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ABSTRACT: In 1921, Timoshenko improved upon the Euler‒Bernoulli beam theory by adding the effect of 
transverse shear strains. In the Euler–Bernoulli beam theory, transverse shear strains are neglected, and cross- 
sections remain plane and perpendicular to the neutral axis. In the Timoshenko beam theory, cross-sections 
still remain plane but are no longer perpendicular to the neutral axis. Although the transverse shear strain 
approaches zero, the Timoshenko beam theory does not converge on the Euler‒Bernoulli beam theory due to 
the shear locking. Many authors have attempted to overcome this problem and although they have brought 
acceptable results, these still have theoretical limitations. Therefore, in this paper, the author presents an 
improved method of calculating the beam considering transverse shear strain to overcome the theoretical 
limitations of previous authors. The problem is addressed by the use of numerical methods which achieve 
convergence and avoid the issue of shear locking. 
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1. INTRODUCTION 
 

In the Euler‒Bernoulli beam theory, transverse 
shear strains are neglected, whereas in the 
Timoshenko beam theory, transverse shear strains 
are considered. In Euler‒Bernoulli beams, the 
cross-section remains perpendicular to the neutral 
axis after bending, whereas in Timoshenko beams 
initially the cross-section is perpendicular to the 
neutral axis but it does not remain perpendicular 
after bending [1]. These relations are shown in 
Fig.1.  

 

 
 

Fig.1 Deformation of cross-section: (a) Euler‒ 
Bernoulli beams; (b) Timoshenko beams 
 

According to Timoshenko beam theory, we 
have:  

 
dw
dx

β γ= +          (1) 
 
where: 

w is the deflection of the neutral axis of the 
beam (vertical displacement); 

β is the rotation of the cross-section plane 
(caused by bending moment); 

γ is the transverse shear strain (caused by shear 
force). 

There is a long history of research on this issue, 
for example, by Wilson [2,3], Zienkiewicz [4], and 
Bathe [5]. Based on the theory considering the 
above transverse shear strain, the authors often use 
finite element methods to propose numerical 
solutions to the problem. When using the finite 
element method, the authors used two independent 
elements to correspond with the two unknowns w  
and β . The element type only has displacement 
and a rotation angle caused by the moment to 
describe the bending element. However, as the 
transverse shear strain approaches zero, these 
beam theories do not converge on the Euler‒ 
Bernoulli beam theory due to the shear locking. 

Wilson is a professor emeritus of the 
University of California at Berkeley, USA, and 
one of the first authors to propose a solution to the 
shear locking when calculating beams considering 
the transverse shear strain. He first introduced 
incompatible displacements into rectangular 
isoparametric finite elements at a conference in 
1971, where the method was received with great 
skepticism by fellow researchers [2,3]. However, 
the results for both displacements and stresses for 
rectangular elements were very close to the results 
from the nine-node isoparametric element of other 
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researchers such as Zienkiewicz [4] and Bathe [5].  
Assessing the method proposed by Professor 

Wilson and other scientists to reduce the shear 
locking, Mathematics Professor Strang of MIT 
commented: “Two theoretical crimes committed 
were displacement compatibility was violated and 
the method was not verified with examples using 
non-rectangular elements” [6]. 

In the 3rd edition in 2002 of reference [3], 
Professor Wilson used a cubic polynomial to 
represent interpolation functions to ensure 
compatibility conditions and this was applied to 
popular commercial software for calculating 
structures such as SAP-2000, ETABS, and SAFE. 

A beam element considering transverse shear 
strain according to Wilson is shown in Fig.2. 

 

 
 
Fig.2 Typical beam element with shear strain 
 

To maintain a consistent assumption for cubic 
normal displacement, Wilson had to add a constant 
shear strain along the element boundary. Therefore, 
he also advises not to use a cubic polynomial to 
represent the displacement for non-rectangular 
elements because, for non-rectangular elements 
with variable cross-section height, the shear strain 
condition is not correct along the element 
boundary. 

Vu Thanh Thuy (2010), when studying the 
internal force and displacement of a bending beam 
considering the influence of transverse shear strain, 
proposed to use the two functions of displacement 
and shear force as two independent unknowns to 
develop and solve the bending beam problem 
considering transverse shear strain [7]. Vu Thanh 
Thuy solved some of the bending beam problems 
in the analytical method by using the extreme 
Gauss’s principle method (proposed by Professor 
Ha Huy Cuong [8]) with optimization of the 
parameters of the polynomial representing the 
displacement implicit functions and the shear force. 

In this study, the effects of transverse shear 
strain on the internal force, displacement and 
deformation of the bending beam are investigated 
by an improved method. The results of calculation 
are compared with the model calculated using 

commercial software of which Professor Wilson is 
one of the authors, and the results are calculated 
according to the analytical method of Vu Thanh 
Thuy. 

 
2. RESEARCH SIGNIFICANCE 

 
In this paper, the author presents an improved 

method of calculating the beam considering 
transverse shear strain to overcome the theoretical 
limitations of previous authors. The problem is 
addressed using the finite element method, which 
achieves convergence and avoids the issue of shear 
locking. In particular, considering transverse shear 
strain, we get a redistribution of the internal force 
in the cantilever and simply supported beam 
subjected to uniformly distributed load. 

 
3. AN IMPROVED METHOD OF 
CALCULATING BEAM 
 
3.1 Shape Functions for Beam Element 
 

When not considering the transverse shear 
strain, to describe the bending beam, it is usual to 
choose elements with 4 parameters at the nodes, 
using the cubic polynomial (with 4 parameters) to 
represent the displacement of the bending beam 
element. Four cubic polynomial parameters are 
determined by the displacement and rotation angle 
at both ends of the element, and must satisfy the 
equilibrium interpolation condition. Since we 
choose the displacement function of the cubic 
polynomial, the force acting on the beam must be 
the concentrated force located at the nodes of the 
element. The isoparametric beam element is shown 
in Fig.3. 

 

 
 
Fig.3 Isoparametric beam element not considering 
transverse shear strain 
 

The displacement function of the bending beam 
element as a cubic polynomial is: 
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ends by replacing the node coordinates with the 
displacement function and its derivative, 
respectively: 

Node 1 (x = -1): 
 

( )1 1 2 3 41w w α α α α= − = − + −             (3) 
 

1 2 3 4
1

0 2 3dw
dx

β α α α
−

= = + − +             (4) 

 
Node 2 (x = 1): 
 

( )1 1 2 3 41w w α α α α= + = + + +             (5) 
 

( )'
2 2 3 41 0 2 3wβ α α α= = + + +             (6) 

 
The matrix form can be written as follows: 

 

{ } [ ]{ }

1 1

1 2

32
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1 1 1 1
0 1 2 3
1 1 1 1
0 1 2 3
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− −    
    −    = = =
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      

      (7) 

 
Therefore, 
 

{ } [ ] { }1C Xα −=           (8) 
 
Substituting this value { }α  into Eq. (2), we 

have: 
 
[ ]{ } [ ] [ ] { } [ ]{ }1w U U C X f Xα −= = =         (9) 

 
The [ ] [ ] [ ] 1f U C −= can be determined from the 
inverse of  the [C] matrix. However, the problem is 
realized by a Matlab code. The result of [ ]f can 
be written as: 
 
[ ] [ ]1 2 3 4f f f f f=      (10) 

 
where: 

( ) ( )2
1

1 1 2
4

f x x= − +  

( ) ( )2
2

1 1 1
4

f x x= − +  

( ) ( )2
3

1 1 2
4

f x x= + −  

( ) ( )2
4

1 1 1
4

f x x= + −  

 
Therefore, when we know the displacement 

and rotation angle at both ends of the element, the 
displacement at each point in the element is 

determined through the function 
 

1 1 2 1 3 2 4 2( )w f w f f w fβ β= + + +      (11) 
 

The rotation angle at each point in an element 
is determined through the function 

 
dy
dx

β =            (12) 

 
According to Eq. (25) and Eq. (26), we have 
 

1 1 1 2 1 1 1 2; ; ;x x x x
dw dww w w w
dx dx

β β=− = =− == = = =  

 
Thus, the interpolation functions are 

compatible between the mathematics and 
mechanics and the elements will be compatible 
elements that ensure convergence conditions to 
exact solutions. 

 
3.2 Selection of the Bending Beam Element 
Considering Transverse Shear Strain 
 

When considering the transverse shear strain, it 
is necessary to define the two independent 
unknowns of the displacement w  and shear force 
V . Therefore, when applying the finite element 
method to solve the problem of the bending beam, 
it is necessary to choose two elements: the 
displacement element and shear force element, 
using the cubic polynomial interpolation function 
for the displacement isoparametric element to 
represent the displacement of the bending beam. 
The cubic polynomial function has four parameters 
that are determined through two displacement 
values and its first derivative at the node of the 
element (Fig.4). 

 

 
 

Fig.4 Displacement isoparametric element 
considering transverse shear strain 

 
The displacement at each point in the element 

is determined through the function 
 

1 1 2 1 3 2 4 2( )w f w f f w fβ β= + + +      (13) 
 
where 1 2 3 4, , ,f f f f  are cubic polynomials that are 
determined similarly when not considering 
transverse shear strain. 

From the first derivative of the displacement 
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function, we get the total rotation angle at each 
point in the element determined through the 
function 

 
dw
dx

θ =            (14) 

 
According to Eq. (13) and Eq. (14), we have 
 

1 1 1 2 1 1 1 2; ; ;x x x x
dw dww w w w
dx dx

θ θ=− = =− == = = =  

 
Using the quadratic polynomial to represent the 

shear force, three parameters of the function will 
be determined through three shear force values at 
the three nodes of the beam element. The shear 
isoparametric element is shown in Fig.5. 

 

 
 
Fig.5 Shear force isoparametric element 

 
The shear force at each point in the element is 

determined through the function 
 

5 1 6 2 7 3Q f Q f Q f Q= + +          (15) 
 
where 5 6 7, ,f f f  are quadratic polynomials that are 
determined similarly to the displacement, as 
 

( )5
1 1
2

f x x= −        (16) 

2
6 1f x= −        (17) 

( )7
1 1
2

f x x= +        (18) 

 
Therefore, the two unknowns of displacement 

w  and shear force V  of the problem will be 
determined through 7 parameters including the 
displacement, first derivative of displacement, and 
shear force at the nodes of the element. The 7 
parameters can be written in the following matrix 
form: 

 
{ } [ ]1 1 2 2 1 2 3

TX w w V V Vθ θ=       (19) 
 
3.3 Formation of Element Stiffness Matrix, 
Load Matrix, and Overall Stiffness Matrix 
 

The displacement w  can be written in the 

following matrix form: 
 
[ ]{ }1 2 3 4 0 0 0w= f f f f X  

or, [ ]{ }w w X=                  (20)   
 

The shear force V  can be written in the 
following matrix form: 

 
[ ]{ }5 6 70 0 0 0V f f f X=  

or, { }{ }V V X=             (21) 
 

The quadratic derivative of the displacement w : 
 

{ }'' '' '' '' ''
1 2 3 4 0 0 0w f f f f X =    

or, [ ]{ }"w w" X=             (22) 
 

The first derivative of the shear force V : 
 

{ }' ' ' '
5 6 70 0 0 0V f f f X =    

or, [ ]{ }' 'V V X=             (23) 
 

Bending strain χ : 
 

2

2

M d y d KV
EI dx dx GA

χ
  = = − +  

  
     (24)

   
{ }'' '' '' " ' ' '

1 2 3 4 5 6 7f f f f f f f Xχ  = − − − − + + + 
     or, [ ]{ }Xχ χ=    
    (25) 
 

Shear strain γ : 
 

[ ]{ }V V X
GA GA
α αγ = =       (26)

   
The bending moment M can be written in the 

following matrix form: 
 

[ ]{ }.M EI EI Xχ χ= =          (27) 
 
The displacement is the cubic function, so the 

load acting on the beam must be the concentrated 
force located at the nodes of the element. The load  
P  can be written in the following matrix form: 

 
{ } [ ]1 20 0 0 0 0 TP P P=      (28) 

 
Applying the virtual work principle, the 

equation of the beam problem considering 
transverse shear strain is: 

x
(V  )1

-1 0 1

(V  )3(V  )2
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[ ] { } [ ]{ }

{ } [ ]{ }

1 1

1 1

. . .
2

0

x M X dx V V X dx
GA

P w X

αδ χ δ

δ
− −

 ∆    + −      
 − = 

∫ ∫

 
        (29) 

where x∆  is the actual length of the element. 
Equation (29) is equivalent to 
 

[ ] [ ] [ ] [ ] { }

{ }

1 1

1 1

. . .
2

0

T Tx EI dx V V dx X
GA

P

αχ χ
− −

 ∆
+ − 

 
− =

∫ ∫  

or, [ ]{ } { }eK X P=          (30) 
 

where [ ]eK  is the 7×7 element stiffness matrix. 
Each element has 7 parameters of the vector 

[ ]X  to be determined. When there are n elements 
in the general case, there will be 7n unknowns. 
When matching elements, at the nodes, the 
displacement is usually continuous; at the nodes 
where there is no force, the first derivative of 
displacement and shear force is also constant, so 
the number of the actual unknowns will be less 
than 7n. When the system has n elements, the 
results of the internal force and the node strain of 
the entire bending beam are equal to the inverse of 
the overall stiffness matrix of the system 
multiplied by the load vector (7 7 )K n n× . 

A Matlab program has been written to solve the 
basic bending beam problems and its use will be 
demonstrated below. 
 
4. NUMERICAL EXAMPLES 
 
4.1 Example 1 
 

The simply supported beam subjected to 
uniformly distributed load is shown in Fig.6. 

 

 
 
Fig.6 Simply supported beam subjected to 
uniformly distributed load 
 

Calculation data: The simply supported beam 
of reinforced concrete is subjected to uniformly 
distributed load q = 10kN/m. The length of span 

10l m= . The cross-section dimensions of the 
beam are 0.5 ,b m= / 4 2.5h l m= = . The elastic 

modulus 30000 ,E MPa=  Poisson's ratio 0.2ν = . 
Dividing the beam into 16 elements, the length of 
each element 0.625x m∆ = . 

The results of calculation of the displacement, 
moment, shear force are shown in Fig.6a, Fig.6b, 
and Fig.6c. 

 

 
 
Fig.6a Displacement of simply supported beam 
subjected to uniformly distributed load 
 

 
 
Fig.6b Moment of simply supported beam 
subjected to uniformly distributed load 
 

 
 
Fig.6c Shear force of simply supported beam 
subjected to uniformly distributed load 
 

At 0x =  and x l= , we have: 
The displacement and moment of the beam 

are zero; 
The shear forces at the ends of the beam: 

50
2
qlV kN= ± = ± . 

At / 2x l= , we have: 
The maximum deflection at the middle of 

the beam: 

 
4

5 5
max

57.6 10 6.7 10
384

qlw m m
EJ

− −= × > = ×  

The maximum bending moment at the 

middle of the beam: 
2

max 125
8

qlM kNm= = . 

To compare the results of calculation to 
Professor Wilson’s solutions, the author used 
Etabs software to calculate for the above problem 
(the software of which Professor Wilson is one of 

EJ
x

y

l

q
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the authors). The results of calculation of the 
displacement, moment, and shear force are shown 
in Fig.6d, Fig.6e, and Fig.6f. 

 

 
 

Fig.6d Displacement of simply supported beam 
subjected to uniformly distributed load 
 

 
 
Fig.6e Moment of simply supported beam 
subjected to uniformly distributed load 
 

 
 
Fig.6f Shear force of simply supported beam 
subjected to uniformly distributed load 
 

The simply supported beam subjected to 
uniformly distributed load, moment and shear 
force does not change when considering the 
transverse shear strain so the transverse shear 
strain is not considered. 

The maximum deflection at the middle of the 
beam maxw  is greater than that in the case of not 
considering the transverse shear strain. 

The results of calculation are correct by the 
results on the Etabs software. On the other hand, 
these results also coincide with the results 
calculated according to the analytical method of 
Vu Thanh Thuy [4]. 

( )
24 4

5
max

5 1 7.6 10
384 40

ql ql hw m
EJ EJ l

µ −
  = + + = ×     

 

When reducing the height of the beam (i.e. the 
ratio h/l is getting smaller, assuming / 1/10h l = ), 
the displacement of the beam is shown in Fig.6g. 
 

 
 
Fig.6g Displacement of simply supported beam 
subjected to uniformly distributed load 

 

We see 
4

max
50.001062 0.001042

384
qlw m m

EJ
= ≈ = .  

 
It can be observed that the result of calculation 

according to beam theory considering the 
transverse shear strain has converged on the beam 
case without considering the transverse shear 
strain (without shear locking). 
 
4.2 Example 2 
 

The cantilever and simply supported beam 
subjected to uniformly distributed load are shown 
in Fig.7. 

 

 
 
Fig.7 Cantilever and simply supported beam 
subjected to uniformly distributed load 
 

Calculation data: The cantilever and simply 
supported beam of reinforced concrete are 
subjected to uniformly distributed load q = 
10kN/m. The length of span 10l m= . The cross- 
section dimensions of the beam are 0.5 ,b m=

/ 4 2.5h l m= = . Elastic modulus 30000 ,E MPa=  
Poisson's ratio 0.2ν = . Dividing the beam into 16 
elements, the length of each element 0.625x m∆ = . 

The results of calculation of the displacement, 
moment, and shear force are shown in Fig.7a, 
Fig.7b, and Fig.7c. 
 

 
 
Fig.7a Displacement of cantilever and simply 
supported beam subjected to uniformly distributed 
load 
 

 
 
Fig.7b Moment of cantilever and simply supported 
beam subjected to uniformly distributed load 

q

EJ
x

y

l
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Fig.7c Shear force of cantilever and simply 
supported beam subjected to uniformly distributed 
load 
 

At 0x = , we have: 
The displacement of the beam is zero; 
The moment at the cross-section next to the 

fixed support: 
2

119.1 125
8

qlM kNm kNm= < = ; 

The shear forces at the cross-section next to 

the fixed support: 561.96 62.5
8
qlV kN kN= < = . 

At x l= , we have: 
The displacement and moment of the beam 

are zero; 
The shear forces at the cross-section next to 

the roller support: 338.04 37.5
8
qlV kN kN= > = . 

At / 2x l= , we have: 
The deflection at the middle of the beam: 

4
5 5

max 3.8 10 2.7 10
192

qlw m m
EJ

− −= × > = ×  

The bending moment at the middle of the 

beam: 
2

65.43 62.5
16
qlM kNm kNm= > = . 

The results of calculation of the displacement, 
moment, and shear force by Etabs software are 
shown in Fig.7d, Fig.7e, and Fig.7f. 
 

 
 
Fig.7d Displacement of cantilever and simply 
supported beam subjected to uniformly distributed 
load 
 

 
 
Fig.7e Moment of cantilever and simply supported 
beam subjected to uniformly distributed load 

 
 
Fig.7f Shear force of cantilever and simply 
supported beam subjected to uniformly distributed 
load 
 

The results of calculation are correct by the 
results on the Etabs software and the results are 
calculated according to the analytical method of 
Vu Thanh Thuy [4]. 

The moment at the cross-section next to the 
fixed support: 

( )

( )

2

2 2

2

1
3 119.61

8 8
5 3 1

h
ql ql lM kNm

h
l

µ

µ

   +  
  = + =

  + +  
  

; 

The shear forces at the cross-section next to 
the fixed support:  

( )

( )

2

2

1
5 3 61.96
8 8

5 3 1

h
ql ql lV kN

h
l

µ

µ

   +  
  = − =

  + +  
  

; 

The shear forces at the cross-section next to 
the roller support: 

( )

( )

2

2

1
3 3 38.04
8 8

5 3 1

h
ql ql lV kN

h
l

µ

µ

   +  
  = + =

  + +  
  

. 

The deflection at the middle of the beam: 

( )

( )
( )

2

24

2

5

95 48 1
31 . 1

192 10
5 3 1

3.8 10

h
ql hlw

EJ lh
l

m

µ
µ

µ

−

  + +      = + +    + +  
  

= ×
 
 

When considering the transverse shear strain, 
the moment and shear force at the cross-section 
next to the fixed support are reduced compared to 
not considering the transverse shear strain. 
Meanwhile, the moment at the middle of the beam 
increased by an amount equal to the amount it 
decreased at the fixed support; the shear force at 
the roller support is increased by an amount 
exactly equal to the amount it decreased at the 
fixed support. Clearly, there are redistributions of 
internal force in the beam when considering the 
transverse shear strain. 

The deflection at the middle of the beam w  is 
greater than that in the case of not considering 
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transverse shear strain. 
When reducing the height of the beam (i.e. the 

ratio /h l is getting smaller, assuming / 1/10h l = ), 
the displacement of the beam is shown in Fig.7g. 

 

 
 
Fig.7g Displacement of cantilever and simply 
supported beam subjected to uniformly distributed 
load 
 

We see 
4

0.00044 0.00042
192

qlw m m
EJ

= ≈ = .  

In addition, the problems of the fixed end beam 
subjected to uniformly distributed load, the fixed 
end beam subjected to concentrated load, the 
cantilever beam subjected to uniformly distributed 
load, and the cantilever beam subjected to 
concentrated load have also been realized in 
Matlab code. The results of calculation are correct 
by the results in the Etabs software and the results 
are calculated according to the analytical method 
of Vu Thanh Thuy. It can be observed that the 
improved method has achieved convergence and 
avoids the issue of shear locking. 

 
5. CONCLUSION  

 
An improved method of calculating the beam 

considering transverse shear strain is used to 
overcome the theoretical limitations of previous 
authors. The problem is addressed by using the 
finite element method, which achieves 
convergence and avoids the issue of shear locking. 

According to the author’s improved method, 
the results of calculation are correct by the results 
in the Etabs software and the results are calculated 
according to the analytical method of Vu Thanh 
Thuy. 

By solving the bending beam problems, the 
effects of the transverse shear strain on the internal 

force, displacement and deformation in bending 
beams can be seen through some of the basic 
problems. The amount of this change depends on 
the connected condition, Poisson's ratio µ , and 
the ratio /h l . In particular, considering the 
transverse shear strain, we get a redistribution of 
the internal force in the beam (the cantilever and 
simply supported beam subjected to uniformly 
distributed load). 
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