 
𝛆𝛆𝐓𝐓(𝐦𝐦,∆𝐓𝐓) = Temperature correction factor 
m = Change in volumetric water content for unit 
change in temperature corresponds to volumetric 
water content of sample at 20° C 
 

The temperature calibration was conducted with 
respect to T = 20° C and ‘m’ value for Equation (3) 
can be determined from Fig. 4 provided that 
volumetric water content of the soil at 20°C is 
known. Equation (3) presents the statistical 
relationship obtained between the ‘volumetric water 
content of soil at 20°C’ and ‘change in vwc for unit 
change in temperature’ that can be used to derive 
Equation (4); temperature calibrated volumetric 
water content of EC5. 
 
𝐦𝐦 = 𝟐𝟐.𝟐𝟐𝟐𝟐𝟎𝟎𝟎𝟎× 𝛉𝛉𝟐𝟐𝟐𝟐 + 𝟐𝟐.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐       (3) 
 
θT = (1.383 × AEC5 − 1.0868) − [{0.0074 × θ20

+ 0.0002} × (T − 20)] 

θT = (1.383 × AEC5 − 1.0868) − [{0.0074 ×

(1.383 × AEC5 − 1.0868) + 0.0002} × (T − 20)]

        (4) 

Where; 

AEC5 = Sensor voltage output from Soil DAQ 

 
5.  CONCLUSIONS 
 

The climate-ground interaction of expansive 
clays is imperative to monitor and understand the 
soil responses due to climate variations. The 
volumetric water content of expansive soils has 
been identified as one of the critical parameters to 
investigate the stress state variables (i.e. soil suction 
and displacement) in such soils. The use of EC-5 
moisture sensors to monitor the changes in 
volumetric water content profile has become 
popular due to the low cost and simplicity of the 
sensors. However, the use of these sensors for 
expansive soil investigations requires the 
incorporation of temperature calibration. The 
complexities involved in the current calibration 
methods have restricted the use of these low-cost 
sensors.  

This study introduced a practical and 
straightforward approach to calibrate EC-5 sensors 
by incorporating the temperature effect accurately. 
The method has been successfully validated for 
grey Vertosol and can be used to soil specifically 
calibrate any EC-5 sensor embedded in expansive 
clays. This approach enhances the applicability of 
low-cost EC-5 moisture sensors to accurately 

monitor the volumetric water content profile in 
expansive soils. Consequently, the quality of the 
data acquired can be maintained at a reliable state 
for the end-user's decision-making (i.e. 
geotechnical practitioners). As a result, the quality 
of the geotechnical application and eventually, the 
safety of human lives may be improved. 
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