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ABSTRACT: The current monitoring system of flood warnings on Mt. Merapi slope, Yogyakarta, Indonesia 

relies on rainfall gages and visual observation. Most flood events occurred with a fast-moving front resulting 

in a very short available warning time. An X-Band Multi-Parameter Radar installed at the southwest slope of 

Mt. Merapi measures raindrop intensity high above the ground and provides rainfall information earlier. This 

paper presents the effort to estimate the additional warning time available by extracting binary radar data, 

transforming it into 3D grid data, and visualize it into meaningful charts. This study compared the IDW and 

NN interpolation methods and verified the grid resolution and the limiting distance, r, of the IDW method for 

obtaining optimal performance. This study also conducted a qualitative review on the sequences of horizontal 

contour images and the comparison of horizontal and vertical grid resolutions. The estimation of time lag of 

peak raindrop intensity of different elevations was evaluated qualitatively by overlaying time-series data at 

four elevations and quantitatively by conducting a cross-correlation analysis of pairs of time series data of 

+3000 m and +1300 m elevations with horizontal offset for considering wind drift. The result shows that the 

optimal value of r is 400 m, and the optimal grid resolution is 100x100x100 m. It found that the approximate 

additional warning time was 6 minutes. The conclusion is that the developed interpolation method is reliable 

for raindrop analysis. The cross-correlation analysis gives a conservative estimate of the additional warning 

time. 
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1. INTRODUCTION 

 

Flash floods frequently occurred on the slope of 

the Merapi volcano, located in the north tip of the 

Special Region of Yogyakarta, Indonesia, 

especially on the southwest side with higher heavy 

rainfall than those of the other sides [1]. After 

volcanic eruptions, flash floods carry debris from 

sand to boulder (Jumoyo, Gendol, and Krasak 

cases). Recently, on the 2nd of February 2020, a 

flash flood dragged down 257 junior secondary 

students, and 4 of them were dead (Sempor Creek, 

Turi District, Sleman Regency). Flood early 

warning is needed in this area to reduce the risk of 

loss of lives.  

Several rainfall stations have been installed on 

the Merapi volcano slope area by the Hydrology and 

Hydraulics Laboratory of Civil and Environmental 

Department, Universitas Gadjah Mada, and the 

Sabo Engineering Unit of the Ministry of Public 

Works and Housing, Republic Indonesia, since 

ninety eighties. Within the last ten years, the 

laboratory installed more ground rainfall stations, 

but some of them were reduced their performance.  

The network of rainfall gages may not detect a 

heavy local rainfall occurrence that causes a flash 

flood, because they do not drop exactly at the gage 

locations. In 2016, there has been installed a radar 

rainfall gauge on top of the roof of Mt. Merapi 

Museum building at the south-southwest of Merapi 

volcano slope. See the map in Fig. 1. This radar 

rainfall station was still under study. Several studies 

have used radar rainfall data, such as in [2–5]. 

However, the researchers and the other users have 

not utilized the 3D features of the recorded radar 

rainfall data extensively.  

 

 
 

Fig.1 Location of the rainfall radar and ground 

station gauges  
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The purpose of this study is to develop a method 

that uses 3D radar rainfall data to estimate the delay 

time of radar rainfall data records of high elevation 

to reach the lowest elevation or the ground. By 

knowing this delay time, it is possible to lengthen 

the available flood warning time calculated from 

ground station rainfall data and the approximated 

flood travel time. 

 

2. METHODS 

 

2.1 Radar for Rainfall Measurement 

 

The rainfall radar system installed in Merapi 

volcano slope is an X-Band Multi-Parameter Dual 

Polarimetry of WR-2100 Model produced by the 

Furuno Electric., Japan. The exact location of the 

radar antenna device is at 98o 27’ 51” E, 3o 8’ 27” S 

and the antenna altitude is at +1,257 m above mean 

sea level. Fig. 2 shows the radar dome installation 

and Table 1. shows the specification of the installed 

rainfall radar.  

 

 
 

Fig.2 Installation of the MP DP X-Band Radar  

 

This study uses rainfall intensity data, R 

(mm/hour), recorded in scan mode of Plan Position 

Indicator (PPI) with several tilt positions. Therefore, 

R data position is in an azimuth (degree) - tilt angle 

(degree) - range (m) coordinate system. Scanning 

setting of the radar provides R data on 968 azimuth 

data within 360o, 300 range data within 30 Km 

radius, and nine tilt data of 3o, 5o, 7o, 9o, 11o, 13o, 

15o, 18o, and 21o.  However, in the collected data, 

the azimuth intervals are not exactly equal to 360 

divided by 968 but slightly shifted and vary tilt-to-

tilt angels. One cycle of scanning that covers all tilt 

levels, takes about 2 minutes. The range data 

positions start from 100 m, followed by 200 m, 300 

m, and so on, until 30,000 m. In such a data capture 

position system, the distance between two data 

locations on two adjacent rays of different azimuth 

values but with the same tilt angle and the same 

distance (range or radius) varies so much. For 

example, for the 3o tilt angle, the horizontal distance 

between two adjacent rays varies from 0.648 m to 

194.460 m at 100 m to 30,000 m distance away from 

the radar antenna, respectively. In all vertical slices 

corresponding to azimuth values, the vertical 

distances between two adjacent arrays vary from 

3.490 m to 1570.617 m at 100 m to 30,000 m 

distance away from the radar antenna, respectively. 

 

Table 1. Specification of the MP DP X-Band Radar 

related to rainfall data[6] 

 

Item Specification 

Polarization Dual polarimetry (vertical 

and horizontal) 

Operating Freq. 9470 MHz 

Beam Width 2.7o 

Hor. Scan Angle 360o 

Ver. Scan Angle -20 to 900 

Angle Resolution  0.1o 

Anten. Rot. Speed 0.5 to 16 rpm 

Max. Range 30 Km 

 

The above description shows that the ratio of the 

tangential distance, either vertically or horizontally, 

to the radial distance of neighbouring data locations 

on two adjacent rays varies so much. See Fig. 3. 

Throughout the measurement coverage area, the 

data locations are not in regular distances except 

along the rays. In such above irregularity of the 

rainfall data locations, it is difficult to do any 

numerical analysis (e.g. numerical weather 

prediction) directly using the PPI data. Therefore, 

interpolation to a regular grid is necessary.  

 

2.2 Approximating R values in a regular grid 

 

It is common to construct a CAPPI (constant 

altitude plan position indicator) and having data on 

a two-dimensional (2D) grid of a specific elevation 

[7, 8] or even in a 3D grid [9,10]. An interpolation 

technique may transform the PPI data to the CAPPI 

data or 3D grid data. Based on the 3D grid data, the 

R values at any position (e.g. in creating contours) 

can be obtained by using any grid-based 

interpolation method. Displaying the 3D data can 

apply any contouring technique on horizontal slices 

of several elevations (CAPPI) and vertical slices 

(VCUT). Visualization of 3D rainfall data helps 

observers to identify quickly any rainfall that is 

likely to produce a flash flood event. However, for 
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broad and deep observation areas, the closer 

contours may block those behind them. 

 

 
 

Fig. 3 An example of locations of R data along three 

adjacent rays  

 

The recorded PPI rainfall data are in a .scn file 

(binary data format) for each tilt level along with 

other data and several parameters. The necessary 

data extraction method selects and takes the rainfall 

data of all azimuth and range values from the .scn 

file of a specific tilt level. The file name of the .scn 

file indicates the date, time, and tilt level. 

 

2.3 CAPPI and 3D grid 

 

Several methods for creating CAPPI data from 

the primary data (PPI) are available, such as the 

linear interpolation method that uses data on the 

neighbouring upper and lower rays, and data 

projection of rays to the CAPPI. Another method is 

an interpolation method that uses data at the 

neighbouring PPI with a distance criterion. This 

method does not create CAPPI data on grid nodes 

but directly on 2D contour lines/pixels at a certain 

altitude.  

In WRADLIB [10], an open-source library 

specific for radar data processing, CAPPI data 

construction is done by data interpolation of the 

converted PPI data in Cartesian coordinate x, y, z to 

a 3D Cartesian grid. Based on the 3D grid, an instant 

of CAPPI can be created. There are several options 

of the interpolation methods to use, namely the 

nearest-neighbour method, the inverse distance 

method, the linear method, the ordinary kriging 

method, and the external drift kriging method. 

However, there is no explanation in detail of how 

far the maximum distance of the neighbouring PPI 

nodes whose values contribute to the interpolated 

value of a node in the 3D grid.  

The single-pass isotropic Barnes distance-

dependent weight method was used for mapping 

radar data from several weather radars with 

different types, namely the ARM scanning (C- and 

X-Band Radar) and the NEXRAD (S-Band Radar) 

data to a Cartesian grid of [11]. This method solves 

the problems of multi-radar systems that have 

different data systems. 

  

2.4 Interpolation methods 

 

This study verified the smoothness of the 

contour images resulted from two interpolation 

methods namely the Nearest Neighbour (NN) 

method and the Inverse Distance Weighting (IDW) 

method. The NN method takes the nearest available 

data point and neglects the values at other near data 

points. The IDW method computes the near 

available data points using the formula shown in Eq. 

(1). 
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R is the interpolated value, Ri is the value at the ith 

available data point, x is the position vector of the 

interpolated data, xi is the ith position vector of the 

ith available data point, a is the distance vector, wi(x) 

is the weighting coefficient of Ri, p is a power 

constant, and N is the number of the near data points. 

The near data points have the distance to the 

interpolated data point less than a selected limit. 

 

2.5 Raindrops vertical movement 

 

To approximate the time for raindrops traveling 

from their initial positions to the ground, a visual 

observation can examine a sequence of 2D vertical 

contour maps of raindrop intensity at a certain 

location while time elapses. If there is no horizontal 

movement of raindrops perpendicular to the 2D 

vertical contour map, two successive images of the 

vertical slice (VCUT) may show the vertical 

raindrop profile moving downward. The movement 

will appear clearly if the images capture the 

raindrop front. However, the actual process 

includes horizontal movement, raindrop 

development (growth), evaporation back of 

raindrops (dissipation), and diffusion (spreading) 

[13-15]. Therefore, to estimate raindrop vertical 

time travel, it needs to evaluate more than one 

VCUT and CAPPI image.  

The optical flow method is one of the 

nowcasting analyses that use a sequence of radar 

product images such as CAPPI or CMAX [4, 16, 

17]. However, only a horizontal movement 

evaluation can apply this method. A study has 
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incorporated Doppler radar data and the relevant 

numerical model to enhance the optical flow 

method, and overcome its drawbacks, such as 

considering no growth and decay. Further 

development of nowcasting methods used the 3D 

numerical models [18, 19] with observed data 

assimilation  [9, 10]. These methods solve equations 

governing the process and their variational 

equations [19]. A hybrid approach developed a 

method by taking advantage of the radar rainfall 

data and the numerical model of weather prediction 

(mesoscale model five – MM5) that deal with wind 

direction, humidity, etc.[20]. Wide-area weather 

forecast practices commonly applied those methods. 

 

2.6 The correlation between successive images 

 

In [21],  a correlation between sequences of the 

vertically integrated liquid (VIL) contour detected 

the movement of storms. It also identified storm 

growth and decay. A method to generate velocity 

vector patterns used image filtering and correlation 

analysis to provide nowcasting [22]. Another 

method for short-term cloud forecast used a lag 

cross-correlation analysis [23]. The lag cross-

correlation analysis used successive IR satellite 

images of the same scene. Methods called TREC 

and COTREC adopted image recognition 

techniques that correlate between successive 

images [24]. A study has compared a cross-

correlation technique and a multiple-step-ahead 

forecast method by [25] to the method using linear 

extrapolation of the centroids of rainfall features. 

The result shows that the cross-correlation 

technique performs better in terms of a series of 

statistical parameters.  

Cross-correlation analysis with varying time lag 

can indicate the similarity of the shapes of two time-

series curves and approximate the phase shift or 

delay time between them. The cross-correlation 

formula, cc(x,y), with lag analysis is as follows.   
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where xi is the ist first data series, yi is the ist 

second data series, �̅� and �̅� are the averaged values 

of the first and second data series, respectively, n is 

the number of data in a series, and k is the lag (t k 

is time lag). 

 

3. RESULT AND DISCUSSION  

 

3.1 Evaluation of interpolation methods 

 

An algorithm for transforming PPI data to a 3D 

grid has been developed under Phyton interpreter 

[26],  which covers NN and IDW interpolation 

methods for approximating R values at 3D grid 

nodes.  

 

 
 

Fig. 4 Interpolation to a grid node (uses only values 

on the PPI nodes in solid black colour, r is the 

limiting distance)  

 

 
 

 

 

 

 

 

Fig. 5 The CAPPI contour at 2.0 Km on 19-02-2020 

14:40:00 constructed from 100x100x100 m grid 

with r = 200 m (top) that produces a ring-shaped 
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gap and r = 400 m (bottom) (modified from [26]) 

The IDW interpolation method uses data on the 

neighbouring PPI nodes whose distance to a grid 

node less than a selected limit as shown in Fig. 4. 

As for the NN method, the value on the nearest PPI 

node is used. 

Problems arose when the limiting distance, r, is 

too small or too big. A grid node may not have any 

PPI neighbouring node if r is too small. In a such 

condition, the value of that grid node is set to zero. 

If the value of r is too big, the neighbouring PPI 

nodes whose distance less than r become too many. 

The interpolation process uses a maximum number 

of 100 nearest neighbouring PPI nodes. 

In applying the IDW method, after using several 

trial values on a 100x100x100 m grid, the optimal r 

was found to be 400. The power constant, p, was set 

to 3 as suggested by [27]. Fig. 5 shows a comparison 

of using r values of 200 m and 400 m. The top 

picture shows a ring shape gap of zero grid node 

values. Note that the colour scale applies to all other 

figures. 

A CAPPI contour data can be converted to .kml 

format and displayed on the Google Earth oblique 

satellite view as shown in Fig. 6. The developed 

application can display CAPPI and VCUT, as 

shown in Fig. 7. 

 

 
 

Fig. 6 The CAPPI contour is presented on Google 

Earth (modified from [26]) 

 

Fig. 9 depicts the comparison of using the IDW 

and NN interpolation methods. The IDW method 

with r equals 400 m provides a smoother contour 

than that provided by the NN method, however, the 

process takes a longer time.  

A comparison between the use of the vertical grid 

intervals of 500 m and that of 100 m has evaluated 

the use of VCUT images for visual observation of 

the vertical movement of raindrops.  The result in 

Fig. 8 shows that the 100 m grid captures significant 

many more features.  

 

3.2 Correlation analysis 

 

A cross-correlation analysis can assist to know 

how well the use of the raindrop intensity data at 

several Kilometer above the ground for estimating 

the additional time of a flood warning time. This 

analysis evaluates pairs of data whose locations 

above the Donoharjo ARR Station (UTM: 

432811.83, 9149845.00; 400 m above m.s.l.) [28]. 

Fig. 10 shows raindrop intensity data series of 

several elevations. 

 

 
 

Fig. 7 Snap shoot of CAPPI 3.0 Km and VCUT 

contours showing heavy rainfall on the area 10 Km 

to the east and 8 Km to the north of Radar station 

[26] 

 

 

 
 

 

 

Fig. 8 VCUT contours of 500 m vertical interval 

grid (top) and 100 m vertical interval grid (bottom) 

[26] 

 

There is a high intensity of raindrops captured 

between 13:16 and 13:36. The appearance of time 

lag of the peak intensities among data of different 

elevations does not exist. However, their values 

vary, and the highest values are at 1300 m and 1500 

m. The lowest value is at 3000 m. A second 

captured peak of raindrops intensity is 13.45 mm/hr. 

That peak is at 2500 m, and also does not show any 
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time lag with time-series data of the other elevation. 

The third one has a 24.95 mm/hr peak at 3000 m, 

and this case shows a 2-minute time lag for the data 

at 1500 m and 1300 m. 

 

 
 

 

 

Fig. 9 The result of CAPPI 2.0 Km contours of  the 

19-02-2020 14:30 data created using IDW (top) and 

NN (bottom) interpolation methods [26] 

 

The fourth one has a 9.07 mm/hr peak at 2500 

m. Again, time lags appear showing the raindrops 

recorded at 3000 m came first, and 4 minutes later 

the raindrops at 2500 m were recorded, and 6 

minutes later the raindrops at 1500 m and 1300 m 

were recorded with little different intensity. This 

different characteristic shows that there are 

different processes in those four rainfall events. 

A sequence of CAPPI contour images shows 

that within the above period of rainfall, a wind drift 

appeared. See Fig. 11. Based on the presence of a 

weak wind drift heading southeast, a series of cross-

correlation analysis between time series of raindrop 

intensity at elevation 1300 m (about 900 m above 

Donoharjo Sta.) and at elevation 3000 m above 

Donoharjo Sta. and other locations with 100 m zig-

zag offset heading northwest as shown in Fig. 12.  

 
 

Fig. 10 Time series data of raindrop intensity above 

Donoharjo Sta at CAPPI 1300, 1500, 2500, 3000 m 

in 19-02-2020 from 13:00 to 15:30 

 

 
 

 

 

Fig. 11 Successive contour images of CAPPI 1.5 

Km showing decaying rain drop intensity and a 

weak wind drift heading southeast  

  

 
Fig. 12 The offset locations of analyzed data at an 

elevation of 3000 m from that of 1300 m 
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The results show that the maximum cross-

correlation coefficient value is 0.785. This occurs at 

time-series data pair whose 400 m offset westward 

and 300 m offset northward (500 m horizontal 

distance) with a 4-minute time lag (see Fig. 13). The 

maximum cross-correlation coefficient of the pair 

of time-series data without location offset is 0.625 

with the same 4-minute time lag. The maximum 

cross-correlation coefficient values drop from 0.693 

to 0.365 as the offset distance increasing from 566 

m to 1487 m. The above analysis results show that, 

based on the cross-correlation analysis, the 

estimated travel time for raindrops to travel from 

elevation of 3000 m to 1300 m is approximately 4 

minutes. There is still a 900 m distance to reach the 

ground. By applying a linear extrapolation, it needs 

about 6 minutes for raindrops to travel from 

elevation 3000 m to reach the ground. Therefore, 

the additional time for flood warning time is about 

6 minutes. 

 

 
Fig. 13 The maximum cross-correlation coefficient 

and time lag vs offset distance of the +3000 m and 

+1300 m data series 

 

4. CONCLUSION  

 

The study has shown that the interpolation of 

PPI data of the X-Band MP Radar into a 3D grid 

gives the best performance when using the IDW 

method with a 100x100x100 m grid size, the limit 

searching distance value of 400 m, and power value 

of 3. The use of the data on the grid for cross-

correlation analysis, for the case of rainfall in 19-

02-2020 at the ARR Donoharjo Station (+400 m), 

gives an estimated additional flood warning time of 

6 minutes.  

This method needs the knowledge of wind drift 

direction on the area that can be indicated from 

successive CAPPI contour images. Wind drift 

direction may also be indicated by evaluating the 

maximum cross-correlation coefficient of all 360o 

offset locations surrounding the lowest grid node 

above the ground station under evaluation.  
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