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ABSTRACT: This paper presents a method to determine a strip load's actual failure load on the half-plane. 
Solving the problem of calculating natural stresses and deformations in the soil is a practically impossible 
task. An alternative may be formed by limit analysis based on plasticity theory. The fundamental theorems of 
the idea of plasticity (the upper and lower- bound theorems) aim to give a possible upper or lower limit of the 
stresses the deformations. For materials with friction, such as soil, for which the yield condition is the Mohr-
Coulomb criterion, the limit theorems of plasticity are not good, except for ϕ = 0 (i.e., purely cohesive 
materials). For such a material, the theory predicts that the volume is constant during plastic deformations, 
which agrees with experimental evidence. Thus, the author proposes a novel effective stress field based on 
the shear potential having volume remains constant during plastic deformations, to properly apply the limit 
theorem. In this paper, the limit analysis is formulated in the form of nonlinear programming. Several 
numerical examples show that the novel effective stress field achieves high reliability compared with existing 
results. 
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1. INTRODUCTION 
 

Soil is a porous material consisting of particles, 
water, and air. The particles constitute the grain 
skeleton. In the pore structure of all soils, the pores 
are connected. The water fills the space and 
constitutes a single continuous body. In this water 
body, pressure may be transmitted and the water 
may also flow through the pores. The pressure in 
the pore water is denoted as the pore pressure [1-7]. 
On an element of soil, normal stresses, as well as 
shear stresses, may act. The simplest case is 
isotropic normal stress (Fig.1). 

 

 
 

Fig.1 Modelling of effective stress in soils 
 

 According to Arnold Verruijt [3], in the 
interior of the soil (for instance, at a cross-section 
in the center), this stress is transmitted by a pore 

pressure u in the water and by stresses in the 
particles. The stresses in the particles are partly 
generated by the concentrated forces acting on the 
contact points between the particles, and partly by 
the pressure in the water, which almost surrounds 
the particles. It can be expected that the 
deformations of the particle skeleton are almost 
completely determined by the concentrated forces 
on the contact points because the structure can 
only deform by sliding and rolling at these contact 
points. The pressure in the water results in an 
equal pressure on all the grains. It follows that this 
pressure acts on the entire surface of a cross-
section and that, by subtracting u from the total 
stress, a measure for the contact forces is obtained. 
Effective stress is a measure of the concentrated 
forces acting on the contact points of a granular 
material. Thus, the author proposes that the 
effective stress field in the soil is determined based 
on the shear potential [8,9].  

In considerations of limit analysis, not all of 
the details of the constitutive relations are taken 
into account but one aspect is given priority, 
namely the failure criterion of the material [3,10-
14]. For soils, a suitable yield condition is the 
Mohr-Coulomb criterion, described by a friction 
angle φ and a cohesion c. Also, not all the 
conditions of equilibrium and compatibility 
equations are taken into account, only a subset of 
these equations. The purpose of limit analysis is 
not to determine the complete field of actual 
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stresses and strains, but only to determine certain 
limiting values. The problem may be to determine 
a lower bound for the maximum allowable load on 
a soil body or to determine an upper bound for this 
maximum load. If a lower bound for the failure 
load can be found, no failure will certainly occur 
as long as the real load remains below this lower 
bound. If an upper bound can be found, failure will 
certainly occur if the real load is greater than this 
upper bound. In its simplest form, the theory of 
plasticity uses a single constant failure condition, 
which is a function of the stresses only. This 
condition expresses that for certain combinations 
of stresses at a point in the material, the 
deformations increase without bounds (this is 
called plastic yielding) and that, for smaller 
stresses, no plastic deformations will occur. A 
material with such a simple yield condition is 
called a perfectly plastic material. For soils, a 
suitable yield condition is the Mohr-Coulomb 
criterion, although more complex yield conditions 
have also been studied. 

When studying these proofs, it appears that 
they have only limited validity. The most 
important restriction is that for a material with 
friction, such as soil (for which the yield condition 
is the Mohr-Coulomb criterion, with a friction 
angle φ and a cohesion c), the theorems are only 
valid if, during plastic deformation, a continuing 
volume expansion occurs, of magnitude sinφ times 
the rate of shear deformation [3,10-13,15]. This 
seems to be an unrealistic behavior, as it can be 
expected that in the case of continuing plastic 
deformations the volume will remain practically 
constant [3]. This has often been confirmed in 
experimental studies. An ever-continuing plastic 
volume expansion would mean that the material 
expands without bounds, which seems to be 
improbable. This means that the basic theorems of 
plasticity are not valid for soils, except when φ = 0, 
i.e. for purely cohesive materials. For such a 
material, the theory predicts that the volume is 
constant during plastic deformation and this is in 
agreement with experimental evidence [3]. 

In this study, the novel effective stress field 
based on the shear potential having a constant 
volume during plastic deformation is used to apply 
the limit theorem properly. The limit analysis is 
formulated in the form of nonlinear programming. 
The failure load of a strip load on the half-plane is 
determined in the case of purely cohesive soils and 
for soils with internal friction. The results of the 
calculation are compared with existing solutions to 
prove the reliability and suitability of combining 
the nonlinear programming method with the novel 
stress field. 

 
2. RESEARCH SIGNIFICANCE 

 

In this paper, the author proposes a novel 
effective stress field based on the shear potential 
having a constant volume during plastic 
deformation, to properly apply the limit theorem. 
The nonlinear programming method combined 
with the novel stress field can be a viable and 
valuable tool for limit analyses of a strip load on 
the half-plane (no assumption is required regarding 
the slip-line or the stress state). It can be extended 
to consider the bearing capacity of general shallow 
foundations. 

 
3. A NOVEL EFFECTIVE STRESS FIELD 
IN SOIL 

 
To distinguish the effective stress field in soil, 

based on the shear potential and elastic theory, we 
first need to study the elastic stress field in the soil. 

If the soil is considered to be elastic material, 
the elastic stress field in the soil can be determined 
by its displacement field and strain. In the plane 
strain problem, stress is unknown but the stress 
field can be determined by solving the 
optimization problem [16]: 

 
2 2

2 2

1 . .
2

(1 ) min
2

0

0

x y
x y

V

xy yx

yxx

y xy

Z
E

dV  
  

  
x y

y x

σ σ
ν σ σ

τ τ
ν

τσ

σ τ

  +
 = −
 


+
+ + → 

 ∂∂
+ =

∂ ∂
∂ ∂ + =
 ∂ ∂

∫

    (1)

  
where:   

Z is the elastic deformation potential in the 
plane strain problem;  

E, ν is the elastic modulus and Poisson's ratio 
of the soil, respectively, and;  

σx, σy, τxy, τyx is the stress state at a point in 
the soil, see Fig. 2. 

 

 
Fig.2 Plane stress 
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In Eq. (1), we do not consider the self-weight. 
V is the area of the consideration domain. By 
variational calculus [17], we can prove that the 
problem (1) gives us sufficient equations to 
determine the stress state in the soil. It should be 
noted that stresses are functions of the coordinates 
σx(x,y), σy(x,y), τxy(x,y) that need to be determined. 

The functional Lagrange expansion of Eq. (1) 
is written as: 
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The constrained optimization problem (1) is 
converted into the unconstrained optimization 
problem (2). λ1, λ2 are Lagrange factors and they 
are unknown in the problem. By variational 
calculus, we get six equations: 
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Eq. (3) is the system of six equations 

containing the unknowns: σx, σy, τyx, τxy, λ1 and 
λ2. 

In this problem, the shear stress τxy = τyx. 
Taking the sum of the third and fourth equations in 
Eq. (3) gives: 
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where G is the shear modulus of soil. 
By balancing the dimensions, we see that λ1 

and λ2 give the dimensions of the displacement.  

Moreover, λ1 is the displacement in the x-
direction and λ2 is the displacement in the y-
direction. Eq. (4) is the relationship between the 
shear stress and the displacement of the elastic 
medium. The problem can be solved by removing 
two implicit functions λ1 and λ2 in Eq. (3). 

The first four equations of Eq. (3) can be 
converted into an equation of stress as follows. 

Taking the derivative of the first equation in Eq. 
(3) with respect to y and combining it with the 
third equation, gives: 
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Taking the derivative of the second equation in 

Eq. (3) with respect to x and combining it with the 
fourth equation, gives: 
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Derivation of Eq. (4a) with respect to y gives: 
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Derivation of Eq. (4b) with respect to x gives: 
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Taking the sum of Eq. (4c) and Eq. (4d) gives: 
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If we take the derivative of the fifth equation 
with respect to x and the sixth equation concerning 
y in Eq. (3), then the sum of them gives: 
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Substituting Eq. (4f) into Eq. (4e) and reducing 

it gives: 
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Eq. (5) is a compatibility equation in the form 

of normal stress. Thus, in the plane strain problem, 
the set of equations convert to three basic 
equations of the elastic theory: 
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 where ∇2 is the symbol for the Laplace operator,  
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Eq. (1) shows the problem of determining 

elastic stress field in soil. When the stress is 
unknown, the stress field can be determined 
according to the minimum potential energy (Eq. 
(6)). 

The shear potential is equal to the total 
potential energy (elastic deformation potential Z) 
minus volume deformation potential [16]. In the 
plane strain problem, the shear potential is: 
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where Z, Zs, and Z0 are the elastic deformation 
potential Z, shear potential, and volume 
deformation potential, respectively; G is the shear 
modulus of the soil; and σx, σy, τxy is the stress 
state at a point in the soil 
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Thus, the plane strain problem of determining 
the effective stress field in soil, based on the shear 
potential is: 
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where γ is the volume weight of soil.       

To demonstrate that problem (9) is determinacy, 
using the variational calculus, we can prove that  
Eq. (9) gives us enough equations to determine the 
stress state in the soil.   

The functional Lagrange expansion of Eq. (9) 
is written as: 
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where λ1, λ2 are unknown Lagrange factors. 

By variational calculus, we get six equations: 
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By balancing the dimensions, we see that λ1 

and λ2 have the dimensions of the displacement. 
Moreover, λ1 is the displacement in the x-direction 
and λ2 is the displacement in the y-direction. 
Taking the sum of the first equation and second 
equation in Eq. (11), we get: 
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From Eq. (12) we can see that the volume 

deformation is zero. This is an important factor to 
apply in the limit analysis method for which the 
yield condition is the Mohr-Coulomb criterion. 

Taking the derivative of the first equation in Eq. 
(11) with respect to y and combining it with the 
third equation, we get: 
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and by taking the derivative of the second equation 
in Eq. (11) with respect to x and combining it with 
the fourth equation, we get: 
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Derivation of the first equation in Eq. (13a) 

with respect to y gives: 
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Derivation of Eq. (13b) with respect to x gives: 
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Eq. (13c) minus Eq. (13d) yields: 
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Eq. (11) has only three equations: 
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where ∇2 is the symbol for the Laplace operator:   
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Eq. (15) have three equations for finding 

unknowns such as σx, σy and τxy. Thus, the 
problem of determining the effective stress field in 
soil (9) can be solved. 

By comparing the problem of determining the 
elastic stress field in the soil (6) with the problem 
of determining the effective stress field in the soil 
based on the shear potential (15), we see that the 
difference is the sign "±" in the first equation. 

Now, we have identified the effective stress 
field in the soil as being the deterministic static, 
we have enough equations to be able to solve the 
soil mechanics problems (e.g. external loads). 
 
4. LIMIT ANALYSIS OF A STRIP LOAD ON 
THE HALF-PLANE 
 

The problem of a strip load on a half-plane is 
shown in Figure 3. 

 

 
Fig.3 Strip load on a half-plane 
 

The weight of the soil will be disregarded in 
this problem. 

 
4.1 Methodology 
 

The plastic limit theorems of Drucker et al. 
(1952) can be employed to obtain upper and lower 
bounds of the failure load for stability problems, 
such as the critical heights of vertical cuts, or the 
bearing capacity of soils. The conditions required 
to establish a lower bound or upper bound are 
essential and are described below. 
 
4.1.1 Lower bound theorem 

The loads, determined from the stress 
distribution, must satisfy: (a) the equilibrium 
equations; (b) the stress boundary conditions; and 
(c) not violate the yield condition by not being 
greater than the true failure load. The stress 
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distribution that satisfies items (a), (b), and (c) has 
been termed a statically admissible stress field, for 
the problem under consideration. Hence, the lower 
bound theorem may be rewritten as follows: the 
true failure load is larger than the load 
corresponding to an equilibrium system.  

 
4.1.2 Upper bound theorem 

The loads, determined by equating the external 
rate of work to the internal rate of dissipation in an 
assumed deformation mode (or velocity field) 
must satisfy: (a) the velocity boundary conditions 
and (b) the strain and velocity compatibility 
conditions, and not be less than the true failure 
load. A velocity field that satisfies the above 
conditions has been termed a kinematically 
admissible velocity field. The upper bound 
theorem considers only velocity or failure modes 
and energy dissipations. The stress distribution 
need not be in equilibrium and is only defined in 
the deforming regions of the mode. 
 
4.2 Numerical Method 

 
Solving this problem by the analytical method 

is very difficult. Therefore, the authors solved the 
problem by the finite difference method. The soil 
mass is divided into the differential grid as shown 
in Figure 3. At each node, there are three 
unknowns:  σx, σy, τxy.  

As the applied load p is increased, the stress 
intensity reaches the yield value and the yield zone 
increases (the stress field should also satisfy the 
condition that the yield condition is never violated). 
Eventually, the load reaches the value that triggers 
the failure mechanism in the soil, then we know 
the failure load pu. Hence, the load p is unknown 
in the problem. The objective function of a strip 
load on half-plane problems is written as follows: 

2
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The objective function (16) must satisfy two 
equilibrium equations and the constraints as 
follows: 

- soils can only transfer compressive normal 
stresses and no tensile stresses:  
 

0xσ ≥ & 0yσ ≥        (17) 
 
- the Mohr-Coulomb yield criterion is not 

violated:   
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+

− − ≤       (18) 

- boundary conditions exist on the soil surface 

and to infinity.    
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The boundary conditions (21), (22), and (23) 
are developed according to the extreme Gauss’s 
principle method to ensure that the problem is 
considered in the infinite half-plane [18]. 

The limit analysis becomes an optimization 
problem. The objective function (16) is a nonlinear 
(quadratic) function for stress. The constraints are 
two linear equilibrium equations, linear 
inequalities (17), and nonlinear inequalities (18). 
Such a problem is the nonlinear programming 
problem. The author wrote a program in Matlab to 
solve the problem.  

 
4.3 Numerical Examples 
 

Example 1: Determining the true failure load of 
a strip load on a half-plane. The width of strip load 
B = 2 m. The soil is considered to be weightless (γ 
= 0) and frictionless (ϕ = 0), the only relevant 
property is the cohesive strength c. The difference 
grid size is ∆x = ∆y = 1m. 

The problem is realized by a Matlab code [8]. 
The results of the calculation are shown in Fig. 

4. 
 

 
 
Fig. 4 Chart of the ability for yield  

 
The number on the contour is the value of the 

expression:  
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The zero contours are the lines connecting the 
points that reach the yield value. The remaining 
contours are less than zero, i.e. the zones have not 
reached the yield value. Nowhere violates the yield 
condition (satisfying the lower bound theorem).  

In Fig. 4, at the value of the load p=5.14c, the 
yield points develop and connect as a slip-line 
extending to the surface (bold dashed lines and 
zero value). At that time, it can be seen that the 
mass soil has formed a failure mechanism.  
Therefore, the failure load in the case of a strip 
load is pu=5.14c. This value agrees with the well-
known ‘exact’ Prandtl's solution (upper and lower 
bounds of the failure load are equal to 5.14c) [19]. 
The shape of the failure mechanism is the same as 
the Prandtl mechanism.  

This confirms the validity of the novel 
effective stress field based on the shear potential 
and the nonlinear programming method. 

Example 2: Determining the true failure load 
for soil with the angle of internal friction ϕ and the 
cohesion c. 

The problem is realized by a Matlab code [8]. 
The result of the calculation is shown in Fig. 5.  
 

 
 

Fig. 5 Chart of the ability for yield 
 
For ϕ ranging from 10 to 400, the corresponding 

failure loads are compared with the Prandtl’s 
solution shown in Table 1 and Fig. 6. 

 
Table 1. Failure load (pu/c) 
 

φ (0) Proposed Prandtl % difference 
0 5.14 5.14 0.00 
1 5.37 5.38 -0.17 
5 6.29 6.49 -3.06 

10 7.72 8.34 -7.49 
15 9.74 10.98 -11.27 
20 12.62 14.83 -14.93 
25 17.33 20.72 -16.38 
30 24.92 30.14 -17.33 
35 37.12 46.12 -19.51 
40 59.08 75.31 -21.56 

 
 
Fig. 6 Failure load of a strip load on a half-plane 

 
The value of (pu/c) is the cohesion bearing 

capacity factor Nc in the formula for determining 
the bearing capacity of a strip foundation. Prandtl's 
formula has been extended by Keverling Buisman 
(1940), Von Terzaghi (1943), Caquot and Kérisel 
(1953; 1966), Meyerhof (1951; 1953; 1963; 1965), 
Brinch Hansen (1970), Vesic (1973; 1975) and 
Chen (1975) to become the complete formula for 
calculating the bearing capacity [1-7,11]. The 
factor Nc is still used according to Prandtl's 
solution. 

It can be observed that, for low friction angles 
the failure load is almost the same as Prandtl’s 
solution, and the failure mechanism looks like the 
Prandtl mechanism. For soil with high friction 
angles, the failure load is smaller than Prandtl's 
solution (by about 15-22%) and the failure 
mechanism looks like the circular (bold dashed 
lines and zero values), and not like the Prandtl 
mechanism, see Fig. 5.  

As in the previous example, the limit theorems 
have been applied to determine failure loads for a 
purely cohesive soil (φ = 0). For soils with internal 
friction, the basic theorems of the theory of 
plasticity (the upper and lower-bound theorems) 
are not valid when the volume changes during 
failure. This means that the Prandtl mechanism 
leads to the conclusion that the failure load 
obtained is an upper bound to the correct value. 
The novel effective stress field in the soil is based 
on the shear potential having a constant volume 
during plastic deformation, and so the limit 
theorems are valid.  The failure loads are smaller, 
especially for higher friction angles, and therefore 
safer and more accurate than the existing results 
[1-7,11,12,19,20]. This change in failure 
mechanism is a sign of redistribution of the 
stresses. 

  
5. CONCLUSION  

 
The novel effective stress field in the soil, 

based on the shear potential is the deterministic 
static, and we have enough equations to solve the 
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problems in soil mechanics. The nonlinear 
programming method, combined with the novel 
stress field, allows the application of the limit 
theorems to directly determine the failure load of a 
strip load on the half-plane (no assumption is 
required regarding the slip-line or the stress state).  

For purely cohesive soils, the results of the 
calculation of the failure load of a strip load on the 
half-plane agree with Prandtl's solution. This 
confirms the validity of the novel stress field and 
the nonlinear programming method’s ability to 
solve the problem. 

For soils with internal friction, the results of 
the calculation of the failure load are smaller than 
Prandtl's solution and are, therefore, safer and 
more accurate than the existing results. 

The method can be a viable and valuable tool 
for limit analyses of a strip load on the half-plane. 
It can be extended to consider the bearing capacity 
of the general type of shallow foundation on a soil 
characterized by its cohesion c, friction angle φ, 
and volume weight γ. 
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