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ABSTRACT: Experimental design is a well-known and broadly applied area of statistics. The expansion of 
this field to the areas of industrial processes and engineered systems has meant interest in an optimal set of 
experimental tests. This is achieved through the use of combinatorial and algebraic approaches. As such, the 
present study states the theoretical basis to construct and enumerate experimental designs using non-isomorphic 
mathematical structures in the form of matrix arrangements called orthogonal arrays (OAs). These entities are 
characterized by their number of rows, columns, entries (symbols), and strength. Thus, each different column 
could represent some measurable feature of interest (temperature, pressure, speed). The runs, expressed through 
OA rows, define the number of different combinations of a particular design. Similarly, the symbols allocated 
in OAs’ entries could be the distinct levels of the phenomenon under study. During the OA construction process, 
we used group theory to deal with permutation groups, and combinatorics to create the actual OAs following 
a particular design. The enumeration process involved the use of algebraic-based algorithms to list all possible 
combinations of arrays according to their isomorphic equivalent. To test isomorphism, we used graph theory 
to convert the arrays into their corresponding canonical graph. 

The outcomes for this study are, firstly, a powerful computational technique to construct OAs from 8 to 80 
runs; and secondly, additions in the published list of orbit sizes and number of non-isomorphic arrays given in 
[1] for 64, 72, and 80 runs. 
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1. INTRODUCTION 
 

The engineering or scientific method is the 
approach of solving problems through the efficient 
application of scientific principles based upon a 
well-structured theoretical knowledge [2]. In 
applying the aforementioned approach, engineers 
undertake experiments or tests as an intrinsic and 
natural part of their jobs. As such, sound statistical-
based experimental designs are extraordinarily 
useful within the engineering profession aiming to 
improve process and systems characterized by 
suitable engineering specifications. These 
specifications are described as several “controllable” 
variables associated with the overall system/process 
performance. Therefore, knowing the main factors 
and their interactions, the engineer is able to analyze, 
for instance, process yield, process variability, 
development time, and operational costs [3], [4]. 

 
Latest implications in using experimental tests 

are related with engineering parameter design. 
Within this discipline, it is possible not only to 
develop new products/processes, but also to 
enhance the existing ones. To cite some examples 
in parameter design, we have the evaluation and 
comparison of basic design configurations; the 
appraisal of different alloys in strength of materials; 
the selection of design parameters to make the 

product / process to work within a specified 
tolerance range under a wide variety of field 
conditions (we say the design is being robust); and 
the determination of the key factor combinations 
affecting a particular product performance. 

 
Besides their flexibility of being easily 

implemented in engineering design [2], our arrays 
are mathematically made so we can perform their 
combinatorial “enumeration”. This last idea is the 
one presented in this paper. Our interests in 
following a purely mathematical point of view in 
dealing with experimental designs are, firstly, the 
development of algorithms which actually calculate 
the objects we are defining theoretically; secondly, 
to answer concrete questions in group theory to 
explore more of it; and thirdly, to deal with 
complexity theory such as to able to answer the 
problem whether two graphs, given by their 
adjacency matrix, are in fact, isomorphic [5]. 

 
We initially present the main concepts of group 

theory which underlie the algorithms used to 
construct the arrays. We move further with the tools 
provided by the theory of graphs, to map an array 
into its equivalent canonical graph to be able to 
indirectly assess isomorphism between the arrays. 
We then present a pseudo code to implement a 
backtrack search algorithm to look through the 
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different orbits which conform the orbit space of a 
particular array of design type t. 

 
2. COMBINATORIAL SETTING  
 

Orthogonal arrays (OAs) are related to 
combinatorics, finite fields, geometry, and error 
correcting codes. Fig. 1 shows an example of an OA 
of strength two (transposed). 

 

 
 

Fig. 1 Strength two OA (transposed) 
 

Each of the four possible rows does appear in 
the array, and they appear the same number of times 
(picked them in groups of 𝑡𝑡 = 2 columns). This is 
the fundamental property that defines an OA [6]. In 
the previous example, only three symbols appeared, 
0, 1, and 2. Thus, we say the array has 3 levels. Note 
that each level may represent a particular 
combination of physical properties: fuel with 
additive or not, 20oC or 80oC, machine running or 
stopped, and so forth. Following the same example, 
we have 3 columns each representing a variable 
under study (additive, temperature, machine’s 
condition). In a similar way, our array F has 12 rows 
or runs, each representing a particular combination 
of the different variable levels. Mathematically, we 
represent an OA of strength 𝑡𝑡, 𝑠𝑠 levels, 𝑁𝑁 runs, and 
𝑎𝑎  variables as: 𝑂𝑂𝑂𝑂(𝑁𝑁, 𝑆𝑆𝑖𝑖

𝑎𝑎𝑗𝑗 , 𝑡𝑡) . For our particular 
array 𝐹𝐹, we have 𝑂𝑂𝑂𝑂(12, 3122, 2) or equivalently, a 
design type 𝑈𝑈(31, 22) [6], [7]. 

 
A strength-t OA assures that all possible 

combinations of the levels in a variable of up to t 
occur together equally often [6]. Thus, the strength 
of the array defines the effects of each individual 
variable (factor) that can be taken in consideration 
when assessing the design [6], [8]. Also, according 
to the strength t required, we will be able to 
calculate some interactions between factors as well. 
Such experiments are called fractional factorial 
designs [7]. Our particular interest is in OAs of 
strength 3, which can model all main factors in a 
particular phenomenon under study and up to two 
interactions between the factors. 
 
3. MATHEMATICAL BACKGROUND 
 

This section shows how we performed the 
construction and enumeration of strength three 
orthogonal arrays. We initially explain the 
mathematical approach used for the permutation 
computational implementation. 

 
We applied group theory to define the full group 

of factor transformations and the corresponding 
automorphism group. Furthermore, we used graph 
theory to represent the orthogonal array as a colored 
graph. This approach allowed us to define a 
canonical representative of an orbit of OAs using 
the canonical graph [9]. This leads to improve the 
computational time and memory usage for the 
calculations. We also implemented the backtrack 
search and the lexicographical least run algorithms 
to find the arrays and as a decision criteria to drop a 
leaf [1], [10]. 
 
3.1 Algebraic Setting  

 
Consider 𝐹𝐹𝑁𝑁𝑁𝑁  as the set of all elements of the 

form: 
 

𝐹𝐹𝑁𝑁𝑁𝑁 = �𝐹𝐹:𝐹𝐹 𝑖𝑖𝑠𝑠 𝑎𝑎 𝑁𝑁 ×  𝑑𝑑 𝑚𝑚𝑎𝑎𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚,𝐹𝐹𝑖𝑖𝑖𝑖  ∈  𝑆𝑆𝑖𝑖�      (1) 
 
called the set of all fractional factorial designs 
(FFDs). We define the groups 𝐺𝐺𝜌𝜌 , 𝐺𝐺𝛾𝛾 , and  𝐺𝐺𝜎𝜎 ,  
acting on 𝐹𝐹𝑁𝑁𝑁𝑁  as 𝐺𝐺𝜌𝜌 = 𝑆𝑆𝑆𝑆𝑚𝑚(𝑁𝑁), the group of all 
permutations acting on rows; 𝐺𝐺𝛾𝛾 = 𝑆𝑆𝑆𝑆𝑚𝑚(𝐷𝐷),  the 
group of permutations acting on columns; and 𝐺𝐺𝜎𝜎 =
𝑆𝑆𝑆𝑆𝑚𝑚(𝑆𝑆), the permutation group acting on symbols. 
Thus, 𝜌𝜌 𝜖𝜖 𝐺𝐺𝜌𝜌 defines an action: 
 
�𝐹𝐹𝑖𝑖,𝑖𝑖� →  𝐹𝐹𝑁𝑁𝑁𝑁

𝜌𝜌 = �𝐹𝐹𝜌𝜌𝑖𝑖,𝑖𝑖�                                             (2) 
 

similarly, 𝛾𝛾 ∈  𝐺𝐺𝛾𝛾 defines an action: 
 
∏ 𝑆𝑆𝑆𝑆𝑚𝑚(𝐽𝐽𝑘𝑘)𝑘𝑘  ⊆ 𝑆𝑆𝑆𝑆𝑚𝑚(𝐷𝐷) →  𝐹𝐹𝑁𝑁𝑁𝑁

𝛾𝛾 = �𝐹𝐹𝑖𝑖,𝛾𝛾𝑖𝑖�         (3)  
 
and 𝜎𝜎 ∈  𝐺𝐺𝜎𝜎 defines an action: 
 
𝜎𝜎 = (𝜎𝜎1, … ,𝜎𝜎) ∈  ∏ 𝑆𝑆𝑆𝑆𝑚𝑚(𝐽𝐽𝑘𝑘)𝑘𝑘  ⊆ 𝑆𝑆𝑆𝑆𝑚𝑚(𝑆𝑆) →
 𝐹𝐹𝑁𝑁𝑁𝑁𝜎𝜎 = �𝐹𝐹𝑖𝑖,𝑖𝑖

𝜎𝜎𝑗𝑗�                                                              (4)   
 
Definition 1. Consider the set 𝐹𝐹𝑁𝑁𝑁𝑁 of 𝑁𝑁 ×  𝑑𝑑 arrays, 
and G the group of permutations. We define the 
action of the group G on the set 𝐹𝐹𝑁𝑁𝑁𝑁   as a map 
𝜙𝜙:𝐺𝐺 ×  𝐹𝐹𝑁𝑁𝑁𝑁 → 𝐹𝐹𝑁𝑁𝑁𝑁 such that: 

 
• 𝐹𝐹𝑒𝑒 = 𝐹𝐹,∀ 𝐹𝐹 ∈  𝐹𝐹𝑁𝑁𝑁𝑁; 𝑒𝑒, identity element. 
• (𝐹𝐹)(𝑔𝑔1𝑔𝑔2) = (𝐹𝐹𝑔𝑔1)𝑔𝑔2 ∀ 𝑔𝑔1,𝑔𝑔2 ∈ 𝐺𝐺.  
 

Corollary 2. Let the map ∅  define a group 
homomorphism such that ∅: 𝐺𝐺1 → 𝐺𝐺2 where 
𝐺𝐺1 and 𝐺𝐺2  are both permutation groups. Then ∅ is a 
one-to-one map if and only if 𝑘𝑘𝑒𝑒𝑚𝑚(∅) = 𝑒𝑒 

 
Proof. Assume the map ∅ is one-to-one. It holds 
that ∅(𝑒𝑒) = 𝑒𝑒2, the identity element of  𝐺𝐺2. Thus, 𝑒𝑒 
is the only mapped element into 𝑒𝑒2  by ∅ , so 
𝑘𝑘𝑒𝑒𝑚𝑚(∅) = 𝑒𝑒. Assume now that 𝑘𝑘𝑒𝑒𝑚𝑚(∅) = 𝑒𝑒. For all 
 𝑔𝑔 ∈ 𝐺𝐺  the element mapped into ∅(𝑔𝑔)  are the 
elements of the right coset {𝑒𝑒𝑔𝑔} = {𝑔𝑔} showing that 
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∅ is one-to-one. 
 
Definition 3. We have the following mappings: 

 
∅ρ: Sym(N) → Sym(FND)                                       (5) 
 
∅𝛾𝛾:�𝑆𝑆𝑆𝑆𝑚𝑚(𝐽𝐽𝑘𝑘)

𝑘𝑘

→ 𝑆𝑆𝑆𝑆𝑚𝑚(𝐹𝐹𝑁𝑁𝑁𝑁)                             (6) 

 
∅σ:� Sym�Sj�

k
→ Sym(FND)                            (7) 

 
It follows from definitions 1 and 3, 

 
Im∅ρ, Im∅γ, Im∅σ ≤ Sym(FND)                           (8) 

 
G = < 𝐼𝐼𝑚𝑚∅ρ, Im∅γ, Im∅σ >                                  (9) 

 
G = Gρ × Gσ ⋊  Gγ                                                 (10) 
 
where Gσ ⋊  Gγ = ∏ Sym�Sj,k� ≀ Sym(Jk)m

k=1 or 
equivalently,  

 
G =  ∅ρ(ρ) ∙ ∅σ(σ) ∙ ∅γ(γ)  ≤ Sym(FND)        (11) 

 
Definition 4. Let G  be a group of permutations 
acting on a non-empty set FND; we define the orbit 
of G containing F to the equivalence class given by: 

 
OrbG(F) = {Fg | g ∈ G}                                      (12) 

 
we define the orbit space as the family of all 
equivalence classes obtained from G acting on an 
element F of the set FND. Let F and T both elements 
of FND. We say they are isomorphic if there exists a 
permutation g ∈ G such that F = Tg. The previous 
expression can also be written as F = Tg. 

 
Suppose now that a group G acts on a set FND; 

then, for each element F ∈ FND , we redefine the 
equivalence class (orbit) containing F as: 

 
OG(F) = {Fg | g ∈ G}                                            (14) 
 
Lemma 5. Suppose that a group G acts on a set FND; 
then, for each F ∈  FND, 

 
|G| = |stab(F)|�Og(F)�                                         (15) 

 
Proof. Suppose that g1and g2 are in the right coset 
of stab(F)  and g1 =  πg2  for some π ∈ stab(F) . 
Thus, Fg1 = (F)(πg2) = (Fπ)g2 . On the other 
hand, suppose that Fg1 = Fg2 , then F = Fg2g1−1 
implying that g2g1−1  ∈  stab(F); therefore g1  and 
g2 belong to the same right coset of stab(F) if and 
only if Fg1 = Fg2. It follows that there is a bijection 
between the elements in OrbG(F)  and the right 

cosets of stab(F), thus 
 

|G| = |stab(F)||#of right cosets of stab(F)|
= |G| = |stab(F)|�Og(F)� 

 
and the result follows. 
 
Theorem 6. (Burnside's Theorem) Suppose the 
group G acting on a set FND; then, the number of 
orbits in FND;  is given by 

 
1 |G|⁄  � |stab(F)|

F ∈ FND

                                              (16) 

 
Proof. Using lemma 5, we have: 

 
1 |G|⁄  � |stab(F)|

F ∈ FND

= � 1 �Og(F)�     (17)⁄
F ∈ FND

 

 
suppose there are OS  orbits in FND , and F  in the 
orbit Og; then, ∑ 1 �Og(F)� = OS⁄F ∈ FND . 

 
Definition 7. Let G be the group of all row, column, 
and symbols permutations, and  F ∈ FND. The set of 
all isomorphisms from F  to F  is called the 
automorphism group of F and is denoted by Aut(F) 
The elements of Aut(F) are called automorphisms 
of  F. 

 
Using our previous results from Eqs. (15), (16) and 
(17); the length of the G-Orbit of G is the number 
of distinct objects isomorphic to it. Thus, 

 

|OrbG(F)| =
|G|

|Aut(F)|
                                           (18) 

 
 
4. ENUMERATION USING GRAPH 
THEORY 
 

In the previous section, we explained how we 
mathematically set up the conditions for the 
construction and enumeration of strength t 
orthogonal arrays. In this section, we formally 
explain their construction and how we perform the 
enumeration by mapping the OAs as canonical 
graphs. 

 
4.1 Mapping an OA to its Equivalent Canonical 
graph 

 
Let FND  the set of fractional factorial designs 

with F ∈ FND . Let Fij  be a particular entry in the 
array F , where i: ith row and j: jth  column. We 
define Sρ the set of all N-tuples which represent the 
different rows of the arrayF. Then, Sρ = {ρ1, … , ρN} 
{ρ1, … , ρN} and Fij ∈ S ; where S  is the set 
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containing the different possible symbols for a 
particular design U. 

 
Definition 8. A colored graph is a triple FG =
(V, E, Γ), where V is the set of the different vertices, 
v, of the graph; E is the set of edges, and Γ a map 
from V to a set of colors C. 

 
Definition 9. We define the neighbor of a vertex 
vx ∈ V as  η(vx) = �vy ∈ V � �vx, vy�  ∈ E} . An 
isomorphism FG → FG′ = (V, E, Γ) is a bijection 
η: V → V′ such that: 
�vx, vy�  ∈ E ↔  �η(vx),η�vy�� ∈ E′  and Γ(vx) =

Γ�vy� ↔ Γ′�η(vx)� = Γ′�η�vxy��∀  vx, vx ∈ V. 
 

Proposition 10. Let F ∈ FND . We construct a 
colored graph FG = (V, E,Γ)  for the array F as 
follows: 

 
a) The set of the vertices V, is made on the elements 
ρi, i: 1,2, … , N; γj, j: 1,2, … , d  and σjx, j: 1, … d; x ∈
S ; corresponding to the rows, columns, and the 
distinct levels of the array. 
b) The set of the edges, E, made on all of the E1 =
{ρi,σjFij}  and E2 = {γj,σjFij}  ∀ i: 1, … , N  and 
j: 1, … , d.  
c) The set of the edges, E, made on all of the vertices 
ρi with color Cρ; all of the vertices γ with color Cγ; 
and all of the vertices σjx with color Cσx. 
 
Thus, FG has three partitions: rows, columns, and 
levels. Mathematically, we express this as V =
Cρ ∪ Cγ ∪ Cσx . Similarly, we write the set of the 
edges as E = E1 ∪ E2 ⊆  (Cρ × Cγ) ∪ (Cσx ×
Cγ). It follows that the cardinalities |V| and |E| are 
given by 
 

|V| = N + � ki + d                                            (19)
d

I
 

 

|𝐸𝐸| = 𝑑𝑑𝑁𝑁 + � 𝑘𝑘𝑖𝑖
𝑑𝑑

𝐼𝐼
                                                (20) 

 
To characterize the graph of an OA, we define 

the column-color classes to the disjoint union of 
color classes Cρ, Cγ, and Cσx. The total number of 
colors of FG  is 2 + m  and each row-vertex is 
adjacent to sv symbol-vertices. Moreover, each 
symbol-vertex is adjacent to exactly one column-
vertex, where sv = ∑ |Ci|m

i=1  
 

Lemma 11. Let 𝑆𝑆𝐹𝐹𝐹𝐹  the set of all coloured graphs, 
and the map ∅ defined as ∅: FND → 𝑆𝑆𝐹𝐹𝐹𝐹    that takes 
an array F ∈ FND  to the corresponding colored 
graph FG ∈ 𝑆𝑆𝐹𝐹𝐹𝐹  ; thus, ∅ is an injection. 

 

Proof. The number of vertices of FG  does not 
depend upon F but only on the design type U and 
the run size N. 

 
To determine row, symbol, and column vertices, 

we have the following color partition proposition: 
 

Proposition 12. Let F ∈ FND  of strength t ≥  1 
and run-size N. Thus, 

 
a)  FG  has a tripartite partition (Cρ, Cγ, Cσx)  with 
|Cρ| = N, |Cγ| = ∑ akm

k=1 , and |Cσx| = ∑ akSkm
k=1 . 

b)  Every vertex v ∈  V has a valence ν denoted by 
ν = V(v)  
c)  For the column-vertex set Cσx, we denote the 
valency for cσx ∈ Cσx as νx, where νx is the unique 
element {1, … , m}. 
d) Let s ∈ S, the set of different symbols (levels). 
Then ∃ cσx ∈ Cσx such that {s, cσx} ∈ E, the set of 
edges for some k in {1, … , m}. 
e) From d), it follows that the valence of a symbol-
vertex is given by 
 

ν(v) =
N

ν(cσx) + 1 =
N
vx

+ 1                                (21) 

 
f)  Let ρ ∈ Cρ and  γ ∈ Cγ; thus, there exists a path 
of length two from ρ to γ through a vertex in V, and 
this path is unique. 
 
Definition 13. Let an orthogonal array be of design 
type U  and run size N . Consider also a colored 
graph which satisfies all of the points given in 12 
above. Thus, we call the colored graph as being of 
the type (U; N), which forms a sub-set of FG. 

 
Lemma 14. Let F2 and F2 ∈  FND OAs with designs 
type 𝑈𝑈  and 𝑁𝑁 . Let also FG1 ;  FG2  ∈  SFG  be their 
corresponding graphical representations. Thus, 
F1 and F2 are isomorphic arrays if and only if FG1 
and  FG2 are isomorphic graphs. 

 
Proof. Suppose F1 and F2 are isomorphic arrays ∈
 FND ; then F1  =  F2

g ;  g ∈  G . Because g ∈  G , it 
follows that g is a product of gρ , gγ , and gσ 
permutations; and from c) in proposition (10), we 
have FG1  =  ∅�F1

g� =  ∅(F2) =  FG2.  Therefore, 
FG1 and FG2 are isomorphic graphs. Suppose now 
that FG1  and FG2  are isomorphic graphs; thus, 
∃ g ∈  G  such that   FG1  =  FG2

g . Because FG1  and 
FG2  satisfy all of the points given in proposition 
(10), they are tripartite and the permutation g 
preserves the graph coloring. Therefore, g can be 
written as the product of gρ , gγ , and gσ 
permutations acting on F1 and the composed map 
takes F1 to F2. 
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Example. Assume we have an orthogonal array with 
design type U(31, 22 )  and run size N =  6  (a 
fraction of the array shown in Fig. 1); then, the set 
of vertices is made up on the elements ρi , i ∈
{1, … ,6}; and γj, j ∈ {1, … ,7}; and σjx, j ∈ {1,2,3}, 
x ∈ {1,2} (see proposition (10)). We assign one 
color to the set of rows Cρ; one color to the partition 
Cγ1 ⊆ Cγ corresponding to the level 3; one color to 
the second partition Cγ2 ⊆ Cγ corresponding to the 
two levels of the two columns with the same symbol 
level (0,1); and one color for the set of symbols Cσx. 
We have in total |V| = 6 + ∑ ri + 33

i = 16 vertices, 
and |E| = 2 × 6 + 7 edges. The colored graph of 
this array is shown in Fig. 2. 
 

 
 
Fig. 2 Canonical graph of the orthogonal array F. 

 
4.2 Algorithm Description 
 

The construction process requires an existing 
orthogonal array with design type U  made using 
simple combinatorial techniques. We then start 
adding the different symbols according to the 
specified design. By adding symbols, we create a 
new column to the existing array until the new 
required OA is completed. 

 
During the process of adding symbols, our 

algorithms check that the conditions of strength 
𝑡𝑡 and sequence's lexicographical order are being 
met; otherwise, the entire OA is discarded. The 
aforementioned process is carried out using the 
backtrack search algorithm [11]. 

 
In addition to the previous criteria, we use our 

permutation group 𝐺𝐺  with the operations 𝑔𝑔𝜌𝜌 , 𝑔𝑔𝛾𝛾 
and 𝑔𝑔𝜌𝜌 to prune the tree when we find isomorphic 
graphs downstream of the search tree (this stage 

help us to save important computational time and 
memory-usage resources). Furthermore, the 
recently made array is then mapped to its equivalent 
canonical graph in order to be compared against the 
orbit-representative one. If it turns out that the two 
graphs are isomorphic, the newest array is counted 
as part of the orbit-representative array and 
discarded. However, if the graphs are not 
isomorphic, the newest array is stored and classified 
as part of the orbit representatives for the particular 
design 𝑈𝑈. 
 
4.3 The Backtrack Search Algorithm 
 

Mathematically, we consider the idea of finding 
a FFd ∈  FND  with a design type U . This design 
specifies, among other parameters, the strength t of 
the array, which is the main criterion looked in the 
search tree to drop a leaf. 

 
Definition 15. We define a partial image to the set 
of distinct entries in a row by 𝑆𝑆𝑒𝑒𝑒𝑒𝜌𝜌 = [Fi1, … , Fir] ,  
0 ≤ r ≤ m . When r =  m, we call the sequence 
𝑆𝑆𝑒𝑒𝑒𝑒𝜌𝜌  as complete. 
 
According to definition 15, the backtrack search 
goes through the partial images given by the 
sequence 𝑆𝑆𝑒𝑒𝑒𝑒𝜌𝜌. Within this search, it will use any 
knowledge of the design to prune the search tree. 
Note that in constructing a new design we totally 
order the sequences 𝑆𝑆𝑒𝑒𝑒𝑒𝜌𝜌 so that we induce a 
lexicographical order for the set of partial images. 
This means that only the first point of each k-orbit 
has to be considered when extending  𝑆𝑆𝑒𝑒𝑒𝑒𝜌𝜌. 

Figure 3 shows the algorithm we use to traverse 
a tree created to search orbits and their 
representatives. The search will go through some of 
the elements of the permutation group while 
skipping some leaves according to the previously 
discussed criteria. 

 
4.4 Isomorphism Classes Enumeration Results 
 

In Table 1, we show some examples of results 
obtained by Man [1] which were corroborated with 
our approach. In addition, we introduce new 
isomorphism classes enumerated using the 
technique presented in this paper. 
 
The first column of the table represents the run size 
𝑁𝑁  for the different designs. The second column 
corresponds to the actual design type 𝑈𝑈 according 
to the multiplicity notation for automorphism group 
orders. The third and fourth columns of the table are 
the number of the automorphism groups and their 
corresponding size respectively. We have indicated 
with an asterisk the newest designs we have found.  
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Fig. 3 Backtrack Search Algorithm. 
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Table 1 Non-isomorphic OAs of strength three 
 

N Type # Size 
64 45 1 1441 

64 44 21 3 2561, 
5121, 
15361 

64 41 25 12692  
64 41 26 ≥ 7865*  
64 41 27 ≥ 10661*  
64 41 28 ≥ 1189  
72 61 24 156 25636, 

51272, 
307232, 
409612, 
1105924 

72 61 25 64296  
72 61 26 ≥ 36550*  
72 61 27 ≥ 54834*  
80 41 25 ≥ 18653*  
80 41 26 ≥ 15283*  

Note: new arrays indicated with an asterisk *. 
 
5. CONCLUSION 

 
We have presented a mathematical and 

computational method for constructing and 
enumerating strength-t orthogonal arrays given a 
fixed number of experiments. The technique shown 
provided a feasible generic framework and has been 
validated through both, the comparison of designs 
already listed by several different techniques, and 
the discovery of some new mixed OAs. 
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